
A calculus to detect guessing attacks

Bogdan Groza and Marius Minea

Politehnica University of Timişoara and Institute e-Austria Timişoara ?

bogdan.groza@aut.upt.ro marius@cs.upt.ro

Abstract. We present a calculus for detecting guessing attacks, based
on oracles that instantiate cryptographic functions. Adversaries can ob-
serve oracles, or control them either on-line or off-line. These relations
can be established by protocol analysis in the presence of a Dolev-Yao
intruder, and the derived guessing rules can be used together with stan-
dard intruder deductions. Our rules also handle partial verifiers that fit
more than one secret. We show how to derive a known weakness in the
Anderson-Lomas protocol, and new vulnerabilities for a known faulty
ATM system.

1 Introduction and related work

Analyzing vulnerability to guessing attacks is of high practical relevance. A value
is deemed guessable if it has small entropy (is chosen from a small cardinality
set), and the guess can be verified. An adversary can perform guessing by off-line
computation, or on-line, exploiting the interaction with honest participants.

Conceptually, guessing involves two steps. Any protocol must have a genera-
tion oracle which computes some value (the verifier), given the secret as input.
Next, a boolean verification oracle compares a verifier for the guess with one
computed for the actual secret. We use the term oracle for an abstract object
that produces a value, regardless of how the computation is done. In particular,
the adversary might use other participants as on-line oracles for this purpose.

Separating the verifier generation from the verification itself, and modeling
them as oracles is key to our analysis of guessing attacks in both off-line and
on-line settings. It is often argued that on-line guessing can be blocked after a
threshold of incorrect guesses. However, if the adversary’s guesses are cached as
valid protocol interactions, relying on blocking is not a justified defense.

Our analysis identifies various guessing situations with partial or complete
view over inputs and outputs of oracles and with off-line, on-line or blockable on-
line oracle access. We provide inference rules which can detect guessing attacks
in these situations. Once such a vulnerability is detected, it is up to further
review to decide if it can be removed by limiting protocol runs. We will also
distinguish pre-computed dictionary guessing as a particularly dangerous case:
the adversary can build an off-line dictionary which is reusable and constitutes
a time-memory trade-off.
? This work is supported in part by FP7-ICT-2007-1 project 216471, AVANTSSAR:

Automated Validation of Trust and Security of Service-oriented Architectures

Related work

A classification into off-line, detectable, and undetectable on-line guessing at-
tacks is given in [1], recognizing that principals can be used to perform computa-
tion, without this being detectable. However, attack detection is not formalized.

Lowe’s rules [2] construct new terms of intruder knowledge from the guessed
value. Tracking that a term is obtained in two different ways confirms the guess.
Special cases avoid false deductions. In [3], substituting the guess with a fresh
term provides the second derivation; [4] has a dual set of Dolev-Yao deduction
rules with an explicit comparison rule and gives complexity results. In [5], an
intruder checks that two maps of terms constructed by exhaustive candidate
enumeration correspond on exactly one entry. This approach can model simul-
taneous guesses of several message components but is limited to off-line attacks.

Equational theories and static equivalence are used in [6] for applied pi-
calculus, and in [7] showing computational indistinguishability; [8] uses a con-
straint solving algorithm for an equational theory given as a convergent term
rewriting system. Blanchet’s tool ProVerif [9] detects off-line guessing attacks.

Our approach is based on Dolev-Yao-style deductions, with an adversary
observing or controlling oracles for functions that are injective in the secret.
Correct guessing is confirmed by checking relations on inputs and outputs of the
oracle, or on the output of its inverse (e.g., in the case of encryption). We extend
this to functions that match several secrets, but allow verification based on more
than one observation, giving guessing a probabilistic meaning. Our guessing rules
contain bounds that are sufficient to achieve a correct guess in the average case.

2 Adversary relations with oracles

We write A x if A can guess x, and A D x for guessing using pre-computed
dictionaries. These are a space-time tradeoff: if A D x, then A can also guess
without pre-computed dictionaries by just repeating the dictionary construction.

