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Abstract. Starting from algebraic properties that enable guessing low-
entropy secrets, we formalize guessing rules for symbolic verification. The
rules are suited for both off-line and on-line guessing and can distinguish
between them. We add our guessing rules as state transitions to protocol
models that are input to model checking tools. With our proof-of-concept
implementation we have automatically detected guessing attacks in sev-
eral protocols. Some attacks are especially significant since they are un-
detectable by protocol participants, as they cause no abnormal protocol
behavior, a case not previously addressed by automated techniques.

1 DMotivation and related work

As password-based authentication continues to be used in practice and weak
passwords are still chosen by users, detecting protocols subject to guessing at-
tacks is a topic of high interest in security. In this paper we address the problem
of formalizing a previously introduced approach to detect guessing attacks in
a manner suitable for implementation in an automated verification toolset. We
use IF (Intermediate Format), a specification language that can be handled by
model checkers such as OFMC (Open Source Fixedpoint Model-Checker) [3] and
SATMC (SAT-based Model Checker) [2] from the AVISPA toolset.

A previous intention of integrating guessing rules in OFMC exists in [9],
which gives a formalization for off-line guessing attacks. In comparison, our con-
tribution proposes a different formalism (our guessing rules are based on a differ-
ent reasoning), which allows us to handle both on-line and off-line attacks. Our
guessing rules are implemented at the level of the IF description language, with-
out requiring the modification of the back-end model checkers. Other concrete
implementations of guessing detection rules are by Corin et al. [7], Lowe [13]
who used Casper/FDR and Blanchet [5] in ProVerif, a verifier based on Prolog
rules. Our implementation is based on IF, a specification language which can be
handled by several back-end model checkers, notably OFMC and SATMC, which
thus gain the ability of detecting guessing attacks. Other theoretical foundations
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for reasoning on guessing attacks exist. Abadi et al. [1] use the indistinguishabil-
ity of two terms, deduced by static equivalence, to formalize guessing. Equational
theories for the applied pi-calculus are used by Corin et al. in [6], while Baudet [4]
uses a constraint solving algorithm for an equational theory.

Our guessing rules are based on the pseudo-randomness properties of one-way
functions. We consider two cases of guessing: first, when the adversary knows
the image of a one-way function computed on the secret and other known input;
second, when the adversary knows the image of a trapdoor function (encryption)
with a key that depends on the secret, and can establish relations on its input.
As one-way functions are pseudo-random, the output for a wrong secret cannot
match any previously known value, thus a correct guess can be verified.

Most prior work addresses only off-line guessing, considering the low-entropy
secret large enough to prevent guessing, or that unsuccessful attempts can be
blocked. However, in some on-line attacks the protocol behavior is indistinguish-
able from normal. These attacks are undetectable by participants and especially
dangerous. They are also realistic, as one of our case studies, a Norwegian ATM
system, illustrates. Undetectable on-line attacks have also been the focus of Ding
and Horster [8], but without a formalization or automated detection.

2 Formalization of guessing rules

To express the feasibility of guessing, we use the concept of strongly distinguish-
ing functions [10], which cannot give the same output for two different secrets
when these are paired with sufficiently many input choices.

Definition 1. Given o € {0,1}*, we call a function f(o,) strongly dis-
tinguishing in the first argument after ¢ queries, if given any ¢ distinct values
{z1,22,..., 24}, Vs1 # 52 the probability that f(s1,x;) = f(s2,2;) foralli=1..q
is at most 27%, i.e., Vsy # s2. Prf(s1,7;) = f(s2,24),i=1..q] <27F.

Using strongly distinguishing functions, we have characterized the conditions
for an intruder’s guess in a guessing lemma [10]. However, due to its algebraic
rather than symbolic formulation, it cannot be directly implemented in a formal
verification tool. Therefore, we will link the concept of strongly distinguishing
function (in one query) with a symbolic protocol description.

Protocol descriptions contain terms, which are either atomic or composed.
Atomic terms are variables, constants or numbers; composed terms are formed
by applying pair, crypt, inv and other predefined operators on atomic terms.
Facts are predicates defined over terms, such as iknows, state, contains, etc.

