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Abstract

A trapdoor based on an extension of the RSA trapdoor is
proposed. The same function as in the RSA cryptosystem is
used, i.e. xεmodn, but there is no restriction for the expo-
nent to be prime relatively to the order of the group while
the function remains a permutation on a subgroup of Z∗n.
For the case when the exponent is not prime to the order of
the group the resulting cryptosystem has its security equiva-
lent to solving the integer factorization problem. This trap-
door is further used in a KEM/DEM (Key Encapsulation
Mechanisms / Data Encryption Mechanisms) framework in
order to obtain more efficient encryption and to achieve re-
sistance against active adversaries. The resulting hybrid
encryption scheme is provable secure against adaptive cho-
sen ciphertext adversaries in the random oracle model.

1. Introduction

Public key cryptosystems are vital primitives for today’s
information systems security. The basic task in which pub-
lic key cryptosystems are involved, is in assuring the trans-
fer of some secret information over a channel that is un-
secured [7]. In order to achieve this objective a trapdoor
one-way function can be used.

Although the concept of trapdoor one-way function is
rather old, there are not very many candidates for this pur-
pose [16], [15], [9], [13], [14], [17]. Therefore finding can-
didates for trapdoor one-way functions is itself a goal. In
this paper we propose a trapdoor permutation based on what
we call an extension of the RSA trapdoor. More concrete
we use the same function as in the RSA cryptosystem, i.e.
xεmodn, but without requiring for the exponent to be prime
relatively to the order of the group Z∗n.

Another goal in building trapdoor permutations is estab-
lishing the number theoretic problem on which their secu-
rity is based. For the case of the RSA cryptosystem still
there is no proof on its equivalence to the integer factoriza-

tion problem, and also there is some skepticism regarding
the existence of such proof [5]. By using in our trapdoor
exponents that are not relatively prime to the order of the
group, equivalence to factoring can be proved. Also, since
we perform encryption and decryption over some subgroup
ofZ∗n the function remains a trapdoor permutation on the el-
ements of the subgroup. The fact that the trapdoor remains
a permutation on the elements of a particular subgroup of
Z∗n is an important feature since the Rabin trapdoor [15],
which also uses exponents that are not prime to the order
of the group, is not a permutation (except for the case when
the modulus is a Blum integer).

Of course, today cryptosystems must achieve strong se-
curity goals as indistiguishability (IND) or non-malleability
(NM) [8] against active adversaries such as adaptive chosen
ciphertext adversaries (CCA2). IND assumes that an adver-
sary cannot learn anything about the plaintext by having the
corresponding ciphertext and NM assumes that an adver-
sary cannot construct a valid ciphertext such that the corre-
sponding plaintext is related in some known manner to the
plaintext corresponding to some ciphertext given as chal-
lenge. In [2] these security notions for public key cryptosys-
tems are formalized and relations between them established,
in brief a scheme that is secure against IND-CCA2 adver-
saries is also secure against NM-CCA2 adversaries and vice
versa.

In order to achieve these security objectives against ac-
tive adversaries several generic conversion techniques were
proposed, such as the RSA-OAEP [4] (which was initially
assumed to be secure with any trapdoor, however a counter
example was given to this with a xor-malleable function
[18], while the use of the RSA trapdoor with OAEP remains
secure [11]) and [10].

More recently, one-way trapdoors are used in KEM-
DEM frameworks. Key Encapsulation Mechanisms (KEM)
and Data Encryption Mechanisms (DEM) were proposed in
[6], [12], [1] in order to build efficient and secure hybrid
encryption schemes. Such a framework should have at least
two merits: first it offers security against active adversaries



and second encryption is more efficient since only a sym-
metric encryption key is encrypted with expensive asym-
metric encryption, while the message itself is encrypted by
a traditional symmetric primitive.

The paper is structured as follows. In section 2 the trap-
door that we are going to use is introduced and in section
3 its relation to the integer factorization problem is estab-
lished. Section 4 uses this trapdoor in a KEM-DEM frame-
work that is also used for the RSA function while in section
5 a formal proof of security is sketched. In section 6 we
give a concrete practical example of such cryptosystem and
section 7 holds our conclusion.