A value is guessed only if it is also verified. Thus, if A can guess x, then A
knows x, i.e., a guessed value can be used in further reasoning, together with the
usual rules that describe how a Dolev-Yao intruder can acquire its knowledge.

We denote by Of(·) an oracle which computes the value of function f for any
provided input. We define two relations between adversary and oracles: observes
and controls, with different variants: off-line, on-line and on-line blockable, when
the adversary presence is detected and the protocol stopped.

The adversary observes the output of oracle Of(·), written Adv J Of(·),
if a protocol state is reachable where Adv knows f(T) for some term T . Thus,
observes is a protocol property. The placeholders I and B specify whether oracle
inputs are known, completely or in part, e.g., Adv J Of(B) means that Adv
observes the output of an oracle but knows only part of its input. This allows us
to relate the adversary’s observation of oracle outputs with that of its inputs.

Adv may observe Of(·) using on-line access to the protocol, initial knowledge,
standard Dolev-Yao deductions, and off-line computation. In a stronger case, Adv
might know the function f , and apply it off-line to any known term.

Adv controls the oracle Of(·), i.e., can compute f(x) for an input x of its
choice if for any x ∈ dom f chosen by Adv in the initial protocol state, a state
where Adv knows f(x) is reachable, regardless of the actions chosen by the other
participants. As with observations, this can occur off-line or on-line.

In the strongest case, Adv knows all oracle parameters, and can compute f
off-line: Adv ctloffOf(·). Second, Adv can have on-line control of an oracle if a
protocol participant provides this service. However, it is important to distinguish
whether the protocol ends normally or adversary intervention may be detected.

Let (1) A→ B : m and (2) B → A : Ek(m). Adv can send B any value m; the
protocol ends normally, and Adv knows Ek(m). Thus, Adv has unrestricted, non-
blockable online control of the oracle, Adv ctlnbOf(·). Now let (1) A→ B : mA,
(2) B → A : mB , Ek(mA), (3) A→ B : Ek(mB). Again, Adv obtains Ek(m), but
cannot compute Ek(mB), so the protocol is not completed. Adv has blockable
control of the oracle, denoted Adv ctlblOf(·), since incorrect termination may be
detected and subsequent protocol runs be blocked by the honest participant(s).

Controlling an oracle implies seeing both its inputs and outputs, therefore:
Adv ctloffOf(·)
AdvJOf(I)

Adv ctlnbOf(·)
AdvJnbOf(I)

Adv ctlblOf(·)
AdvJ blOf(I)

(1)

Observation, off-line or non-blocking on-line control produce no different pro-
tocol behavior, thus guesses can go undetected. Yet, guessing using blockable
access is also feasible, if a single oracle access suffices for verification.

The number of oracle accesses affects the feasibility of a guess. We specify
lower bounds for observes and controls: Adv J bO

f(·) and Adv ctlbOf(·) mean
that Adv observes at least b distinct independent outputs of Of(·) (respectively,
observes outputs ofOf(·) for b chosen inputs) over different protocol runs. Bounds
on these relations are deduced from the protocol description. If A→ B : H(NA),
then since NA is randomly chosen, AdvJ bO

g(·) for any b ≤ |NA| (set cardinal-
ity). However, if A→ B : idA, H(idA.kAB), the oracle input is constant (and only
partially visible, since kAB is unknown), and we can only state AdvJ 1O

g(B).
Our goal is to conservatively warn for guessing attacks, thus we do not use upper
bounds to rule out attacks, although the approach could be extended.

3 Rules for guessing

3.1 Outline of the approach

We formalize guessing attacks done under two distinct circumstances:
1) Adv knows the output of a function f computed on the secret (and op-

tionally, known additional inputs). Using an oracle Of(·) for f , Adv computes f
on all possible secret values (with the known extra inputs), and verifies the guess
comparing with the known output for the secret. Examples are: Adv knows H(s),
i.e., the output of the function f(x) = H(x) on s, or Adv knows m,MAC s(m),
i.e., the output of the f(x, y) = MAC x(y) on s and a second known input m.
To verify the guess, f must be injective, otherwise more secrets can verify one
output. In this case, we will formalize guessing using several outputs for the
same secret (with different additional inputs).

