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ABSTRACT 

This paper presents some results related to the optimal tuning of fuzzy models of magnetic 

levitation systems as widely used nonlinear processes. A modeling approach is given. The 

Takagi-Sugeno fuzzy models of the process (which is first stabilized) are obtained by the 

modal equivalence principle, where the rule consequents contain the state-space models 

of the stabilized process linearized at important operating points. The optimization 

problems are focused on the minimization of objective functions defined as the mean 

square modeling error (i.e., the difference between the real-world process output and the 

fuzzy model output). The vector variables of the objective functions consist of a part of the 

parameters of the input membership functions of the fuzzy models. An operating point 

selection algorithm is inserted in the initial phase of the modeling approach. Several 

nature-inspired optimization algorithms are employed to solve the optimization problems 

that result in optimal fuzzy models, and Particle Swarm Optimization, Simulated Annealing 

and Gravitational Search Algorithms are exemplified. 
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1. INTRODUCTION 

The good accuracy of fuzzy models of magnetic levitation systems is important in the context of 

model-based fuzzy control. Several approaches to the fuzzy modeling of magnetic levitation systems 

are reported in the literature, and considered in the general framework of fuzzy models of various 

nonlinear processes (Angelov, 2004), (Baranyi, 2004), (Škrjanc et al., 2005), (Johanyák, 2010), 

(Vaščák and Hirota, 2011), (Precup et al., 2012a), (Macías-Escrivá et al., 2013), (Barchinezhad and 

Eftekhari, 2014), (Jafarian, 2014), (Melin and Castillo, 2014), (Wang et al., 2014), (Zhang and Wang, 

2015). 

A systematic way to ensure the accuracy expressed by adequate performance indices is to carry out 

the optimal tuning of the parameters of fuzzy models. Some representative examples of fuzzy models 

of magnetic levitation systems are presented as follows. The optimal gains of fuzzy control systems 

that involve fuzzy models are computed in (Yu and Huang, 2009) using particle swarm optimization 

and quantum-inspired evolutionary algorithms. The fuzzy model proposed in (Yu et al., 2003) is 

obtained using a linear self-constructing neural fuzzy inference network applied to an optimal fuzzy 

controller. The fuzzy neural network modeling approach given in (Yongzhi et al., 2011) models the 

gap sensor in high-speed maglev trains. A design method of parallel distributed compensation 

controllers for magnetic bearing of high-speed motors is suggested in (Wang and Wang, 2010). 

Simulated Annealing is applied in (David et al., 2012) and (Dragos et al., 2013) to tune the parameters 

of input membership functions of fuzzy models. A gradient descent algorithm is applied in (Su et al., 

2015) to tune the parameters of fuzzy models for maglev suspension systems. Once the fuzzy models 

are obtained, appropriate control schemes must be developed (Tomescu et al., 2007), (Ferreira and 

Ruano, 2009), (Filip and Leiviskä, 2009), (Hermann et al., 2009), (Horváth and Rudas, 2012), (Precup 

et al., 2012b), (Tang et al., 2012), (Formentin et al., 2013), (Lamár and Kocsis, 2013), (He and Ge, 

2015). 

This paper presents an approach to the fuzzy modeling of magnetic levitation systems. As shown in 

(David et al., 2013), it starts with the derivation of an initial T-S fuzzy model of the process obtained by 

the modal equivalence principle. The initial fuzzy model is characterized by a set of local linearized 

state-space models of the process which are placed in the rule consequents. The nonlinear process 

models are linearized at several important operating points. However, as applied in (Precup et al., 

2015a) and (Precup et al., 2015b) but for another nonlinear process and also combined with evolving 

fuzzy systems and with an input selection algorithm, an operating point selection algorithm is inserted 

in the approach. This algorithm uses importance factors, correlation functions, importance and 

significance threshold to select the most important and independent operating points of the process. A 

part of the parameters of the input membership functions of the fuzzy models is next optimized by 

nature-inspired optimization algorithms that solve the optimization problems which aim the 

minimization of the sum of squared modeling errors. 

The paper is focused on the magnetic levitation system built around the representative Magnetic 

Levitation System with Two Electromagnets (MLS2EM) (Inteco, 2008). The operation and aim of this 



 

system is to solve the magnetic levitation problem for a metallic sphere maintained in an 

electromagnetic field. The derivation of accurate fuzzy models is challenging for this classical 

nonlinear unstable application. Three algorithms are involved in the optimal tuning of the parameters 

of input membership functions, viz. Particle Swarm Optimization, Simulated Annealing and 

Gravitational Search Algorithms. 