Definition 2. We call a symbolic protocol description P a triple composed
of an initial state, a set of transition rules and a set of attack states, i.e.,
P = (InitialState, TransitionRule™, AttackState™), where: 1) the initial state is
a conjunction of ground facts, ii) a transition rule has the form LHS = RHS
where LHS and RHS are conjunctions of facts, and LHS may also contain a
negated fact and a condition (a conjunction of term equalities and inequalities),
ili) an attack state is a conjunction of facts with a condition (like a LHS).



To reason about guessing, we define derivation rules P t,. T, denoting that
term T can be derived from term set P using rule r. Rule F;peqrs Term denotes
that a term has been overheard by the intruder during protocol execution.

Denote the set of symbols (constants or variables) appearing in Term by
S(Term). If s € S(T'erm) is such a symbol, we also write Term Fpgpt S.

Let Term by gen(s) Term' denote that Term’ is obtained by substituting
any occurrence of the symbol s in Term with a fresh symbol s’ ¢ S(Term).
For instance, crypt(s,m) Fsgen(s) crypt(s’,m). As a particular case, we write
Term by igen(s) Term' if s is substituted by a fresh value chosen by the intruder.

Consider a valuation function v defined on atomic terms with algebraic val-
ues, and extended to composed terms through function and operator application.
We now relate our symbolic reasoning to the algebraic properties of the protocol.

Definition 3. A symbolic protocol description P is called algebraically depen-
dent on symbol s, denoted P dep s if for any term Term such that F;peqrs Term
and Term Fpqr¢ 8, and considering Term' such that Term Fsgen(s) Term', for
any valuation v such that v(s) # v(s’), we have v(Term) # v(Term').

Given s € S(Term), denote by OI¢™(.) the oracle corresponding to the
function obtained by making s a variable in Term and keeping other parts of it
constant, e.g., 02“”’““”)(.) is the oracle corresponding to f(s) = crypt(s,m).

Lemma 1. The symbolic protocol description P is algebraically dependent
on s, i.e., P dep s, if and only if any function f obtained as OI¢™(.) where
s € S(Term) and Fipeqrs Term is strongly distinguishing in one query.

Lemma 1 relates a symbolic protocol description with the algebraic notion
of strongly distinguishing function in one query. Since injective functions are
strongly distinguishing in one query, any symbolic protocol description in which a
symbol s occurs only in the body of a injective (bijective) function is algebraically
dependent on s. In practice, this covers a large class of protocols, since most
cryptographic functions are bijective (even hash functions, if one assumes they
are collision-free in the inputs that a protocol participant can provide).

Definition 4. An adversary observes an oracle for a secret s if it hears a
term that contains s. The adversary controls an oracle for secret s if by replacing
5 in a term with a fresh s’ (rule Fy_jgen(s)) the adversary knows the new term.

Fihears Term A Term bpap s = observes(OI#™(+)) (1)

Finears Term A Term Fg_igen(sr) Term' A Fignows Term' = controls(OSTeTm(-))
2)
Lemma 2. Consider a symbolic protocol description P such that P dep s. If
an adversary observes and controls an oracle for a low-entropy secret s then the
adversary can guess the secret s, i.e.,

observes(OL(-)) A controls(OL(-)) = iguess(s) (3)

The adversary can also guess if it observes messages encrypted with a key
computed as a strongly distinguishing function on the secret, controls the corre-
sponding decryption oracle, and can establish a relation to one or several parts
of the encrypted messages. We formalize this case in what follows.



Definition 5. We call s-dependent an encryption or decryption oracle that
uses a key containing s. An adversary that hears the encryption of some message
with a key that contains s is said to observe an s-dependent encryption oracle.
Moreover, we say that he controls the corresponding s-dependent decryption
oracle if by replacing s in the encryption key with a fresh s’ known to him the
adversary can decrypt arbitrary messages encrypted with the new key, i.e.,

Fihears {M}x N K Fpare s = observes(OiM}K () (4)

{IMYk b Cigenisy AM' YA Fiknows M = comﬁrols(O‘;{M}Kf1 ) (5)

M — gen(M')

Here, { M} i is the encryption of message M with key K. To keep relation (5)
simple, we’ve left implicit that the adversary must overhear the term { M} and
the encryption key must contain s, i.e., Fipears {M i A K Fpore § as a premise.
This is of course needed for the question of controlling the oracle to make sense.