2) Adv knows one or more outputs of an invertible function f computed on
the secret and some additional, possibly unknown inputs. The adversary uses an
oracle for the inverse of f and computes the inputs to the known output(s) for
each possible value of the secret. A guess is verified using a known property that
identifies the correct input(s) to f . This may be: (1) a relation to a known value
(a known part of the input to f), (2) a relation between different parts of the
same input, or, (3) if there are several inputs, a relation between them. For (1),
knowing Es(idA.m), Adv can guess s by checking for the known value idA in the
input (obtained by inverting the output, i.e. by decryption with all s). For (2), if
Adv knows Es(m,m), he can check for which value of s the result of decryption
(inversion) has identical halves (a relation between parts of the original input).
For (3), knowing Es(H(m)) and Es(m), Adv inverts both outputs and checks if
the two inputs are related by means of H.

This way of verifying the guess is valid only if the inverse of f behaves as a
pseudo-random function for a wrong value of s. Therefore, we allow this guessing
rule only for encryption and decryption functions with keys dependent on s.

Our proposed approach works as follows: first, potential guessing opportuni-
ties are detected by matching them with one of the aforementioned situations,
which are formalized in the guessing lemma of the next section. Next, oracle def-
inition rules based on Dolev-Yao intruder capabilities are used to infer whether
Adv has access to the required oracles. If so, we warn that guessing is feasible.

3.2 The Guessing Lemma

Definition 1. Given σ ∈ {0, 1}k, we call a function f(σ, x) distinguishing
in its first argument if there exists an algorithm Df , polynomial-time in k, that
outputs a set S = {x1, x2, ..., xp(k)} such that the probability that there exists
s1 6= s2 such that ∀xi ∈ S . f(s1, xi) = f(s2, xi) is negligible, i.e., Pr[f(s1, xi) =
f(s2, xi), i = 1 .. p(k), s1 6= s2] ≤ v(k).

Here p(k) is a polynomial in k and v(k) is a negligible function, i.e., ∀c ≥ 0
there exists kc such that ∀k ≥ kc . v(k) < k−c. For our calculus we use a notion
that is more precise quantitatively, strongly distinguishing function in q queries:

Definition 2. Given σ ∈ {0, 1}k, we call a function f(σ, x) strongly dis-
tinguishing in the first argument after q queries, if given any q distinct queries
{x1, x2, ..., xq}, ∀s1 6= s2 the probability that f(s1, xi) = f(s2, xi) for all i = 1 .. q
is at most 2−k, i.e., ∀s1 6= s2 . P r[f(s1, xi) = f(s2, xi), i = 1 .. q] ≤ 2−k.

Note that any injective function with one argument is strongly distinguishing
in one query, if we consider the second argument to be null.

The second definition allows us to give a quantitative bound on the number
of attempts needed for guessing. Assuming we know q outputs of f(s1, x) for
the unknown secret s1 and x ∈ {x1, x2, ..., xq}, then after q queries to f(s, x)
for each candidate value s ∈ {0, 1}k, in average only the correct secret s1 will
match all known outputs of f . With our definition of distinguishing and strongly
distinguishing functions we do not aim to guarantee uniqueness of the secret,
but to give guessing a probabilistic meaning which addresses the average case.

Example 1. Let]s] denote a term obtained by concatenating something to
s (to the left, right of s or both). Then E]s](·), D]s](·) are distinguishing and
strongly distinguishing in one query assuming that encryption and decryption
with different keys performed on the same value cannot yield the same result.
Also, H(]s]) is distinguishing and strongly distinguishing in one query if H is
collision-free on the argument range of]s].

Example 2. Let g(σ, x) = H(σ, x) mod 2l, s ∈ {0, 1}k. If H outputs more
than l bits, one query is not sufficient to distinguish the secret. After q queries
with x ∈ {x1, x2, ..., xq} we have Pr[H(s1, x) = H(s2, x)] = 2−ql for any s1 6= s2.
If the input space is {0, 1}k, the average number of values for which collisions
occur after q queries is 2k−ql, therefore g is strongly distinguishing in k/l queries.