The paper is structured as follows: Section 2 is dedicated to the crisp mathematical modeling of the 

process. The fuzzy modeling approach is presented in Section 3. Some details on the implementation 

of the three nature-inspired optimization algorithms are given in Section 4. The results, which lead to 

optimal fuzzy models, are discussed in Section 5. The conclusions are outlined in Section 6. 

 

2. CRISP MODELS OF MAGNETIC LEVITATION SYSTEM 

As shown in (David et al., 2012), the block diagram of the ML2SEM considered as a controlled 

process is presented in Figure 1. The following abbreviations are used in Figure 1: EM1, EM2 are the 

upper and lower electromagnet, respectively, m is the mass of the sphere, Fem1 and Fem2 are the 

electromagnetic forces, and Fg is the gravity force (Inteco, 2008). 

 

Figure 1. Block diagram of ML2SEM. 
 
The nonlinear state-space model of MLS2EM is: 
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where the variables are: 



 

- the control signal 1u , which is applied to the upper electromagnet (EM1), 

- the disturbance input 2ud = , which is applied to the lower electromagnet (EM2), EM2 is not 

needed to stabilize the magnetic sphere, its role is just to disturb the controlled process and to 

make the control problem more challenging, 

- the state variables: 1x  is the sphere position, 2x  is the sphere speed, 3x  and 4x  are the 

currents in the upper and lower electromagnetic coil, respectively; 

- the controlled output 1xy = . 

 
The numerical values of the parameters of the model (1) are given in (Inteco, 2008). The linearization 

of the nonlinear model (1) at nine operating points Aj(x10, x20, x30, x40) (the subscript j indicates the 

index of the operating point) results in the linearized state-space models (David et al., 2012), (Dragos 

et al., 2013): 
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with T – matrix transposition, and the expressions of the matrix elements: 
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The fourth-order state-space model (2) is reduced to the following third-order state-space model of 

MLS2EM, which is obtained by neglecting the lower electromagnet, 02 =u : 
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The expressions of parameters specific to the matrices A , b  and Tc  are (David et al., 2012), 

(Dragos et al., 2013): 
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A state feedback control structure is designed to stabilize the ML2SEM by pole placement using the 

state-feedback gain matrix (David et al., 2012): 
 

 ].0075.0536[=T
ck  (6) 

 
This leads to the following closed-loop system (i.e., stabilized process) model, where the notation y  

is used as follows instead of the difference with respect to the output of the operating point yΔ : 
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where the numerical values of the elements of the matrices xA , rb  and Tc  are given in (David et al., 

2012), and urx =  is the reference input applied to the state feedback control structure and also the 

input of the stabilized process that is actually modeled. 

 

3. FUZZY MODELING APPROACH 

The fuzzy modeling approach consists of the following steps, with a similar formulation for other 

nonlinear process given in (Precup et al., 2015a): 



 

Step 1. The Takagi-Sugeno fuzzy model structure is set, that means the number of operating points, 

which is equal to the number of rules Rn  of the fuzzy models, the number of input linguistic terms of 

the input variables 1x  and 3x , the shapes of the membership functions of the input linguistic terms, 

the operators in the inference engine, and the method for defuzzification. As shown in (Precup et al., 

2015a), triangular, trapezoidal and Gaussian membership functions, the SUM and PROD operators in 

the inference engine, and the weighted average method in the defuzzification module are 

recommended. 

Step 2. The modal equivalence principle is applied. The continuous-time state-space model of the 

process (7) is linearized at Rn  important operating points leading to Rn  linearized continuous-time 

local process models placed in the rule consequents of the continuous-time Takagi-Sugeno fuzzy 

models. These local models are related to the modal values of the input membership functions, i.e., 

the coordinates of the operating point. The rule base of the continuous-time Takagi-Sugeno fuzzy 

models is: 
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where iA  corresponds to xA , iB  corresponds to rb , iC  corresponds to Tc , t is the continuous 

time variable, )(tym  is the continuous-time Takagi-Sugeno fuzzy model output, the notations i
lvLT ,  

and i
pvLT ,  are used for the linguistic terms lxLT ,1

 and pxLT ,3
 of the input variables )(1 tx  and )(3 tx , 

respectively, referred to also as scheduling variables. As shown in (David et al., 2012), the following 

numbers of linguistic terms and ranges of indices are recommended: 3,1=l , 3,1=p , and the 

notation },{ 31 xxv∈ . 

