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Abstract— Besides commonly used password strengthening 
techniques such as salting or repeated applications of a one-
way function on the password, we account a less common 
procedure: the truncation of the output from a one-way 
function on the password. This technique is used in a 
Norwegian ATM and a similar method is part of an 
authentication protocol from Anderson and Lomas which 
makes use of collision-full hash functions. We depict a 
probabilistic bound on the probability of guessing the 
password in the Anderson-Lomas protocol and we propose 
some improvements on the protocol.  Further, the improved 
protocol proves to be a good solution for a password based 
authentication between two devices that authenticate in the 
absence of a previously known secret or of a trusted third 
party. The protocol proves to have all the desired properties 
for this scenario.  

Keywords-authentication; password; protocol;  

I.  INTRODUCTION 
Although passwords offer the weakest level of security, 

they are still the most used authentication factor. This is 
because they can be easily memorized by humans and further 
used for authentications without requiring the possession of 
additional devices such as smart-cards, mobile phones etc. 
that can be used to compute one-time password or at least 
store randomly generated keys. 

The main disadvantage of passwords is their lack of 
entropy which makes them vulnerable against exhaustive 
searches over the password space. Thus, an adversary can 
built a dictionary of passwords and search in it for the correct 
one if the protocol reveals all information necessary for the 
verification. Even more, in some situations, when 
randomness is absent in hiding the password, the adversary 
can save some of his computational time and use pre-
computed dictionaries. These attacks are more severe, as a 
search over a pre-computed dictionary can be done in no-
time by using binary search.  

In order to overcome dictionary attacks, the first solution 
was introduced by Bellovin and Merrit [5] and since then 
several modern solutions with provable security appeared 
[4], [6]. However, in practice only elementary improvements 
for strengthening passwords are used, from which the most 
common are salting and repeated applications of a one-way 
function.  These techniques are known as folklore and used 
for a long time; a research account of some password 
strengthening techniques is available in [1]. 

Besides salting and repeated applications of a one-way 
function, in this paper we account an interesting mechanism 
that can be used to increase password security: the truncation 
of the output from a one-way function on the password. This 
technique can be used to eliminate some attacks as an 
adversary cannot decide which is the correct password based 
on a single truncated output. The technique was initially 
proposed by Anderson and Lomas in a key-exchange 
protocol [2]. Further, a similar procedure was used in 
practice in a Norwegian ATM. In this paper we make an 
analysis of the probability for an adversary to find the 
password in this case and further we propose some 
modifications that can improve the protocol security. The 
step-by-step verification procedure that we introduce 
decreases the number of disclosed bits from a protocol run. 
Although the proposed improvement requires more 
communication sessions, it is more efficient with respect to 
the security level which matters most. We also propose an 
interesting scenario in which the improved protocol can be 
used: an authentication between two devices, in the absence 
of a previously known secret or of a trusted third party, by 
the use of a very low entropy password.  

The paper is organized as follows. Section 2 discusses 
along the lines of password strengthening techniques: salting, 
multiple applications of a one-way function and truncation. 
Section 3 makes an analysis of guessing in the presence of 
truncation of the output from a one-way function on the 
password that is used in the Anderson-Lomas and the 
Norwegian ATM protocol. Further, section 3 proposes some 
improvements on this and introduces a practical scenario in 
which the protocol can be used. Section 4 holds the 
conclusions of our paper. 

