
This article can be cited as  A. Hentout, A. Maoudj, D. Guir, S. Saighi, M. A. Harkat, M. Z. Hammouche and A. Bakdiy, Collision-free Path 
Planning for Indoor Mobile Robots Based on Rapidly-exploring Random Trees and Piecewise Cubic Hermite Interpolating Polynomial, 
International Journal of Imaging and Robotics, vol. 19, no. 3, pp. 74-97, 2019. 
Copyright©2019 by CESER Publications 
 



Collision-free Path Planning for Indoor Mobile Robots
Based on Rapidly-exploring Random Trees and Piecewise

Cubic Hermite Interpolating Polynomial

Abdelfetah Hentout1, Abderraouf Maoudj2, Dallel Guir3, Souhila Saighi4,
Mohamed Aures Harkat5, Mohamed Zakaria Hammouche6 and Azzeddine Bakdi7 ∗†
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ABSTRACT

This paper deals with the off-line path planning problem for wheeled indoor mobile
robots. In the proposed approach, the robot exploits depth information acquired by a two-
Kinect cameras vision system to perfectly model its surroundings environment. Then, the
Rapidly-exploring Random Tree algorithm is used to generate a collision-free path linking
the initial configuration (Source) to the final configuration (Target). This feasible path con-
sists of a set of n nodes (i.e., n − 1 edges) in form of (x, y) vectors. Next, an algorithm
is proposed to reduce the number of nodes and edges of the generated path. Finally, the
found path is smoothed using Piecewise Cubic Hermite Interpolating Polynomial technique.
The proposed RRT-PCHIP solution is validated on the differential mobile robot, RobuTER,
evolving in an indoor environment cluttered with static obstacles. Obtained results are com-
pared with another similar work using a Genetic Algorithm in terms of (i) generation time,
(ii) path length, (iii) number of segments constituting the path and (iv ) transfer time.
Keywords: Mobile robots, Off-line path planning, Rapidly-exploring Random Tree, Piece-
wise cubic Hermite Interpolating Polynomial, Two-Kinect system, Robot Operating System.
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1 Introduction

Path planning problem is one of the most important issues in autonomous mobile robotics field
in either 2D or 3D workspaces (Sureshkumar, Mahalingam and Rama, 2017). It mainly tries
to identify a series of configurations that will safely move the robot (i.e., an obstacle-free path)
from an initial configuration (Source) to a final configuration (Target) (Fahimi, 2008) (Tzafestas,
2013).
Many authors have proposed solutions for path planning problems (Das, Behera, Jena and
Panigrahi, 2016) using different classical techniques (Li, Bodkin and Lancaster, 2009), neural
network (Yu, Kromov et al., 2001), artificial immune system (Das, Pradhan, Patro and Bala-
bantaray, 2012), heuristic optimization algorithms (Yang, 2009), etc. Other authors proposed
many evolutionary and differential evolution algorithms to deal with such a problem. Hossain
and Ferdous (Hossain and Ferdous, 2015) explored the application of Bacterial Foraging Opti-
mization (BFO) for mobile robot path planning, through simulation application. The obstacles
are wrapped by circles, and the robot by a square (i.e., low accuracy); the generation of a
safe path requires dozens of seconds and depends on the number of obstacles, better than
basic BFO and Particle Swarm Optimization (PSO) algorithms (Dhariwal, Sukhatme and Re-
quicha, 2004). This latter algorithm has been adopted by a considerable number of researchers
in mobile robot path planning problems (Yacoub, Bambang, Harsoyo and Sarwono, 2014) (Rath
and Deepak, 2015) (Ma, Wang, Xie and Guo, 2014). It has also been combined with algorithms
such as Gravitational Search (GS) (Purcaru, Precup, Iercan, Fedorovici and David, 2013), Ar-
tifcial Potential Field (APF ) (Ayawli, Chellali, Appiah and Kyeremeh, 2018) and Modified Fre-
quency Bat (MFB) (Ibraheem and Ajeil, 2018). Cabreira and colleagues (Cabreira, Dimuro and
de Aguiar, 2012) (Cabreira, de Aguiar and Dimuro, 2013) used a Genetic Algorithm (GA) with
a very limited resolution due to cell decomposition of their simulated environment. Moreover,
neither exact robot geometry and location nor obstacles location and shapes were taken into
account while dealing with such a problem. The Fuzzy Logic (FL) control system exhibiting
a good dynamic performance (Haidegger, Kovács, Precup, Benyó, Benyó and Preitl, 2012) is
widely used by many approaches in the literature. Bakdi et al. (Bakdi, Hentout, Boutamai,
Maoudj, Hachour and Bouzouia, 2017) developed an off-line collision-free path planning and
execution approach based on GA and FL control using a two-Kinect system. Similarly, the
path planning problem in cluttered environments was investigated using hybrid Takagi-Sugeno
FL model and the Simulated Annealing (SA) algorithm controller (Pandey and Parhi, 2016)
(Vrkalovic, Teban and Borlea, 2017). The experiment was performed in simple environments;
it showed an efficient navigation (Almayyahi, Wang, Hussein and Birch, 2017).
The aforementioned techniques are described to be simple and effective in implementing with
varied path planning problems with good results (Ma, Zamirian, Yang, Xu and Zhang, 2013).
However, the high time complexity in large problem spaces and trapping into local minima
under complex environments are the main drawbacks of these classical techniques and many