Step 3. The sampling period sT  is set. The Rn  models in the rule consequents of the Takagi-Sugeno 

fuzzy model (8) are discretized in the presence of the zero-order hold. The rule base of the discrete-

time Takagi-Sugeno fuzzy models is: 
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where the subscript k indicates the discrete time variable, and mky ,  is the discrete-time TSK fuzzy 

model output. The recommended value of the sampling period is s 005.0=sT . 

An operating point selection algorithm is proposed as follows in order to select the important Rn  

operating points from the set of all possible operating points }...1|{ njAj = , with n – the number of 

possible operating points. This algorithm is applied in (Precup et al.,. 2015a) to another nonlinear 



 

process, and it is similar to the input selection algorithms given in (Jang, 1996), (Linkens and Chen, 

1999) and (Precup et al., 2015b). The parameters of the operating point selection algorithm are the 

importance threshold, and the significance threshold, with values within 0 and 1. Setting the 

importance threshold to 0.3 and the significance threshold to 0.5 leads to 9=Rn  operating points for 

this process. 

Step 4. The optimization problem that leads to optimal Takagi-Sugeno fuzzy models is defined as: 
 

 
s,constraint subject to

),(minarg
          

* ρρ
ρ

J
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=
 (10) 

 
where ρ  is the parameter vector of the Takagi-Sugeno fuzzy model, i.e., the vector variable of the 

objective function )(ρJ  (Precup et al., 2015a): 
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*ρ  is the optimal parameter vector of the Takagi-Sugeno fuzzy model, i.e., the solution to the 

optimization problem (10), )(ρky  is the process output at thk  sampling interval, )(, ρmky  is the fuzzy 

model output, )(, ρmke  is the modeling error, D is the feasible domain of ρ , and N is the length of the 

discrete time horizon. 

Since the elements of the vector ρ  are a part of the parameters of the input membership functions 

parameters, the optimization problem (10) should be viewed as a constrained optimization problem. 

Several inequality-type constraints are defined such that to ensure the convenient overlap of the 

membership functions. 

Step 5. The nature-inspired optimization algorithms are implemented to solve the optimization 

problem defined in (11). The elements of the solution vector *ρ  are the optimal input membership 

function parameters. 

 

4. IMPLEMENTATION OF NATURE-INSPIRED OPTIMIZATION ALGORITHMS 

The application of the steps of the modeling approach is described as follows. The derivation of the 

initial Takagi-Sugeno fuzzy model starts with the setting of the largest domains of variation of the two 

input variables (David et al., 2012): 
 

 .765.188.757 ,2.02.0 31 ≤≤−≤≤− xx  (12) 
 
As shown in (David et al., 2012), the fuzzification uses the linguistic terms assigned to the input 

variables and defined as follows. For the input variable 1x , three linguistic terms, 3,1,,1
=jLT jx , with 



 

triangular membership functions are defined and referred to as 1,1x
LT , with the universe of discourse 

]02.0[− , 2,1x
LT , with the universe of discourse ]1.01.0[− , and 3,1x

LT , with the universe of 

discourse ]2.00[ . The expressions of these triangular membership functions are: 
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where the initial modal values of the membership functions are the parameters jxa ,1 , jxb ,1 , and jxc ,1 , 

3,1=j , given in Table I. The parameters 3,1,,1 =ja jx  and 3,1,,1 =jc jx  are fixed, and the 

parameters 3,1,,1 =jb jx  are variable. 

 
TABLE I. MODAL VALUES OF LINGUISTIC TERMS 

Triangular membership functionsLinguistic terms, 
3,1,,1

=jLT jx  jxa ,1  jxb ,1  jxc ,1  

1,1x
LT  -0.2 -0.1 0 

2,1x
LT  -0.1 0 0.1 

3,1x
LT  0 0.1 0.2 

 

Three linguistic terms, i.e., 3,1,,3
=jLT jx , are defined for the second input variable, 3x . The first and 

third one are modeled by trapezoidal membership functions, and the second one is modeled by a 

Gaussian membership function. The universes of discourse of the membership functions of these 

linguistic terms are: ]3785.4757.8[−  for 1,3xLT , ]3785.4753.3[  for 2,3xLT , and 

]765.183785.4[  for 3,3xLT . The expressions of the trapezoidal membership functions are: 
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The initial modal values of the membership functions are the parameters }3,1{,,3 ∈ja jx , 

}3,1{,,3 ∈jb jx , }3,1{,,3 ∈jc jx , and }3,1{,,3 ∈jd jx , given in Table II. The parameters 

}3,1{,,3 ∈ja jx , 1,3xb , 3,3xc  and }3,1{,,3 ∈jd jx  are fixed, and the parameters 1,3xc  and 3,3xb  are 

variable. 
 