To express our guessing rules, we first formalize the ability of the adversary
to find relations between oracle observations or subterms thereof.

Definition 3. Given a function h and a list of terms α, we say there is a
relation under h with arguments from α, denoted R(h, α), if the adversary can
establish an equality h(β) = γ such that: i) β, γ are terms constructed from the
adversary knowledge and two disjoint subsets of terms from α, with at least one
subset non-empty; ii) h(β) is injective in at least one input that comes from α,
with all other inputs kept constant.

This relation is used in the guessing lemma. Condition i) forces Adv to vali-
date a guess by using at least one term deduced after the guess, while condition
ii) avoids trivial identities with terms that can result from a wrong guess.

Lemma 1 (Guessing Lemma). Let s ∈ {0, 1}k be a low-entropy value (i.e.,
2k computation steps are feasible), and f an strongly distinguishing function in
q queries. The following guessing rules hold:

i) If Adv J b1O
f(s,I) and Adv ctlb2O

f(·, ·), then Adv can guess s with q
observations of Of(s, ·) and q ·2k queries to Of(·, ·), i.e.

AdvJ b1O
f(s,I) ∧Adv ctlb2O

f(·, ·)
Adv s

b1 ≥ q
b2 ≥ q · 2k

(2)

ii) If AdvJ b1O
Ef(s,I)(α), Adv ctlb2{ODf(·,·)(·), Oh(·)}, and R(h, α), then Adv

can guess s with q observations of OEf(s,·)(·) and q·2k queries to ODf(·,·)(·), Oh(·).

AdvJ b1O
Ef(s,I)(α) ∧Adv ctlb2{ODf(·,·)(·), Oh(·)} ∧R(h, α)

Adv s

b1 ≥ q
b2 ≥ q ·2k

(3)

iii) If AdvJ b1O
Ef(s,I)(αi), with distinct αi, Adv ctlb2{ODf(·,·)(·), Oh(·)}, and

R(h, α), with α = (α1, . . . , αn), then Adv can guess s with q observations of
OEf(s,·)(·) and q ·2k queries to ODf(·,·)(·), Oh(·).

AdvJ b1O
Ef(s,I)(αi) ∧Adv ctlb2{ODf(·,·)(·), Oh(·)} ∧R(h, α)

Adv s

b1 ≥ q
b2 ≥ q ·2k

(4)

Proof sketch. In case i) by Def. 2, for q observations of Of(s, ·), in average
only one s verifies the input-output relation, so b1 ≥ q suffices. Thus, Adv can
find s by making queries to Of(·, ·) with all 2k values of s and the q observed
inputs, then verify them against the q observed outputs for Of(s, ·).

A sufficient bound on queries is q·2k, however fewer queries are needed since
each query reduces the number of candidates for s in average by a factor of 2k/q.

Cases ii) and iii) are similar, but require the additional queries to Oh(·). If
R(h, α) holds for the encryption input, this confirms the secret.

Case (i) is a direct match of the oracle output. Case (ii) matches the input and
part of the decryption output, e.g., when Adv knows {m,Es(]H(m)])} or a rela-
tion between parts of the decrypted output, e.g., if Adv knows Es(]m]H(m)]).
Adv controls the decryption oracle and thus can check for H(m) in the decryp-
tion result for all values of the secret. Case (iii) matches different inputs to the
same oracle, e.g., when Adv knows {Es(]m]), Es(]H(m)]}.

Corollary 1. In case i) of the Guessing Lemma, if Of(s, ·) has no random
inputs, or Adv controls the oracle Of(s, ·) (i.e., can choose all inputs, the q ob-
servations become queries), then Adv can do pre-computed dictionary guessing:

AdvJ b1O
f(s,I) ∧Adv ctlb2O

f(·, ·)
Adv D s

Adv ctlb1O
f(s, ·) ∧Adv ctlb2O

f(·, ·)
Adv D s

b1≥q
b2≥q ·2k

(5)

Example 3. Let E be deterministic encryption and H a hash function. Then,
Ek(·), H(·), and E·(α) are injective, and thus strongly distinguishing in one query.