To express a relation between encrypted inputs we first need a derivation
rule to produce all distinct messages M that satisfy a property Fact(M), by
concatenating them into term 7', denoted Fact X .. T. For example, (Finears
M) =M . T yields a term T that is the concatenation of all distinct terms
for which Fipears M holds. Similarly, (Finears {M}x A K Fpart 8) FX0ae T
produces the concatenation of all distinct messages that are encrypted with a
key that contains s. Also, let T' t-gp5¢ (I".T") denote that 7" and 7" are derived
by splitting T" into disjoint subsets of terms (at least one of them non-empty).

The second guessing rule requires powerful capabilities: to find a relation be-
tween two terms (the relates fact) the adversary can use any available operators:
pair, crypt, etc., as well as his Dolev-Yao abilities, fake, overhear, etc. Thus, for
deciding relates the adversary can perform any transition allowed by the symbolic
protocol description P. The following definition models this intuition.

Definition 6. An adversary can relate two terms 7" and T" of a symbolic
protocol description P if by adding T” to the adversary knowledge he can derive
T" (denoted T+ py (pyT") using all its abilities over P.

T Fpypy T" = relates(T', T") (6)

Lemma 3. Let P be a symbolic protocol description such that P dep s. If
the adversary observes one or more s-dependent encryption oracles for which
he controls the corresponding decryption oracles and can relate parts of the
encrypted messages then the adversary can guess the secret, i.e.,

observes(OIMIx () A controls(OiM}K_1 (M T

AT Fsprie (T".T") A relates(T', T") = guess(s) (7)

3 Implementation and experimental results

Our formalization of the guessing calculus makes it amenable to an implemen-
tation where where states are sets of terms, and transitions are given as rewrite
rules, as in the IF protocol specification language. Derivations such as Fpears



Fparts Fse—gen(s')s Fspiit yield corresponding IF facts. These are combined into
rules to establish the relations observes and controls, and ultimately, guessing.

We use an adversary model with standard Dolev-Yao abilities: the adversary
can fake new messages, intercept sent messages or overhear them. Moreover, the
adversary has the standard computational abilities: he can encrypt and decrypt
if he knows the corresponding key, and he can pair and decompose messages.

Based on this model we want to express rules for the adversary’s ability
to observe and control oracles. To decide whether a composed term represents
an oracle, we need to determine if it contains the secret to be guessed. By
overhearing such a term, the adversary observes the oracle. Further, to decide
controls, we start from terms containing the secret, construct new terms in which
the secret is replaced by a different value and test if the adversary knows them,
and thus controls the oracle for the function derived from the term.

For secret containment (the derivation bpe¢ in our theory) we define the
containsSec fact, which is true for all terms containing the secret. For secret re-
placement (derivation Fs—gen(s')), we define the replaceSec fact which replaces
any secret from the guessableSecrets set with a replacement secret.

With these helper facts defined, the observes and controls abilities are easily
derived. Observing an oracle is modeled as ihears(T) .containsSec(T, SList),
where SList is the list of guessable secrets, while controlling an oracle is specified
as replaceSec(T, Tnew) .iknows(TNew) (where pairing with . means fact con-
junction in IF). Explicit observes and controls predicates are not necessary; for
efficiency, the above expressions are directly embedded into the guessing rules.

Guessing multiple secrets. To enable guessing in such scenarios, secrets
already guessed must be used in subsequent guesses. However, this cannot be
expressed by a simple chaining of the guesses, since adding new knowledge to the
intruder cannot be done dynamically in the attack condition. Our simple and
effective solution expresses the guessing rule (based on the observes and controls
abilities) as transition of the protocol itself. As a result, any guessed value is
added to iknows. Being protocol-independent, this rule can be inserted in any
protocol specification and enables chaining multiple guesses.