TABLE II. PARAMETERS OF TRAPEZOIDAL LINGUISTIC TERMS 
Trapezoidal membership functions Linguistic terms, 

}3,1{,,3
=jLT jx  }3,1{,,3 =ja jx  }3,1{,,3 =jb jx  }3,1{,,3 =jc jx  }3,1{,,3 =jd jx  

1,3xLT  -8.757 -8.757 -1.251 4.3785 

3,3xLT  4.3785 11.259 18.765 18.765 

 

The expression of the Gaussian membership function is: 
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The parameter 2,3xb  is fixed, and the parameter 2,3xa  is variable. The initial values of these two 

parameters are 3785.42,3 =xa  and 753.32,3 =xb . The initial membership functions of 1x  and 3x  are 

illustrated in Figure 2. 

(a) (b) 

Figure 2. Initial membership functions of input variables 1x  and 3x  (with TL = LT). 
 
The expression of the parameter vector of the fuzzy model is: 
 

 .][ 3,32,31,33,12,11,1
T

xxxxxx bacbbb=ρ  (16) 
 
The operating mechanism of the Particle Swarm Optimization (PSO) algorithms uses swarm particles, 

which are characterized by two vectors, namely the particle position vector iX  and the particle 

velocity vector iV : 
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where pNii ,1  , = , is the index of the current particle in the swarm, and pN  is the number of 

particles in the swarm. Using the notations Besti ,P  for the best particle position vector of a specific 

particle with the index pNii ,1  , = , and Bestg ,P  for the best swarm position vector: 
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the next particle velocity )1( +μd
iv  and the next particle position )1( +μd

ix  are obtained by the state-

space equations (Kennedy and Eberhart, 1995a), (Kennedy and Eberhart, 1995b): 
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where μ  is the current iteration index, and the values of the PSO algorithm parameters in (19) are 

taken from (Precup et al., 2013). 

The PSO algorithm is mapped onto the optimization problem using the following relations: 

- between the agents’ position vector iX  in the PSO algorithm and the parameter vector ρ  in 

the optimization problem: 
 

 ,,1  , pi Ni == ρX  (20) 
 

- between the fitness function g in the PSO algorithm and the objective function J in the 

optimization problem: 
 

 .,1  ),()( pi NiJg == ρX  (21) 
 

The PSO algorithm stops when the maximum number of iterations maxμ  is reached. The vector 

solution to the optimization problem (10) is: 
 

 ,,
*

BestgPρ =  (22) 
 

where Bestg ,P  is the best swarm position vector obtained so far. 

The steps of the simulated annealing algorithm, obtained from (Kirkpatrick et al., 1983), (Geman and 

Geman, 1984), and extended according to (David et al., 2012), are: 

- Step 1. Set 0=μ , 0=rs  and the minimum temperature minθ . Choose the initial temperature 

0θ . 

- Step 2. Generate a random initial solution ϕ  and compute its fitness value )(ϕg . 



 

- Step 3. Generate a probable solution ψ  by disturbing ϕ , and evaluate the fitness value 

)(ψg . 

- Step 4. Compute )()( ψψ ggg −ϕ=Δ ϕ . If 0≤Δ ϕψg , then accept ψ  as the new solution. 

Otherwise, set the value of the random parameter nr , 10 ≤≤ nr , and compute the probability 

of ψ  to be the next solution: 
⎩
⎨
⎧

θΔ
>Δ

=
ϕ

ϕ

otherwise,)/exp(
,0  if1

ψ

ψ
ψ g

g
p . If nrp >ψ , then ψ  is the 

new solution. 

- Step 5. If the new solution is accepted, then update the new solution, increment rs  and set 

0=rr . Otherwise, increment rr . If rr  has reached its maximum value maxrr , the algorithm is 

stopped; otherwise, continue with step 6. 