meta-heuristic algorithms (Su, Wang and Hu, 2015). These drawbacks cause the classical
techniques to be inefficient in various problem spaces (Das et al., 2016).
In order to overcome these disadvantages and improve the efficiency of classical methods,
Sampling-Based Planners (SBP) have been developed these last decades. These algorithms
have proven to be computationally efficient solutions (Canny, 1988) and have become de
facto standard for high-dimension motion planning problems (Adiyatov and Varol, 2013). The
most well-known SBP algorithms include Probabilistic Roadmap Methods (PRMs) (Kavraki
and Latombe, 1994) (Kavraki, Svestka, Latombe and Overmars, 1996) and Rapidly-exploring
Random Trees (RRTs) (LaValle, 1998). PRMs were successfully used with high-dimension
workspaces by several researches (Hentout, Lehtihet, Chettibi and Bouzouia, 2010); however,
they tend to be inefficient when obstacle geometry is not known beforehand (Karaman and
Frazzoli, 2011) (Qureshi and Ayaz, 2015).
Consequently, to generate efficient solutions for motion planning, RRT algorithms have been
extensively explored. In addition, several variants enhancing the original RRT algorithm have
been proposed (Lindemann and LaValle, 2004) (Garcia and How, 2005). One of these variants,
RRT-connect algorithm proposed in (Kuffner and LaValle, 2000), checks if traveling straight in
the line of expanded point reaches Target; in such a case, the algorithm terminates. Another
variant is Bidirectional RRT (LaValle and Kuffner Jr, 2001) which grows two trees, one rooted at
the initial configuration Source and the other rooted at Target; the process ends when the two
trees meet. The last variant, RRT*, combines the standard RRT with Rapidly-exploring Ran-
dom Graph (RRG) algorithm (Karaman and Frazzoli, 2009) to provide asymptotically-optimal
solutions linking Source to Target (Karaman and Frazzoli, 2010) (Jordan and Perez, 2013).
RRT* improved the path quality by introducing major features of the tree rewiring and best
neighbor search (Noreen, Khan and Habib, 2016).
RRTs are proposed as both data structure and sampling algorithm designed for efficient and
fast search in non-convex high-dimension spaces in path planning problems with state con-
straints (involving obstacles, etc.) (LaValle and Kuffner Jr, 2001) (LaValle, 2006) (Knispel and
Matousek, 2013). RRTs are progressively built as a tree using random sampling toward un-
explored regions of the workspace. The search tree starts from Source, as the root, and ex-
pands to find a path toward Target (Kuffner and LaValle, 2000) (LaValle and Kuffner Jr, 2001).
At every iteration, the algorithm generates a random node in the configuration space (C −
Space), searches for the nearest node in the tree and extends this node to the random sam-
ple by a predefined step size (Kang, Zhao and Guo, 2009) (Vonásek, Faigl, Krajnı́k and
Přeučil, 2009) (Kuwata, Fiore, Teo, Frazzoli and How, 2008) (Pepy and Lambert, 2006) (Burns
and Brock, 2007) (Kagami, Kuffner, Nishiwaki, Okada, Inaba and Inoue, 2003). The algorithm
stops when (i) the exploration results in reaching Target (best case) (Kala, 2013) or (ii) one of
the leaves of the tree reaches a Target region (in most cases).
The main advantages of RRTs are simplicity (since their implementation is straightforward and
only needs simple computations), fast convergence and expansion toward unexplored regions
of the C − Space, and probabilistically completeness (Neto, Macharet and Campos, 2018).
Furthermore, RRTs are computationally efficient since they calculate solution paths in a fast
way and are suitable for path planning in high-dimension spaces (Nieto, Slawinski, Mut and