II. WEAKNESSES AND IMPROVEMENTS OF SOME 
PASSWORD BASED PROTOCOLS FROM PRACTICE  

A. Compensating low-entropy with salting and repeated 
applications of a one-way function  
Windows provides a good practical example of how 

wrong it is to forget about salting passwords. All Windows 
OS versions prior to Vista store user passwords as the 
lmhash, which consist in splitting the password of at most 14 
chars in two values that are used to encrypt with DES the 
constant “KGS!@#$%”, i.e.  1("KGS!@#$%") ||pwDES  

2 ("KGS!@#$%")pwDES . In this case, besides dictionary 
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guesses, in which an adversary compares the password to 
entries in the dictionary, pre-computed dictionary attacks are 
feasible as the encryption is deterministic. These pre-
computed dictionary attacks can be done even in a more 
specialized form known as rainbow tables, being efficient 
when cracking large amounts of passwords. Rainbow tables 
are distributed freely over the Internet and can be computed 
by using the advantage of grid systems or distributed 
computation communities. Free rainbow tables are available 
on the web to crack large amounts of Windows passwords. 

To avoid pre-computed dictionary attacks, in UNIX OS 
salt is added to the passwords. Even more, passwords are 
hashed multiple times, making an adversary spent more time 
to find passwords by exhaustive search. It is also notable that 
in the traditional DES based crypt command from UNIX the 
encryption algorithm was also modified by the salt in order 
to block the potential use of standard cryptographic 
hardware. 

In this context, it is also useful to mention the technique 
from Abadi et al. [1] that consists in concatenating a value to 
the password before hashing and delete this value afterwards. 
This means that the password is hashed as ( , )H pw r  and if 
r  is unknown the system must verify all values of r  before 
accepting a password. Now, if  r  has an appropriate size (for 
example 20 bits) the system will not need to much time to 
confirm the correct password but the adversary time needed 
to test many wrong password will increase proportionally. 
Finally, this has the same effect as the repeated application 
of a one-way function on the password. 

B. Hiding passwords by truncating one-way functions 
outputs: the Norwegian ATM and Anderson-Lomas 
protocols  
 There is a more subtle way of hiding passwords than 

salting or repeated applications of a one-way function. The 
main idea is that the password can be hidden by truncating 
the output from the one way function computed on the 
password.  

An interesting example is from a Norwegian ATM 
authentication system, which was shown to be flawed after a 
trial from an honest user who lost a credit card from which 
money were subtracted [8]. Each credit card stores on it a 16 
bit verification value that is the result of a 16 bit truncation 
from a DES encryption of the PIN with a key K known only 
by the bank and the ATM’s, i.e. each card stores 

( ) 16KDES PIN⎢ ⎥⎣ ⎦ . We simplified this here because the DES 
is not computed directly on the PIN and other information 
such as the account number is also encrypted, but since the 
password is the one on which we are interested, other details 
are not relevant. Now, if an adversary has a stolen card and 
wants to find the PIN, the main problem is that even if it 
makes an exhaustive search against the 562  possible DES 
keys (which was feasible at that time and nowadays DES can 
be cracked in less than a week), since the value from the card 
is truncated to 16 bits it will get roughly 402  correct DES 
keys which can further validate any PIN code. However, 
these false DES keys can be discarded if the adversary gets 

more honest credit cards from the same bank or changes its 
PIN code. This is because each new PIN provides him a new 
16 bit value and by testing DES keys each such value 
reduces the number of correct DES keys by a factor of 162 . 
Thus, finding the correct DES key can be done after roughly 
4 honest cards issued to the adversary and the PIN from the 
stolen card can be further found by testing against the 16 bit 
value from this card. 

The same truncation is used in a protocol proposed by 
Lomas and Anderson where the collision-full hash functions 
proposed by Gong [7] are used to authenticate a key 
exchanged with Diffie-Hellman. 

 
Diffie-Hellman-Merkle Key-Exchange 
 

A B→ : αγ  

B A→ : βγ  
 
Anderson Lomas 
 

A B→ : ( )( ), mod 2 ,mH H pw αβ αβγ γ  

B A→ : ( )( )( ), mod 2 ,mH H H pw αβ αβγ γ  

 
Here αγ , βγ , αβγ  are the usual Diffie-Hellman 

parameters and ( ) ( )( , ) mod 2 ,m
kf x H H k x x=  is the 

collision-full hash function. The collision-full hash has the 
property that for a target image ( )kf x  if one knows x  it is 
easy to find collisions in the first variable, i.e. 