2. The trapdoor that we use

This section introduces the trapdoor permutation that we
are going to use on the proposed cryptosystem. In brief, the
trapdoor is constructed on a generalization of the discrete
power function, i.e. f(x) = xεmodn, that is used in the
RSA and Rabin cryptosystems, for the case when the expo-
nent is not necessarily prime to the order of the group.

For the brevity of the exposition, we enumerate the fol-
lowing notations that will be used for the rest our paper:

• n = pq is the product of two large primes (an RSA like
modulus)

• Z∗n = {x|0 < x < n, gcd(x, n) = 1} (gcd stands for
greatest common divisor)

• φ(n) = (p − 1)(q − 1) Euler phi function for integer
n (also the order of the group Z∗n)

• ε some integer exponent such that gcd(ε, φ(n)) ≥ 1

• λ = gcd(ε, p − 1), µ = gcd(ε, q − 1) the greatest
common divisors between the exponent and the orders
of the groups Z∗p and Z∗q

• τmin the minimal value of τ for which it holds that
gcd( φ(n)

gcd(φ(n),ετ ) , ε) = 1

• φ′(n) = φ(n)
gcd(φ(n),ετmin ) (note that ε is relatively prime

to φ′(n))

• δ′ the multiplicative inverse of ε in Z∗φ′ , i.e. δ′ε ≡
1modφ′(n)

• f(x) = xεmodn, f : Z∗n → Z∗n, g(x) = xδ′
modn,

g : Z∗n → Z∗n (as will be shown next f is a trapdoor
permutation on a particular subgroup of Z∗n and g is its
inverse)

Definition 2.1 LetZe
n denote the set of eth residues mod-

ulo n, i.e. Ze
n = {x ∈ Z∗n|∃y, x ≡ yemodn}.

Theorem 2.2 If a ∈ Zετmin

n then aδ′
modn is one of its

εth roots, i.e. a ≡ (aδ′
)εmodn.

Proof. According to the definition of Zετmin

n if
a ∈ Zετmin

n there exists some integer b such that a ≡
bε

τmin
modn and therefore aδ′ε ≡ bε

τmin+1δ′
modn. But

we have δ′ε ≡ 1modφ′(n) ⇒ δ′ε = 1 + kφ′(n) and it fol-
lows that aετmin+1δ′ ≡ bε

τmin (1+kφ′(n))modn. Now, since
ετminφ

′(n) ≡ 0modφ(n) it leads to bε
τmin (1+kφ′(n)) ≡

bε
τmin

bjφ(n)modn ≡ bε
τmin

modn ≡ amodn - and this
completes our proof.

Theorem 2.3 All elements fromZετmin

n have exactly one
εth root that is also in Zετmin

n .
Proof. Let a ∈ Zετmin

n then by using the result of
theorem 2.2 we have that for b = aδ′

modn it holds that
a ≡ bεmodn. Since a ∈ Zετmin

n there exists c such that a ≡
cε

τmin
modn then b ≡ aδ′ ≡ cε

τminδ′

≡ (cδ
′
)ετmin

modn
which proves that b ∈ Zετmin

n . Now we prove by contra-
diction that b is unique. Suppose that d ∈ Zετmin

n and a ≡
dεmodn but b 6= dmodn. Since b, d ∈ Zετmin

n there must
be some t, u such that b ≡ tε

τmin
modn, c ≡ uετmin

modn.
Because bε ≡ dεmodn we have tε

τmin+1 ≡ uετmin+1
modn

and by raising at power δ′ we get tε
τmin ≡ uετmin

modn⇒
b ≡ dmodn which completes our proof.

The following theorem introduces the trapdoor permuta-
tion that we are going to use.