Distinguishing detectable from undetectable on-line attacks. As a
first intuition, if guessing takes place after a participant reached a final state,
then guessing goes undetected for that participant. This intuition is wrong, as
the same participant may have another instance still running. To distinguish
undetectable from detectable on-line guessing attacks, we need to express that
all participant instances have successfully completed. We can do this by adding
the PIDs of all started instances to a set, adding their termination to the intruder
knowledge and checking the match in the attack condition. Alternatively, simply
matching the count of started and finished instances suffices.

MS-CHAP and NTLM. These are two simple, well known protocols from
Microsoft, vulnerable but still frequent in practice even today. MS-CHAP is used
for remote user authentication and has two versions. NTLM is used with SMB
to access remote printers, files etc. and has three versions: NTLMv1, NTLMv2
and NTLMv2-Session. Figure 1 presents MS-CHAP v2 and NTLM v2-Session.



MS-CHAP v2 (1) —i: a
AB:A 1—>(b,1).: a
1

1.

2. B A:Ng (b,l)—> Nb(2)

A i (a,1): Nb(2)

amn g?éi,kz@i’)]v 4N, 4) (a,1)— i Na(3).h(kab.Na(3).Nb(2).a)

i— (b,1): Na(3).h(kab.Na(3).Nb(2).a)
NTLMv2-Session (b,1) —1i: h(kab.Na(3))

i—(a,1): h(kab.Na(3))
1. B—A: Np i— (i,1): h(kab_rpl.Na(3))
2. A—B:Na,H(kap), H(Na,Ng)) i— (i,1): kab.snull
3. B—A:H(kap,H' (Na,Ng)),H (Na,NB) i— (i,17): kab

Fig. 1. MS-CHAP and NTLMyv2-Session protocols and OFMC attack trace

We have augmented the MS-CHAP v2 protocol model with guessing rules. As
expected, OFMC found the attack in Figure 1; a similar attack can be traced for
NTLM. The intruder acts as man-in-the-middle. Guessing is possible because the
intruder hears h(kab.Na(3)), and knowing Na(3) can compute h(kab_rpl.Na(3))
for arbitrary replacements kab_rpl of kab. By Lemma 2, this means that the
intruder observes and controls the oracle Of(-), where f = h(s, Na(3)). The last
three trace steps are intruder reasoning; they reflect the fact that additions to
intruder knowledge are modeled in the same way as message receipts.

The guessing attacks on MS-CHAP and NTLM are known and simple, but
the results serve as basic proof that our approach can automate their detection.
The role of an automatic verification tool is to be used on large, complex systems
or services that cannot be handled by hand and where such a protocol is only
a small foundational component. Thus, the ability of detecting flaws in such a
protocol becomes crucial in the discovery of new flaws in the overall system.

The Norwegian ATM. A second test for our implementation was a Nor-
wegian ATM protocol (Fig. 2), known to be flawed [11]. A bank issues ATM
cards with the user PIN encrypted as Egk (PIN), where BK is a secret bank
key. The question is if an adversary, having a stolen card, can guess the user PIN
from the encrypted value. One can argue that testing on-line against an ATM
with all possible PINs is not feasible since the ATM will lock after the first, say
3 wrong guesses. However, imagine that the adversary has a card issued by the
same bank, with Egg (PIN 44,) on it and that each card owner may change its
PIN at an ATM. Now, the adversary can break the PIN on the stolen card by
using an on-line attack in which he legally changes its own PIN and then verifies
the encrypted value from his card against the one from the stolen card. This is a
simplified example, since the PIN is usually not encrypted alone, but with some
card-specific information. However, it justifies the concern for on-line attacks.