Wagner, 2010). However, RRTs are suboptimal (Kothari, Postlethwaite and Gu, 2010) which
may be global or local. Global optimality indicates the strategy to avoid obstacles (whether
to go from left/right or in-between obstacles); whereas local optimality indicates distances to
maintain from obstacles (Kala, 2013).
This work deals with the development of a strategy combining Rapidly-exploring Random Trees
(RRT) with Piecewise Cubic Hermite Interpolating Polynomial (PCHIP), RRT-PCHIP, to tackling
the off-line collision-free path planning problem for mobile robots which evolve in indoor envi-
ronments cluttered with static obstacles. The main contributions of this work can be outlined
as follows. First, the proposed approach deals with global path planning with exact highly-
constrained environment modeling. Second, the robot makes use of two-Kinect vision system
with high accuracy to model its surrounding constrained workspace through image process-
ing. It also ensures exact representation of the robot and obstacles considering their shapes
and locations. Third, the RRT algorithm is used for global planning and to generate a feasible
collision-free path represented as a set of nodes and connected segments linking the Source

to the imposed final Target. Fourth, an algorithm has been proposed to reduce the number of
nodes and edges of the found path. Fifth, the use of PCHIP (Hyman, 1983) for path smoothing
increases the average linear velocity of the robot for faster execution. Sixth, the left (VL) and
right (VR) velocities are calculated for a differential mobile robot, RobuTER, to track this de-
sired feasible path. Finally, all the above contributions have been done using Robot Operating
System (ROS) framework (ROS, 2018).
The comparative study allows affirming that the proposed RRT-PCHIP approach is better than
other methods in the literature, such as GA-PCHIP presented in (Bakdi et al., 2017), especially
in terms of (i) generation time, (ii) number of segments of the feasible path and (iii) transfer
time of the robot. Consequently, it can be easily extended to deal with on-line path planning
problems for non-static environments, with larger workspaces for the robots.
The remainder of this paper is organized as follows. Section 2 gives a short description of
the path planning problem for non-holonomic mobile robots in environments with obstacles.
Section 3 summarizes the overall approach and describes the experimental robotic system.
Section 4 describes the proposed collision-free path planning approach based on Rapidly-
exploring Random Trees and path smoothing using Piecewise Cubic Hermite Interpolating
Polynomial. Section 5 presents, discusses and compares the main obtained experimental
results. Section 6 concludes the paper and presents some future works.

2 Path planning problem statement

This work aims to propose an efficient path planning algorithm to guarantee safe navigation
of the mobile robot from a given initial position Source(x, y, θ) to an imposed final position
Target(x, y, θ) in known indoor environments. This algorithm takes into account the me-
chanical constraints of the mobile robot (kinematic limits) and the presence of obstacles in
its workspace (collision avoidance).
The path planning algorithms for non-holonomic mobile robots are based on robot kinematic
model (Ma, Zheng, Perruquetti and Qiu, 2015) given as follows (Hentout, Bouzouia, Toumi and



Toukal, 2009): 
ẋ = v cos θ

ẏ = v sin θ

θ̇ = ω

(2.1)

where:

• q = (x, y, θ) is the robot state,

• Source(x, y, θ) and Target(x, y, θ) represent the initial and final configurations of the mo-
bile robot, respectively,

• v is the linear velocity of the robot,

• ω is the angular velocity of the robot,

• θ is the orientation of the mobile robot body with respect to x−axis.