Theorem 2.4 Function:

f(x) = xεmodn, f : Zετmin

n → Zετmin

n

is a trapdoor permutation on Zετmin

n and its inverse is:

g(x) = xδ′
modn, g : Zετmin

n → Zετmin

n

i.e. g(f(x)) = x,∀x ∈ Zετmin

n .
Proof. The result from 2.4 is a direct consequence of

theorems 2.2 and 2.3 and no further proof is needed.
Remark 2.5 We note that if the exponent ε is prime to the

order of the group, i.e. gcd(ε, φ(n)) = 1 (the case of a RSA
exponent), then Zετmin

n = Z∗n. Also we emphasize that for
this case the RSA cryptosystem is more efficient than this
proposal, however for this case the potential equivalence to
the integer factorization problem can not be proved.

3. Relation to factoring

We want to establish the relation between the introduced
trapdoor and the integer factorization problem in the case
when he exponent is not prime to the order of the group,
i.e. gcd(ε, φ(n)) 6= 1. Of course, for the case when the ex-
ponent is prime to the order of the group (RSA cryptosys-
tem) there is no proof of such equivalence, while for the
case when ε = 2 (the Rabin cryptosystem) it is commonly



known that computing square roots is equivalent to factor-
ing. Therefore we are interested in the general case of our
trapdoor, when the exponent is not necessarily 2, and it is
some random integer such that gcd(ε, φ(n)) > 1. More
concrete, we want to prove that if there exists an algorithm
for computing εth roots in Zετmin

n for such an exponent then
this algorithm can be successfully used to factor n.

First we recall the following two basic facts from number
theory.

Fact 3.1 Chinese Remainder Theorem (CRT): Let
n1, n2, ..., nk be integers that are pairwise relatively prime,
then the system of congruences:

x ≡ a1modn1

x ≡ a2modn2

...
x ≡ akmodnk

Has a unique solution modulo n = n1n2...nk.
We do not give a proof for 3.1. since this is a commonly

known fact in number theory. Also, it can be easily verified
that the solution of the system can be efficiently computed

as x =
k∑

i=1

NiMi, Ni = n
ni

and M = N−1
i modni. Note

that CRT describes an isomorphism between Z∗n and Z∗p ×
Z∗q .

Fact 3.2 If p is prime and d|p−1 then the equation xd ≡
1modp has exactly d solutions.

This is also a basic aspect from number theory and prov-
ing is straightforward since xp−1 ≡ 1modp has p − 1 so-
lutions in Z∗p because by Fermat’s theorem this holds for
any number from Z∗p . Now xp−1 ≡ 1 ⇒ xde ≡ 1modp,
if we assume that p − 1 = de, and this leads to xde ≡
1⇒ (xd − 1)(xd(e−1) + xd(e−2) + ...+ x+ 1)modp. But
(xd(e−1) + xd(e−2) + ... + x + 1) has at most d(e − 1)
solutions in Z∗p (since it is a d(e − 1) degree polynomial)
therefore (xd−1) must have at least p−1−d(e−1) = d so-
lutions and also it has at most d solutions since is a d degree
polynomial - this means that (xd − 1) must have exactly d
solutions.

The following theorem establishes the number of solu-
tions for the equation xε ≡ 1modn when gcd(ε, φ(n)) 6= 1
and its relation to the integer factorization problem.

Theorem 3.3 The equation xε ≡ 1modn has exactly
λµ distinct solutions and for λ + µ − 2 of them it holds
that gcd(x0 − 1, n) gives a non-trivial factor of n; here x0

denotes a solution of the equation, for other notations see
section 2.

Proof. According to 3.2 the number of solutions to xε ≡
1modp is λ and the number of solutions to xε ≡ 1modq is
µ (note that we are in fact interested in the number of solu-
tions to xλ ≡ 1modp and xµ ≡ 1modq since x

ε
λ ≡ 1modp

and x
ε
µ ≡ 1modq are permutations and have only one so-

lution). Now, due to the isomorphism of the Chinese Re-

mainder Theorem each solution from Z∗p can be grouped to
each solution from Z∗q giving exactly λµ distinct solutions
in Z∗n. Obviously if x0 ≡ 1modp and x0 6= 1modq or else
x0 6= 1modp and x0 ≡ 1modq the value of gcd(x0 − 1, n)
gives a non trivial factor of n. It is straight forward to prove
that it holds for exactly µ − 1 solutions that x0 ≡ 1modp
and x0 6= 1modq and for λ− 1 solutions that x0 6= 1modp
and x0 ≡ 1modq. This gives that a total of λ+ µ− 2 solu-
tions that will give a non-trivial factor of n when computing
gcd(x0 − 1, n).