By Corollary 1: AdvJ1O
g(s) ∧Adv ctlnb Og(·)
Adv D s

AdvJ1O
Ek (s) ∧Adv ctlnb OEk (·)
Adv D s

AdvJ1O
E(α)(s) ∧Adv ctlnb OE(α)(·)

Adv D s
(6)

We have used ctlnb which is weaker than ctloff but sufficient to verify a guess.

4 Case studies

4.1 Anderson-Lomas Protocol

We focus on protocols which expose verifiers that fit more than one secret, a
case not previously addressed using guessing rules. The Anderson-Lomas proto-
col [10] is relevant for the ingenuity in constructing password verifiers by using a
collisionful hash function, i.e., a function q(k, x) for which given x one can find
k′ 6= k such that q(k, x) = q(k′, x). The protocol description is as follows:

(1) A→ B : grA (3) A→ B : H(MAC pwg
rArB mod 2m, grArB)

(2) B → A : grB (4) B → A : H(MACH(pw)g
rArB mod 2m, grArB)

Here, grArB is the regular key from the Diffie-Hellman-Merkle key exchange
protocol and pw is the password shared between A and B while m is a fixed
constant suggested to be n/2 if the size of the password space is 2n.

Let Adv play the role of B and consider the oracle Of(·, ·), with f(x, y) =
H(MAC x(y) mod 2m, y). If the secret has k bits then f is strongly distinguishing
in k/m queries. By choosing grA , Adv can compute grArB and therefore knows
both the input and output of Of . Then, we have

AdvJ b1O
f(s,I) ∧Adv ctlb2O

f(·, ·)
Adv pw

b1 ≥ k
m

b2 ≥ k
m
· 2k (7)

according to case (i) of the guessing lemma which allows us to formalize the
attack originally presented in [10] and explain it using a general guessing rule.

4.2 The Norwegian ATM

With our calculus we formalize attacks in a Norwegian ATM system, shown to
be flawed in [11]. The system attempts to increase password security by hiding
the verifier. Cards store the PIN encrypted with a bank key BK , truncated to
16 bits: bDES BK (PIN)c16 (simplified, since the PIN is not encrypted directly).

To find the PIN of a stolen card, Adv cannot guess the PIN off-line without
BK , since for each PIN about 240 of 256 DES keys match. However, [11] presents
a more subtle attack. Adv gets several honest cards from the same bank. Each
known PIN reduces the number of candidate keys by a factor of 216. On average,
4 honest cards suffice to find BK , and then guess the PIN of the stolen card.

The services provided by the bank and ATM to a user are summarized below:
Card issuing stage: Bank → User : bDES BK (PIN)c16,PIN
PIN change procedure: User → ATM : bDES BK (PIN old)c16,PIN old ,PIN new

ATM → User : bDES BK (PIN new)c16
We assume PIN and card (holding bDES BK (PIN)c16) are issued securely,

otherwise a Dolev-Yao adversary could get the PIN directly from the protocol.
Since log2 |PIN | < 16, bDES BK (·)c16 is strongly distinguishing in one query

and Adv can guess the PIN using the PIN change procedure as oracle:

Adv knows bDESBK (PIN)c16
AdvJ1O

bDESBK (·)c16(PIN)

Adv → PIN new ATM → bDESBK (PIN new)c16
Adv ctlnbObDESBK (·)c16(·)

Adv D PIN (8)

In reality, the PIN is encrypted concatenated with a card-specific value CV .
Thus, changing the PIN no longer controls the encryption oracle. To find the
PIN, Adv must simulate the oracle himself, and for this, BK must be known:

Adv knows bDESBK (PIN .CV)c16
AdvJ1O

bDESBK (·)c16(PIN .CV)

Adv knows BK

Adv ctloffObDESBK (·)c16

Adv PIN (9)