Generally, the evolution environments of the mobile robots may be complex and normally ob-
stacles cannot be described as circles, as assumed by Defoort and colleagues (Defoort, Pa-
los, Kokosy, Floquet and Perruquetti, 2009). Fig. 1 shows a mobile robot in an encumbered
workspace with many obstacles represented in an accurate way (exact representation of the
obstacles). The different constraints that must be satisfied during the entire transfer of the
mobile robot (0 ≤ t ≤ TTransfer) are summarized as follows by equations 2.2 . . . 2.6 (adapted
from (Maoudj, Hentout, Bouzouia and Toumi, 2018)):

q(t = 0) = Source(x, y, θ) (2.2)

q(t = TTransfer) = Target(x, y, θ) (2.3)

v(t) ∈ [vmin, vmax], t ∈ [0, TTransfer] (2.4)

ω(t) ∈ [ωmin, ωmax], t ∈ [0, TTransfer] (2.5)

Collision(Robot,Obstaclei) = ∅, i = 1 . . . n (2.6)

where:

• TTransfer represents the final transfer time,

• vmin and vmax are the minimum and maximum linear velocities of the mobile robot,

• ωmin and ωmax are the minimum and maximum angular velocities of the mobile robot,

• Collision is a Boolean function that indicates whether or not the mobile robot is in colli-
sion with an obstacle Obstaclei (i ∈ {1 . . . n}),

• n is the number of obstacles present in the environment. We assume that the obstacles
do not overlap neither with Source nor Target.



Figure 1: Path planning for wheeled mobile robots in presence of obstacles.

3 Global overview of the proposed approach

The main objective of this work is to plan a collision-free smoothed path from Source(x, y, θ) to
Target(x, y, θ) using the RRT algorithm. The mobile robot evolves inside a cluttered workspace
modeled by using a two-Kinect cameras vision system.
Fig. 2 summarizes the overall diagram of the proposed approach for off-line collision-free path
planning. It consists of six successive phases:

1. Phase (1): Visual perception of robot environment,

2. Phase (2): Processing of acquired images and modeling of the robot workspace,

3. Phase (3): Planning a collision-free path using RRT approach and reduction of the num-
ber of edges and nodes of this path,

4. Phase (4): Smoothing this path using the PCHIP technique,

5. Phase (5): Sensor-fusion localization of the mobile robot using Kalman Filter, and finally

6. Phase (6): Path tracking and execution by exploiting the Adaptive FL Controller devel-
oped in (Bakdi et al., 2017).

The two last phases are carried out in parallel. It must be noted that this paper only deals with
phases (1), (2), (3) and (4); the other phases ((5) and (6)) have already been detailed in (Bakdi
et al., 2017).

4 Path planning and execution approach

As described above, the proposed approach consists of several phases. Only phases (1), (2),
(3) and (4) are detailed in the following sub-sections.



Figure 2: Overall diagram of the proposed approach for collision-free path planning and exe-
cution.

4.1 Phases (1) and (2): Perception and modeling of the environment using two-
Kinect vision system

Nowadays, there are many sensors that allow robots to perceive their evolution workspaces
such as vision, laser and ultrasound sensors (Soriano, Bernabeu, Valera and Vallés, 2014). In
this work, the visual perception of the robot environment is done using two Microsoft Kinect
cameras system Version 1.
The Kinect has two sensors, a color sensor and a depth sensor. The image stream contains
color data in RGB format with a resolution of 640 × 480 and 30 frames per second (fps). The
depth stream returns depth information in pixels (same resolution and rate) with a valid range
of [500mm, 4000mm]. For more information, refer to (Sgorbissa and Verda, 2013).