( ) ( )' , 'k kf x f x k k= ≠ , but if one knows k  it is infeasible 
to find collisions in the second variable, i.e. 

( ) ( )' , 'k kf x f x x x= ≠ . As for the notation ( ),H x y  in the 
original paper from Anderson and Lomas [2] the hash 
function is used over the concatenation of the two variables 
while later papers from different authors also interpret this as 
a hash function keyed on the first variable. Finally, in this 
context any of the interpretations can be used. 

Thus, it is acknowledged in [2] that if Adv  plays as man-
in-the-middle and impersonates B  he knows αβγ  but 
further he cannot find pw since there remain 2k m−  correct 
passwords after Adv  gets the response from A . It is easy to 
see the similarities between the Norwegian ATM and the 
Anderson-Lomas protocol, in what follows we are interested 
on computing some bounds on the probability of finding the 
password in these cases. 

III. ANALYSIS AND IMPROVEMENTS ON THE ANDERSON-
LOMAS PROTOCOL 

A. Probabilistic bounds on guessing the password  
Let us define guessAdv  as the event that the adversary 

successfully guesses the password. Ideally speaking, this 
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probability must be negligible, but in practice it depends on 
the entropy of the passwords. If one considers passwords on 
k  bits and the target password is uniformly distributed 
among them we have Pr[ ] 2 k

guessAdv −= . 
First we want to show that using any truncated hash on 

the password and the Diffie-Hellman key is sufficient for the 
man-in-the-middle adversary in the Anderson-Lomas 
protocol while a collision-full hash is more than necessary 
(in particular we can renounce to the hardness of finding a 
collision in the second argument). Assume that H is a 
collision-free hash function. For functions ( ),f pw x =  

( )( ), mod 2 ,mH H pw x x  and ( ),g pw x =  

( )( ), mod 2mH H pw x  it is easy to show that finding pw 

from a set of inputs-outputs ( ) ( ){ }, | ,f i i i iL x y y f pw x= =  

or from a similar set ( ) ( ){ }, | ,g i i i iL x y y g pw x= = , 
happens with the same probability if the sets have the same 
size, i.e. f gL L= . To prove this, assume by contradiction 

that it is harder for Adv to correctly identify pw from fL  

than from gL  when f gL L= . This means that there are 

more collisions in fL  than gL . However, observe that given 

any pair ( ),i ix y  from fL  it holds 

( )', , 'i if pw x y pw pw= ≠  if and only if 

( ) ( ), mod 2 ', mod 2m m
i iH pw x H pw x= . This is easy to 

prove since if we assume that 
( ) ( ), mod 2 ', mod 2m m

i iH pw x H pw x≠ it follows that the 
hash function has collisions which is a contradiction.  But 
this means that the collisions in fL  occur if and only if the 

same collisions occur in gL . Therefore pw can be correctly 
recovered from fL  if and only if it can be correctly 

recovered from gL .  
This means that in the Anderson-Lomas protocol the 

man-in-the-middle attack works with the same strength even 
if we do not use the collision-full hash function and we 
simply use a hash function with a truncated output as 
follows: 

 
Truncated Hashing 
 

A B→ : ( ), mod 2mH pw αβγ  

B A→ : ( )( ), mod 2mH H pw αβγ  
 
Now we want to give a probabilistic measure for the 

event guessAdv . Obviously, if there are candn  candidate 
passwords and the correct password is randomly distributed 
between them, it holds: 

1Pr[ ]guess
cand

Adv
n

=   (1) 

Now we want to establish how Pr[ ]guessAdv  varies with 
protocol runs when Adv  impersonates the honest users and 
knows the Diffie-Hellman key. This will be done  by 
estimating the number of candidate passwords that remain 
after some protocol runs. We will consider the general case 
of a pseudorandom function of two arguments 