For this goal, Adv needs to observe an oracle output on BK . One possibility
is in the card issuing stage. Let f(σ, x) = bDESσ(x)c16. Then, f is strongly
distinguishing in 4 queries since the DES key has 56 bits, and we have:

Adv knows PIN .CV1..4, bDESBK (PIN .CV1..4)c16
AdvJ4O

f(BK , ·) Adv ctloffOf(·, ·)
Adv BK (10)

Another option comes again from controlling the PIN change procedure. Let
g(σ, x) = bDESσ(CV.x)c16 for a card of the adversary with value CV . Then,

Adv ctlnbOg(BK , ·) Adv ctloffOg(·, ·)
Adv BK (11)

This attack fits the real-world situation where the adversary can change his
own PIN and is new to the best of our knowledge. In [11], only the attack using
several cards from the bank (to guess all DES key bits) is given. Moreover,
our calculus distinguishes two ways to find BK . The attacks illustrate both
dictionary and and pre-computed dictionary guessing.

5 Conclusions

We have introduced a calculus based on oracles for detecting guessing attacks,
with rules that supplement the deductions of a Dolev-Yao intruder. The rules
are based on observes and controls relations between the adversary and oracles.
Conceptually separating generating the verifier from verifying the guess justifies
consideration of on-line guessing attacks which may not be detected and blocked.
The calculus can be used in a mixed on-line/off-line setting. Our guessing rules
also handle protocols with verifiers that match more than one secret. In this
case, guessing has a probabilistic meaning, and our rules give sufficient bounds
on the number of observations for successful attacks. We formalize the known
flaws in the Anderson-Lomas and Norwegian ATM protocols in this framework.
For the ATM protocol, our calculus finds new attacks based on a PIN change
procedure and on the use of the ATM as encryption oracle.

Acknowledgments Thanks to Cas Cremers who helped clarify a first writeup
of our approach and to the anonymous reviewers for their valuable comments.

References

1. Ding, Y., Horster, P.: Undetectable on-line password guessing attacks. Operating
Systems Review 29(4) (1995) 77–86

2. Lowe, G.: Analysing protocols subject to guessing attacks. Journal of Computer
Security 12(1) (2004) 83–98

3. Corin, R., Malladi, S., Alves-Foss, J., Etalle, S.: Guess what? Here is a new tool
that finds some new guessing attacks. In: Proc. Workshop on Issues in the Theory
of Security. (2003) 62–71

4. Delaune, S., Jacquemard, F.: A theory of dictionary attacks and its complexity.
In: Proc. 17th IEEE Computer Security Foundations Workshop. (2004) 2–15

5. Drielsma, P.H., Mödersheim, S., Viganò, L.: A formalization of off-line guessing for
security protocol analysis. In: Proc. 11th Int’l. Conf. on Logic for Programming,
Artificial Intelligence, and Reasoning. Vol. 3452 of LNCS, Springer (2005) 363–379

6. Corin, R., Doumen, J.M., Etalle, S.: Analysing password protocol security against
off-line dictionary attacks. In: Proc. 2nd Int’l. Workshop on Security Issues with
Petri Nets and other Computational Models (WISP). (2004) 47–63

7. Abadi, M., Baudet, M., Warinschi, B.: Guessing attacks and the computational
soundness of static equivalence. In: Proc. 9th Int’l. Conf. Foundations of Software
Science and Computation Structures. Vol. 3921 of LNCS, Springer (2006) 398–412

8. Baudet, M.: Deciding security of protocols against off-line guessing attacks. In:
Proc. 12th ACM Conf. on Computer and Communications Security. (2005) 16–25

9. Blanchet, B.: An Efficient Cryptographic Protocol Verifier Based on Prolog Rules.
In: 14th IEEE Computer Security Foundations Workshop. (2001) 82–96

10. Anderson, R.J., Lomas, T.M.A.: Fortifying key negotiation schemes with poorly
chosen passwords. Electronics Letters 30(13) (July 1994) 1040–1041

11. Hole, K.J., Moen, V., Klingsheim, A.N., Tande, K.M.: Lessons from the Norwegian
ATM system. IEEE Security and Privacy 5(6) (2007) 25–31