As appeared in Fig. 3, two Kinect cameras are fixed on the roof of the workroom; each Kinect
is placed at a height of height = 3500 mm. They are set in such a way with the same axis to
visualize both the environment (ground, obstacles, etc.) and the robot. The Kinect cameras are
connected to the off-board PC to acquire and process images. The resolution of the pictures
delivered by the two-Kinect vision system is 640× 960 pixels and covers a range of 4058 mm×
6087 mm, approximately. The horizontal accuracy is 1 pixel ≈ 6.34 mm; the vertical accuracy
(depth) = 1 mm. The following snapshots show the results of these two phases which consist

Figure 3: Experimental robotic test bed.

of an almost continuous description of the environment. Fig. 4(a) represents the acquired RGB
images by the first and second Kinect cameras, separately. Fig. 4(b) shows depth images for
the considered environment of the robot given by Kinect 1 and Kinect 2, respectively. Finally,
Fig. 4(c) shows the environment modeling representing two areas:

• Forbidden area: obstacles and near obstacles, and

• Safe area or Free C − Space: far away from the obstacles.

For more details on the visual perception of the robot indoor environment, images processing



(a) RGB images captured by Kinect 1 and Kinect 2.

(b) Depth images captured by Kinect 1 and Kinect 2.

(c) Obtained safe map (Kinect 1 + Kinect 2).

Figure 4: Visual perception of the environment and obtained processed workspace.

and environment modeling, please refer to (Bakdi et al., 2017).

4.2 Phase (3): Collision-free path planning and reduction of the number of
nodes and edges

This phase generates first a collision-free path using the RRT algorithm as detailed in subsec-
tion 4.2.1. The found path consists of a succession of nodes connected by a set of segments.
After that, the number of nodes and edges of this path is reduced since their number is impor-



tant. The proposed reduction algorithm is described in subsection 4.2.2.

4.2.1 Collision-free path planning using RRT

At the beginning of the algorithm, the random tree G is empty; Source and Target positions
are thus introduced and the different configuration parameters (MAX ITER, STEP,DIST )

are set up:

• MAX ITER: it represents the maximum of iterations (in this work, MAX ITER =

10000),

• STEP : it defines the maximum length of the edge connecting two successive nodes (in
this work, STEP = 8 . . . 60 pixels),

• DIST : it is the radius of the search region near Target (in this work, DIST = 20).

The objective is to randomly create the tree G for connecting these two locations. The condi-
tion region(New, Target,DIST ) tests if the new generated node New has reached a region
centered in Target (i.e., the two nodes are separated by a distance less than or equal to
DIST ) rather than evaluating if it exactly coincides with Target, which would take significantly
much more iterations to reach (Nieto et al., 2010). While the above condition is not satisfied,
the whole following process is carried out. First, a Rand node is randomly generated in the
C − Space of the robot. Next, the nearest neighbor of Rand, already in the tree G, is searched
by exploiting the Euclidean distance (calculated by equation 4.1 between Node1 and Node2).
After that, the node Near is extended in the direction of Target by STEP because the edges
between nodes must not exceed the predefined STEP size. This is an important parameter
as it determines the edges length in the tree and, thus, the processing time. Smaller values
imply more iterations of the algorithm to find Target; but also imply a better resolution. Bigger
values can imply less iterations of the algorithm, but also much longer solution paths. The ex-
pansion is interrupted when the node New is in collision with obstacles or when it falls outside
the boundary limits (in this case, extendNode(Near, STEP ) returns NULL). Indeed, during
the construction of the tree, obstacles must be avoided by checking whether a given node lies
inside an obstacle or not. Furthermore, each edge of the RRT (which corresponds to a path
between two nodes) must entirely be in a free region. The boundary conditions are given by
the physical limits of the C − Space in which the robot evolves. Finally, the generated path can
directly be found by following the predecessors of the last added node New toward Source

(Nieto et al., 2010).

EuclideanDistance =
√
(x1 − x2)2 + (y1 − y2)2 (4.1)

where (x1, y1) and (x2, y2) represent the Cartesian coordinates of Node1 and Node2, respec-
tively.
Algorithm 1, shown by Fig. 5, constructs an RRT in the C − Space of the robot, and eventually
searches a path between Source and Target. get(Parameter) gets configuration Parameter.
addNode(G,Node) adds a new Node to the tree G. region(New, Target,DIST ) tests if two
nodes New and Target belong to the same region (i.e., the two nodes are separated by a



Figure 5: Algorithm 1. Description of the RRT algorithm for finding a collision-free path be-
tween Source and Target.