{ } { } { }: 0,1 0,1 0,1k l mf × →  with k m>  (this includes the 
hash function from Anderson-Lomas, as well as the DES 
encryption from the Norwegian ATM). Further, we assume 
that the correct password is { }0..1 kpw∈  and the adversary 

knows pairs ( ), , , 1,i ir f pw r i q=  (where ir  is some random 

value) and can compute ( ) { }, , 1, , 0,1 k
if p r i q p= ∀ ∈ . We 

want to establish how Pr[ ]guessAdv  varies after testing 
candidate passwords against the q  outputs for the correct 
password. Let collp  be the event that the output of f  on 
some candidate password and some additional input ir  
collide with the target, i.e. ( ) ( ), ,i if pw r f p r= .  Since f  is 

pseudorandom we have 1Pr[ ]
2coll mp =  and after testing 

against all the pairs ( ), , , 1,i ir f pw r i q=  the probability for a 

password to collide on all q targets is 1Pr[ ]
2q coll mqp − = . 

Therefore in average the number of candidate passwords will 
be: 

( ) 2 11 2 1 Pr[ ] 1
2

k
k

cand q coll mqn p −
−= + − ⋅ = +  (2) 

 
Here 1 stands for the fact that there will be at least one 

collision, and this is with the correct password. This gives 
the following probability for the adversary to guess the 
correct password: 

2Pr[ ]
2 2 1

mq

guess mq kAdv =
+ −

  (3) 

B. Further guessing informations  
The calculus for relation (3) has taken into account only 

the values provided by A  to Adv . However if Adv  plays as 
man-in-the-middle besides the correct values provided by 
A , Adv  may further try to give a correct response to B . If 

he gives a correct response then Adv  learns two more input-
output pairs for the function computed on the secret. 
However, Adv  can give the correct answer only with 
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probability 2 m−  which should be negligible in practice since 
otherwise Adv  can successfully impersonate A .  On the 
other hand, with probability 1 2 m−− , Adv  gives the wrong 
answer to B  and  in the case that B  will not reply he learns 
that the value does not match the correct password. Now, if 
the password space is 2x  he can further exclude 2x m−  
passwords, however this is a reduction of the password space 
with a factor of  1 2 m−−  which is again negligible compared 
to the reduction by a factor of 2 m−  that results from the 
response provided by A . Therefore, it seems to be little 
point for Adv  to play the role of A  to B  as it is very likely 
that B  detects its presence while he learns almost nothing 
about the password. This means that it is sufficient to 
approximate the number of candidate passwords based only 
on the responses from A . Nevertheless this shows that Adv  
does not have good chances in defeating the protocol if he is 
the initiator of the protocol.  

Still, in the best case it is desirable for a protocol to let 
Adv  test only one password in each protocol run (i.e., in 

each on-line attack). However, in this protocol, after each run 
as the initiator, Adv  can exclude about 2x m−  passwords as 
previously shown. Therefore we can consider that the 
protocol is not optimal against on-line attacks. 

C. On the optimal choice of m  
 In the original proposal from Anderson and Lomas [2] 

there is a discussion on the optimal choice of m  and the 
recommend value is / 2m k= . Indeed, we may consider that 
after the first response from A  to Adv  there are two ways 
of attacking the protocol: first by guessing the password 
from the response of A  (which happens with probability 
2m k− ) and second by giving the correct response to B  
which happens with probability 2 m− . If one wants to 
minimize the probability of both the attacks the optimum 
choice will be indeed / 2m k= .  