The first attack trace produced by OFMC (Fig. 2) was rather unexpected.
If an adversary obtains DES gk, (PIN), he can compute DES),(m) for any key
and message, thus he observes and controls the oracle OPP$)() and can perform
guessing. This is an off-line attack and the trace represents intruder deductions:
controlling the oracle with replaced values (1), the intruder deduces both PIN



Card Issuing Stage: 1. Bank — User : | DES pkey(PIN) |16, PIN
PIN Change Procedure: 1. User — ATM : | DES piey(PIN o14) |16, PIN o1ay PIN new
2. ATM — User : | DES Bkey(PIN pew) |16

First attack trace Second attack trace
1.i — (i,3): pinStolen.rplgg.y, ,p,y 1.1 — (i,1): PIN(1)BKey PIN(1)
2.1 — (i,3): BKey.pinStolen 2.1 — (i,2): PIN(1)BKkey.PIN(1).pinStolengkey
3.1 — (i,17): pinStolen 3.i— (i,2): pinStolen

Fig. 2. The Norwegian ATM protocol (modified) and OFMC attack traces

and BKey (2), and thus the PIN (3). In practice this is impossible because every
PIN would match for some DES key; moreover, only 16 bits of the result are
stored, yielding a huge number of potential values for BKey and PIN. To test
our calculus, we restricted the adversary from trying replacements for BKey.
Thus, the adversary no longer controls the oracle OPES) (),

OFMC found the second trace, where the adversary, being issued a legal
card (1) uses the PIN change procedure against the ATM in order to control the
oracle OPESsres() where BKey is constant. Matching the terms for legal and
stolen cards in the intruder knowledge (2) produces the PIN (3). The attack is
realistic assuming that the DES encryption is done directly on the PIN.

The Lomas et al. protocol [12] is an interesting case study for guessing
attacks. The protocol is illustrated in Figure 3. With respect to our theory it
is relevant as it fits the second guessing case (Lemma 3). Lowe found an at-
tack by choosing the constant 0 as timestamp, which allows a replay attack
that lets the adversary recover the nonce from two different responses of the
server, thus allowing the verification of a correct password [13]. Using OFMC
we found a different attack, based again on the weakness of the timestamp.
We used a nonce encrypted with pwdA as the arbitrary timestamp, in order to
avoid Lowe’s attack. Quite unexpectedly, OFMC produced the following attack
trace: instead of replaying the message from step 1 (Lowe’s attack) the intruder
lets the protocol run normally between A and B and from this run he obtains
{Nal,k & Na2},,q4. Now the intruder initiates a new protocol session, imper-
sonating A and sending {4, B, Nal’, Na2',Ca,{Nal, k& Na2}paa}prs in step 1
to the server. Indeed {Nal, k@ Na2} 44 besides the length (which is mainly an
implementation issue) is just a random value (indistinguishable from a nonce)
encrypted with the correct password of A. Further on, the server answers in step
4 with {Nal’, k& Na2'} a4, but now Nal’ is known to the adversary as he has
forged the message in step 1 and thus he can make a correct guess. This attack
is not based on a replay, as the message in step 1 was never received by S before.
To the best of our knowledge, this attack is new.

1. A—S: {A,B,Nal,Na2,C’a,{Ta}pwdA}pks 5 S—B: {Nbl,k@Nb2}pde

2.S—B:AB 6. B—A:{Rb}x
3. B—S: {B, A, Nb1, Nb2,Cb, {Tb}pwas}tprs 7. A— B : {f(Rb), Ra}s
4. 8S—A:{Nal,k® Na2}pwaa 8. B—A:{f(Ra)}x

Fig. 3. The Lomas et al. protocol



4 Conclusions

We have formalized rules for detecting guessing attacks, linking their underlying
algebraic properties to the context of symbolic protocol descriptions. Stated as
conditional rewrite rules in the description language IF, they can be added to any
protocol model, and used with the usual Dolev-Yao intruder deductions. Thus,
guessing attacks can be automatically detected without change to the model-
checker back-ends. Our implementation automatically distinguishes between de-
tectable and undetectable on-line attacks and can guess multiple secrets.

Using OFMC we have found attacks on several protocols; of these, the attacks
on the simplified Norwegian ATM (using the PIN change procedure) and on the
Lomas et al. protocol are new to the best of our knowledge. We believe this
shows our automation of guessing attack detection to be practically relevant,
especially in its support for undetectable on-line attacks. As future work we
intend to integrate this proof-of-concept implementation into the AVANTSSAR
verification toolset or potentially with a high-level specification language.
Acknowledgments. We thank Sebastian Mdodersheim and Roberto Carbone
for valuable answers on using the OFMC and SATMC model checkers.
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