Theorem 3.4 If there exists an algorithmAε for comput-
ing εth roots in Zετmin

n then there exist an algorithm Afact

that after one query to Aε gives a factor of n with probabil-
ity Prfact = (1− 1

λµ )λ+µ−2
λµ .

Proof. We assume that Aε behaves as follows: on input
x it returns s ∈ Zετmin

n such that x ≡ sεmodn or failure
⊥ if such s does not exist. Then Afact works as follows:
it generates a new random integer r ∈ Zn, sets a0 = r,
computes a1 = aε

0modn and gives a1 as input to Aε. If Aε

returns r (which is the same root that Afact already knows)
a new random r is generated and the same steps are fol-
lowed - note that Aε returns r with probability 1

λµ since all
roots of a1 are uniformly distributed in Z∗n. Else, Aε returns
either a distinct root v either ⊥. If Aε returns ⊥, then Afact

computes the array ai = aε
i−1modn, i > 1 and consecu-

tively gives each a2, a3, ..., ai as input to Aε until Aε does
not return ⊥ anymore and returns s such that ai ≡ sεmodn
(obviously this will happen for some 0 < i ≤ τmin). Since
Aε returned ⊥ for ai−1 and v ∈ Zετmin

n for ai we have
ai−1 6= v and aε

i−1 ≡ vεmodn from which one can com-
pute (ai−1v

−1)ε ≡ 1modn, (a−1
i−1v)

ε ≡ 1modn as two
distinct roots of 1 in Z∗n. According to 3.3. the proba-
bility of the εth root of 1 to give a non-trivial factor of n
when computing gcd(x0−1, n) is λ+µ−2

λµ and therefore the
probability of factoring with one query to Aε by Afact is
(1− 1

λµ )λ+µ−2
λµ , repeated calls toAε will increase this prob-

ability. Also, if the exponent is smaller, the probability of
factoring is higher.

Remark 3.5 Suppose that we are not in possession of an
algorithm Aε that computes the εth root of some element
from Zετmin

n and we have only an algorithmAg that simply
computes g(a) on any input a ∈ Zn, Ag does not return
⊥ if its input is not an element from Zετmin

n as in the case
of Aε (basically Ag is the algorithm for computing g - the
inverse of our trapdoor permutation). It is easy to prove that
Ag may be used in the same manner as Aε to factor n. Let
a = rεmodn for some random integer r and b = g(a) the
output of Ag . It is trivial to prove that bε

i ≡ rεi

for some
integer 0 ≤ i ≤ τmin. If i = 0 the same root was returned
and it cannot be used to factor the modulus (this happens
again with probability 1

λµ ) otherwise, if i 6= 0 , we obtain
an εth root of 1 which will lead to the factorization of the
modulus with the same probability as previously λ+µ−2

λµ .



4. The use in a KEM-DEM framework

Although the notion of hybrid encryption is known for
many years, there was no formal treatment of the subject
until [6]. The RSA-KEM proposed by Shoup in [19] is a
straightforward approach that yields a secure KEM-DEM
mechanism for the RSA trapdoor. The proposal is also close
to the ideas from [3].

The same transformation can be used in the case of the
trapdoor proposed previously. The following is the concrete
description of the KEM:

• KEM.Gen(1k): Choose two distinct k bit primes
p, q and an integer exponent ε, compute n = pq,
φ(n), τmin, φ′(n), δ′ (see section 2 for the signifi-
cance of these values). Return pk = (n, ε, τmin) and
sk = (n, δ).

• KEM.Key(pk): Choose at random an integer ω ∈
Zn, compute γ = ωετmin

modn and the DEM key as
dk = KDF (γ). Return (γ, dk).

• KEM.Enc(γ): Compute ψ = γεmodn. Return ψ.