distance less than or equal to DIST ). randomFreeNode(C−Space) generates a collision-free
random configuration Rand in the C−Space of the robot. addEdge(G,Near,New) adds a new
edge from Near to New in the tree G. getPath(G,New, Source) allows to get the Path in the
tree G by following the predecessors of New toward Source.
The function nearestNode(Rand,G) is described in Algorithm 2 shown by Fig. 6. It allows
selecting the nearest node to Node in the tree G in terms of Euclidean distance. getSize(G)

returns the size of the tree G. getEuclideanDistance(Node1, Node2) calculates the Euclidean
distance between two nodes Node1 and Node2. Algorithm 3, given by Fig. 7, describes the
function extendNode(Near,Rand, STEP ). It returns configuration New by moving from Near

an incremental distance STEP in the direction of Rand. collision(New) tests if configuration
New is in collision with obstacles or not. outBoundary(New) verifies if New falls outside the
boundary limits of the C − Space of the mobile robot.



Figure 6: Algorithm 2. Searching for the nearest node of Node in the tree G by using the
Euclidean distance.

Figure 7: Algorithm 3. Selection of a node New by moving from Near an incremental STEP

in direction of Rand.



4.2.2 Reducing the number of nodes and edges of the generated feasible path

The proposed reduction algorithm is based on testing the collision of a given edge of the
generated path with the obstacles of the robot C − Space. Instead of verifying the collision
between two successive nodes composing the same edge (which is useless), this verification
is done between the first node of this edge (Path[i]) and the last node of the next edge (Path[i+

2]). If no collision exists (collision(Path[i], Path[i + 2])), a new segment is created between
these two nodes and added to the new path NewPath (addEdge(NewPath, Path[i], Path[i +

2])); otherwise (i.e., a collision exists), the two edges are kept and added to NewPath. This
process is reiterated until reaching Target (i.e., last node of the path). Finally, all the previous
procedure is repeated till no change is made on the new feasible path (NewPath).
Algorithm 4 (shown in Fig. 8) describes the principle of the proposed approach to reduce the
total number of nodes and edges of the initially generated feasible path.

Figure 8: Algorithm 4. Reduction of the number of nodes and edges in the final collision-free
path.

4.3 Phase (4): Path smoothing using PCHIP

The RRT algorithm stops when it finds a path connecting Source to Target without collision.
This feasible path consists of a set of n nodes (i.e., n− 1 edges or segments) in form of (x, y)



vectors as shown by Table 1. The n − 1 connected segments need to be smoothed. For this
purpose, the PCHIP approach (Hyman, 1983) is carried out on the resulted zigzag line path.
In case of PCHIP interpolation, taking discrete data (i.e., the segments nodes), PCHIP gen-
erates the 3rd order continuous polynomials (curves) instead of lines (1st order) to smooth the
path. The polynomials are found by solving the equations of nodes, continuity (derivatives)
and minimal error (shape preserving), 3rd order polynomial, four unknowns and four equa-
tions. Therefore, a new vector xi of about 1000 points is generated from Source to Target.
yi = PCHIP (x, y, xi) returns a vector yi containing elements corresponding to the elements
of xi and determined by piecewise cubic interpolation within vectors x and y. Resulting yi

versus xi give the smoothed path (Bakdi et al., 2017).

Table 1: Format of the generated feasible path connecting Source to Target.
Source 2nd point 3rd point . . . (n− 1)th point Target

xSource x2 x3 . . . xn−1 xTarget

ySource y2 y3 . . . yn−1 yTarget

5 Experimental results

The path planning is performed by the proposed RRT-PCHIP approach and implemented using
ROS framework. ROS is a flexible framework for writing robot software. It is a collection of
tools, libraries, and conventions that aim to simplify the task of creating complex and robust
robot behavior across a wide variety of robotic platforms (ROS, 2018).

5.1 Description of the experimental robotic system

As Fig. 9 shows, the experimental robotic system is composed of two distant sites with wireless
connection (Hentout, Benbouali, Akli, Bouzouia and Melkou, 2013):

• Operator site (Local site): it consists of an off-board host PC used to send orders to the
robot using the wireless connection.

• Remote site (Robot site): it is a rectangular non-holonomic differential mobile manipulator
robot, RobuTER/ULM, controlled by an on-board industrial PC.