- Step 6. Increment rs . If rs  has reached its maximum value rs , go to step 7; otherwise 

increment μ . If μ  has reached its maximum value maxμ , go to step 7; otherwise, go to step 2. 

- Step 7. Alleviate the temperature according to the temperature decrement rule: 
 

 .1  const,  ,1 ≈α=αθα=θ μ+μ cscscs  (23) 
 

- Step 8. If minθ>θμ  then go to step 3, otherwise the algorithm is stopped. 

The Simulated Annealing algorithm is mapped onto the optimization problem using the following 

relations: 

- between the parameter vectors: 
 
 , , ϕ== ρψρ  (24) 
 

- between the fitness function g in the Simulated Annealing algorithm and the objective function 

J in the optimization problem: 
 
 ).()(  ),()( ϕ== gJgJ ρψρ  (25) 
 
The operating mechanism of Gravitational Search Algorithm (GSA) makes use of N agents and a q-

dimensional search space, and the position of thi  agent is defined by the vector: 
 

 ,,1  ,]......[ 1
p

Tq
i

d
iii Nixxx ==X  (26) 

 

The force acting on thi  agent from thj  agent is defined as follows at the current iteration index μ : 

 

 )],()([
)( )(
)()(

)()( μ−μ
με+μ

μμ
=μ d

i
d
jd

jij

AjPid
ij xx

xr
mm

kgF  (27) 

 



 

where )(μPim  is the active gravitational mass related to thi  agent, )(μAjm  is the passive 

gravitational mass related to thj  agent, 0>ε  is a small constant, and )(μijr  is the Euclidian 

distance between thi  and thj  agents. The position and velocity of an agent are updated in terms of 

the following state-space equations (Rashedi et al., 2009), (Rashedi et al., 2010): 
 

 
),1()()1(
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i
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 (28) 

 

where 10 , ≤ρ≤ρ ii , is a uniform random variable, )(μd
ia  is the acceleration of thi  agent in thd  

dimension, and the values of the GSA parameters are taken from (David et al., 2013). 

The GSA is mapped onto the optimization problem (10) using (20) and (21). The formulation of GSA 

is closer to PSO algorithms than to Simulated Annealing algorithms. 

 

5. EXPERIMENTAL RESULTS 

The results are exemplified as follows for the Simulated Annealing algorithm embedded in the 

modeling approach out of the three tested algorithms. These results are extracted from (David et al., 

2012). 

The values of the maximum consecutive rejections and the maximum success were set to 

100max =rr  and 50max =rs , respectively. The initial temperature was chosen as 10 =θ . The 

algorithm has stopped after 84 iterations, when the temperature value was 009.0
84 109.04626 −⋅=θ . 

The initial solution is represented by the vector ϕ : 

 

 ,]259.113785.4251.11.001.0[ T−−=ϕ=ρ  (29) 
 
and the final solution is represented by the vector ψ : 
 

 .]424.1168.463.013.00547.0075.0[* T−−== ψρ  (30) 
 
Figure 3 illustrates the performance improvement offered by the optimized Takagi-Sugeno fuzzy 

model. The modeling error converges to zero in both cases, before and after optimization, but it 

converges faster to zero after optimization versus the situation before optimization. 

The evolution of the objective function versus the iteration index illustrated in Figure 4 shows that the 

solution to the optimization problem (10) obtained by the Simulated Annealing algorithm ensures a 

strong decrease of the objective function. Although the minimum of the objective function cannot be 

guaranteed, Figure 4 highlights that the improvement can continue by considering a larger number of 

iterations. 

These conclusions cannot be generalized for other processes. The evolution of the objective function 

and the dynamics of the modeling error will be different. 



 

 

Figure 3. Modeling error versus time before and after optimization by Simulated Annealing 
algorithm. 

 

 

Figure 4. Objective function versus iteration index obtained by Simulated Annealing algorithm. 
 

6. CONCLUSIONS 

The paper has presented some results concerning the optimal tuning of fuzzy models of magnetic 

levitation systems. The modeling approach is based on the implementation of nature-inspired 

optimization algorithms that solve optimization problems with focus on the reduction of the modeling 

error. A part of the parameters of the input membership functions is optimally tuned. 

The results are important in the context of model-based fuzzy control with recent results given in (He 

et al., 2015), (Lin and Chen, 2015), (Su et al., 2015), (Wai et al., 2015). Future research will lead to 



 

testing and implementing other optimization algorithms on this application and on other illustrative 

industrial processes. 
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