• KEM.Dec(ψ): Compute γ = ψδ′
modn and kd =

KDF (γ). Return dk.

Here KDF (x),KDF : Z∗n → KD is some key deriva-
tion function, KD denotes the set where the DEM keys be-
long. In general, the security of KEM/DEM frameworks
against active adversaries assumes that both components,
KEM and DEM, are secure against active adversaries (it is
a good intuition that if both components are secure then so
is the KEM/DEM). If weaker assumptions need to be made
on the DEM component, then a Tag-KEM/DEM framework
can be used. The Tag-KEM is basically an enhancement of
the KEM which consists in embedding a tag in the KEM in
order to assure the non-malleability of the DEM. This pro-
posal was also used in [17] and is also close to an approach
from [3].

We can use the same mechanism with the proposed trap-
door. The only modifications that needs to be done are on
the KEM.Enc and KEM.Dec algorithms which need to
take the tag into account. Thus for a Tag-KEM/DEM we
have:

• TagKEM.Enc(γ, T ): Compute ψ = γεmodn, ζ =
H(γ, T ). Return (γ, ζ).

• TagKEM.Dec(ψ, ζ, T ): Compute γ = ψδ′
and

dk = KDF (γ). If H(γ, T ) 6= ζ return ⊥ else return
dk.

In this construction for the tag T the symmetric en-
cryption of some message will be used, i.e. T =
Sym.Encdk(m), and H is some hash function.

Both the first KEM and the second Tag-KEM are close
to the constructions E(x) = f(r)||G(r) ⊕ x and E(x) =
f(r)||G(r) ⊕ x||H(rx) from [3], the later which is proved
as non-malleable against chosen ciphertext adversaries in
[3] (here G stands for a random generator, || denotes con-
catenation and ⊕ is logical XOR).

5. A formal proof of security

We give a sketch on the proof of security for the KEM
that we used (detailed proofs on the security of such a KEM
framework can be found in [19], also for the TagKEM/DEM
proofs are in [1], while in [3] are also proofs for similar
methods).

The CCA2 security of the KEM assumes that an adver-
sary with adaptive access to a decryption oracle O has no
chance in distinguishing that a given key is encapsulated or
not in some challenge ψ = KEM.Enc(γ). Basically such
an attack has four stages: first a public key, private key pair
is generated, second the public key is given to the adver-
sary and the adversary makes query to the oracle O, third
a challenge is generated which consist in the encapsulation
of a key and a key chosen at random between the correct
key and some random key, fourth the adversary continues
to make calls to the oracle (subject only to the restriction
that it is not allowed to ask for the challenge itself) and then
answers to the challenge.

The adaptive chosen ciphertext attack game can be easily
formalized in the following steps:

1. (pk, sk)← KEM.Gen(1k)

2. v1 ← AOT (pk)

3. (γ, dk1) ← KEM.Key(pk), dk0 ← KD, b ←
{0, 1}, ψ ← KEM.Enc(γ)

4. b̃← AOT (v1, ψ, dkb)

Here v1 denotes state information of the adversary. The
advantage of the attacker of the KEM can now be defined
as ξ = |Pr[b = b̃]− 1

2 |. The following theorem establishes
the security bound for the KEM described in the previous
section:

Theorem 5.1 If there exists an adversary that can break
the proposed KEM in the random oracle model with advan-
tage ξ querying the decryption oracle qD times then there
exists an adversary that can factor integers with advantage
ξ′ ≥ (ξ − qD

n )(1− 1
λµ )λ+µ−2

λµ .
Proof. The intuition is the following: we prove that an

adversary that can break the proposed KEM can be used to
compute εth roots with advantage Adv ≥ ξ − qD

n , since
each such root gives a probability of factoring equal to
(1− 1

λµ )λ+µ−2
λµ the rest of the result is straightforward. Now



we want to prove that Adv ≥ ξ − qD

n in the random oracle
model. Assuming that the hash function behaves as a ran-
dom function, it is easy to simulate the decryption oracle
to the adversary. This can be done as follows: a KList is
prepared, on each input r the value of y = rεmodn is com-
puted and a random value k is generated - these three values
are stored in the KList. If a ciphertext y is submitted to the
decryption oracle, KList is inspected if the value of y was
queried, if yes then the corresponding value of k is returned,
otherwise a fresh key is generated and stored along the ci-
phertext, later if the decryption oracle is queried on some r
such that y = rεmodn the value of k generated previously
is returned. Suppose that in this environment an adversary
gains infinitely many times an advantage ξ′. Let Awins de-
note the event that the adversary successfully guesses the
hidden bit b and let Bad denote the event that the adversary
queries the decryption oracle with the challenge ciphertext
or the key derivation oracle with the value γ. Now we have:

Pr[Awins] = Pr[Awins ∩Bad] + Pr[Awins ∩Bad]

Obviously, the oracle may be queried with the challenge
only before the challenge is given to the adversary (because
the adversary is restricted not to ask for the challenge),
therefore this may happen with a probability bounded by
qD

n . Let the event of asking for γ at KDF be denoted by
AskKDF , now it follows that:

1
2 + ξ ≤ Pr[Awins ∩Bad] + qD

n + Pr[AskKDF ]

If event Bad does not happen then all that the adversary
knows is independent from the challenge, therefore:

Pr[Awins ∩Bad] = 1
2

This finally leads to:

Pr[AskKDF ] ≥ ξ − qD

n

The event AskKDF implies that the εth root was dis-
closed, and therefore we can use the adversary to compute
εth roots with advantage Adv ≥ ξ − qD

n . Since each such
root give a nontrivial factor with probability (1− 1

λµ )λ+µ−2
λµ

we have ξ′ ≥ (ξ − qD

n )(1− 1
λµ )λ+µ−2

λµ and this completes
our proof.

6. A practical example

The proposed cryptosystem is more efficient for the case
when the value of τmin is smaller. Of course the most effi-
cient case is when τmin = 0 which is the case of the RSA
cryptosystem, unfortunately for this case equivalence to fac-
toring cannot be proved. Therefore we are going to illustrate

the case when τmin = 1 which is the most efficient case for
which equivalence to factoring holds. Also we will use as
encryption exponent ε = 3 since computing xεmodn will
require only two modular multiplications. The description
of the KEM is as follows:

• KEM.Gen(1k): Choose two distinct k bit primes p, q
such that p = 1 + 3k, k 6= 0mod3, q = 2 + 3l and
set the integer exponent to ε = 3. Compute n = pq,
φ(n) = (p− 1)(q− 1), τmin which for the two primes
previously defined will be τmin = 1 , φ′(n) = φ(n)

3 ,
δ′ = 3−1modφ′(n). Return pk = (n, ε, τmin) and
sk = (n, δ).

• KEM.Key(pk): Choose at random an integer ω ∈
Zn, compute γ = ω3modn and the DEM key as dk =
KDF (γ). Return (γ, dk).

• KEM.Enc(γ): Compute ψ = γ3modn. Return ψ.

• KEM.Dec(ψ): Compute γ = ψδ′
and kd =

KDF (γ). Return dk.

A key encapsulated in this manner can be successfully
used in a one-time scenario by any DEM that is secure
against adaptive chosen ciphertext attacks. Also if there ex-
ists an IND-CCA2 attacker on this KEM then the attacker
can compute 3th roots in Z∗n and each root distinct from one
that is already known gives a non-trivial factor of n with
probability 2

3 (this follows easily from theorem 3.3).

7. Conclusions

A trapdoor based on an extension of the RSA encryp-
tion function was constructed and its equivalence to integer
factorization problem was established. The trapdoor works
also for the cases when the exponent is not prime to the or-
der of the group Z∗n and for this case inverting the trapdoor
gives a non-trivial factor of the modulus with high proba-
bility. The trapdoor was used in a KEM/DEM framework
for achieving efficient hybrid encryption. The encryption
is secure against active adversaries and a formal proof in
the random oracle model was sketched. The main contribu-
tion of the paper is that the proposed trapdoor used in the
KEM/DEM framework gives an efficient hybrid encryption
scheme which has its security equivalent to the integer fac-
torization problem.
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