Still, choosing such a large m  will lead very fast to the 
correct value of the password, forcing to stop the protocol 
quickly in the case of an attack or otherwise the password 
will be guessed. It may be useful to further improve on this 
by dynamically adjusting m . For example, one may choose 
to reduce m  to half after each wrong response from the other 
party (which indicates the potential presence of the 
adversary). This will force to stop the protocol after about 

2log k  unsuccessful runs as m  cannot be further reduced. At 
this point Adv  may have successfully find the password 
with probability 12− . The only advantage is that the 
probability of guessing increases more smoothly to 12− . 
Note however that now the probability that Adv  gives a 
correct response to A  also gets double each time m  is 
reduced by half. So more likely such an improvement will 
not help much. Pr[ ]q collp −  for this case will be: 

1

1

1 2
2

...
2 4 2

1Pr[ ] 2

2

q

q

q

m
q coll m m mm

p −

−

−⋅

−
+ + + +

= =  (4) 

Further, this relation can be used in (2) to compute 
Pr[ ]guessAdv . In figure 1 at the end of this section there are 
comparative plots for the variation of Pr[ ]guessAdv  with 
protocol runs and the case of the dynamic adjustment for m 
is outlined as well. 

D. A further improvement on the Anderson-Lomas 
protocol  
The main problem in the Andreson-Lomas is that when 

Adv  plays the role of B , A  discloses the value of 
( ( ) mod 2 , )m

pwH MAC αβ αβγ γ  which lets Adv  reduce the 

password space by a factor of 2m . We now improve on this 
by proposing a step-by-step verification procedure for which 
we show that it reduces the probability that Adv  finds the 
correct password. A  and B  compute the regular values (or 
even the same value) and disclose only a fixed number of 
bits in each round. Ideally for security, only 1 bit should be 
disclosed; however, this increases the number of sessions. 
For example, A  and B  can compute 

1 2... r sv v v v ⋅= ( ) mod 2m
pwMAC αβγ=  and 1 2... r sw w w w ⋅= =  

( ) ( ) mod 2m
H pwMAC αβγ  then proceed to the following step-

by-step verification: 
 
Step-by-step Verification  
 

Session 1..i r=  
A B→ : ( )1 1... i si sv v ⋅− ⋅ +  

B A→ : ( )1 ... i si sw w ⋅− ⋅  
 
Now, if Adv  plays the role of B   then in session 1 he 

receives s  bits from A  and afterwards he will get to session 
2 only if he responds correctly to A  in session 1. Assuming 
that the password is unknown to Adv  this happens with 
probability Pr[ ] 2 s

corrAdv −= . We can compute the 
probability that Adv stops in some session 1..i k= , i.e. the 
event that Adv  is correct up to session i denoted i corrAdv − , 
as:  

11 1Pr[ ] 1
2 2

i

i corr s sAdv
−

−
⎛ ⎞ ⎛ ⎞= ⋅ −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (5) 

We now want to compute the average number of bits 
which Adv  gets after one protocol run.  In the first session if 
Adv  plays the role of B  he gets s  bits from A , afterwards 

he will get another 2 s⋅  for any correct answer. Therefore 
the average number of bits Adv  gets from A  is:  
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1

1

1 12 1
2 2

ir

A s s
i

av s i s
−

=

⎛ ⎞ ⎛ ⎞= + ⋅ ⋅ ⋅ ⋅ −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∑       

1

1

1 12 1
2 2

ir

s s
i

s s i
−

=

⎛ ⎞ ⎛ ⎞= + ⋅ ⋅ − ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∑   (6) 

By elementary computations we can compute 
( )

( )

2 1

2
1

1

1

k kk
i

i

k x k x x
i x

x

+ +

=

⋅ − + ⋅ +
⋅ =

−
∑  and by replacing in the 

previous relation this gives: 

( )2 2 1 1
2

1 2

r s s

A s

r r
av s s

− ⋅ ⋅ ⋅ − + −
= + ⋅ ⋅

−
 (7) 

However we should not forget what happens if Adv  
plays the role of A  towards B . Adv  can give B  a correct 
response with probability 2 s− , but different to the case of 
the Anderson-Lomas protocol, this may not be negligible 
anymore. Therefore, the average number of bits received 
from B  is: 

1

1 12 1
2 2

ir

B s s
i

av i s
=

⎛ ⎞ ⎛ ⎞= ⋅ ⋅ ⋅ ⋅ −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∑  (8) 

 
By adding Aav  and Bav , in one protocol run if Adv  

plays the man-in-the-middle he will get the following 
average number of bits: 

av ≈
( )2 2 1 1

4
1 2

r s s

s

r r
s s

− ⋅ ⋅ ⋅ − + −
+ ⋅ ⋅

−
  (9) 

 
In (9) for simplicity we have omitted the last term from 

the sum in Bav  which is negligible. Further, the average 
number of bits can be replaced in relation (3) where the 
probability was computed for the case when m  bits were 
disclosed, giving: 

2Pr[ ]
2 2 1

av q

guess av q kAdv
⋅

⋅=
+ −

  (10) 

Basically the effect of the step-by-step verification is the 
same as if in the original protocol the size of m  will be 
reduced to the average value from (9) and the protocol is run 

/m av  times. However the advantage of the step-by-step 
verification is that one does not need to repeat the hash 
computations required by each protocol run. Figure 1 shows 
the plots done in Mathematica for the variation of probability 
for guessing based on the number of protocol runs on all the 

cases of the protocol that were analyzed. We underline that 
by using the step-by-step verification procedure there is no 
need to truncate the hash since the probability for Adv  to get 
all bits from the image of the hash is negligible anyway. 

E. A potential application 
We outline a particular scenario that can benefit from 

such a password strengthening technique: an interaction 
between two mobile devices handled by users who choose 
weak passwords. One may consider that the two devices are 
for example mobile phones and two users want to share 
content between them. As there is no previously shared key 
between the devices and a trusted third party does not exist, 
the only way is for the users to verbally agree on a password 
that is set on both devices. However, this is not enough, since 
if the password is weak and the protocol exposes information 
that makes the password guessable, or even more gives the 
opportunity to search it via a pre-computed dictionary, there 
will be no security for the communication. 

Using the improved protocol is efficient and has at least 
two merits. First is that pre-computed dictionary attacks are 
not feasible as the Diffie-Hellman key exchange assures 
fresh random information each time. Second, and more 
important, a potential adversary playing as man-in-middle 
will be quickly detected since it will fail to give the correct 
response with high probability. Finally, if the adversary plays 
as man-in-the-middle, it can not recover the password and 
will get more passwords that correspond to the captured 
values. Further, the two participants are warned that they are 
under attack and they will choose a new password. 

For example, one can consider that the password has 20 
bits (which is not much) and choose 10m =  in the original 
Anderson-Lomas protocol. This will lead to a probability of 

102−  for Adv  to bypass the authentication and with 
probability 101 2−−  his tentative will be detected. More, if 
the proposed step-by-step verification is used one can set 

20m = , which is the same size as the password and means 
that there is no truncation, but if 10r = , 1s =  then Adv  
gets only 5 bits in average and the probability for giving a 
correct response is only 202− , i.e., less than one in a million. 
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Figure 1.  Probability that Adv guesses the password (x-axis depicts the 
number of man-in-the-middle attacks on the protocol and y-axis the 

guessing probability). 
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IV. CONCLUSIONS 
Users tend to choose weak passwords; still there are a 

number of improvements that can be used in practice to 
increase their strengths. Since passwords continue to be used, 
password strengthening techniques are playing an important 
role in security. Some techniques are quite ingenious as the 
truncation from the Norwegian ATM or Anderson-Lomas 
protocols. We showed that further improvements can be 
done on the Anderson-Lomas protocol and we made a 
precise analysis on the probability of guessing the password. 
Further we proposed the use of this protocol as a solution for 
a practical scenario where two users choose weak passwords 
to authenticate two mobile devices, the practical 
implementation of the protocol for a real-world scenario 
remains as potential future work for us.  
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