We point out that in this work, we only utilize the RobuTER mobile base; the ULM manipulator
is not considered.

5.2 Description of the validation scenario

The validation of the proposed RRT-PCHIP planning approach is carried out through the same
scenario established in (Bakdi et al., 2017). The differential mobile robot, RobuTER, evolves
in the cluttered indoor workspace described in Fig. 10. The robot has to move from the initial
position Source(x, y) = q(t = 0) = (74mm, 1953mm) toward the final position Target(x, y) =

q(t = TTransfer) = (5501mm, 1308mm) with a maximum linear speed of vmax = 150mm/s



Figure 9: Architecture of the experimental robotic system.

Figure 10: Cluttered environment where the robot evolves (Concatenation of the two images
captured by Kinect 1 and Kinect 2).

(vmin = −150mm/s). In addition, the boundary velocities are fixed to null (i.e., v(t = 0) = v(t =

TTransfer) = 0). As it can be seen, the initial and final orientations of the mobile robot (θB) are
not taken into account when dealing with this scenario.
The appropriate right (VR) and left (VL) velocities are calculated before motion begins on the
host PC. A wireless communication is established between this PC and the on-board PC of
the RobuTER mobile robot to send velocities, and to receive the odometry readings which are
used for feedback control of the robot.

5.3 Obtained results

RRT chooses the first feasible path and creates its nodes randomly. Consequently, the algo-
rithm is executed many times with different step sizes; the best path referring to the (i) genera-
tion time, (ii) length of the path, (iii) number of segments and (iv ) transfer time is selected. The
chosen distance for the region test is DIST = 20 pixels. In addition, eight main step sizes (in



pixels) have been randomly chosen: 8, 10, 20, 30, 35, 40, 50 and 60 which correspond to (in
mm) 50.72, 63.4, 126.8, 190.2, 221.9, 253.6, 317 and 380.4, respectively.
Table 2 summarizes the average of the obtained results after 10 runs for each step size. We
can clearly see that executing the RRT with STEP = 40 pixels (i.e., 253.6 mm) presents
the best compromise comparing with the other step sizes. The resulted path has been gen-
erated in TGeneration = 0.81 seconds, its length is ` = 6401.00 mm, it contains 10 segments
(Edges number = 10) and the transfer time is TTransfer = 40.53 seconds. The obtained path

Table 2: Comparison between the obtained results for different STEP sizes.
STEP size Generation Path length Number Transfer

(pixels) time (s) (mm) of edges time (s)
08 10.00 7303.68 44 48.83
10 03.02 6632.60 32 42.57
20 01.58 6798.20 18 44.25
30 01.06 6703.30 13 42.02
35 01.00 7100.80 12 47.83
40 00.81 6401.00 10 40.53
50 00.63 6764.00 09 41.56
60 00.69 6284.80 07 41.22

with STEP = 40 pixels is shown in Fig. 11. The orange lines represent the generated random
tree G. The purple segments correspond to the returned path before reducing the number of
nodes; the pink segments represent the final path after reduction of nodes number. As it can
be observed on this figure, the generated paths are zigzag segments for all the step sizes.
Therefore, to get more efficient results, PCHIP has been used to smooth the found path; the
final result is shown by the red curve in Fig. 12. The found collision-free path must be carried

Figure 11: RRT planning with a step size of 40 pixels visualized in RVIZ.

out by the differential mobile robot; hence, VR(t) and VL(t) have to be calculated. The varia-
tions of the right wheel, left wheel and linear velocities for path tracking by the RobuTER robot
are shown in Fig. 13. From Fig. 13, it can be seen that the maximum linear speed of the mobile
robot while performing the generated path is vmax = 150 mm/s; acceleration from t = 0 second



Figure 12: RRT-PCHIP smoothed path linking Source to Target visualized in RVIZ.

to t = 2 seconds, constant speed from t = 2 seconds to t = 38 seconds and, finally, deceleration
until t = 40.53 seconds. At the first turning of the robot (to the left) at about t = 2 seconds (Fig.

Figure 13: Variation of the robot velocities (VL, VR and VLinear) for path tracking.

12), the right and left velocities of the robot change excessively. This is due to the significance
of the turning angle that the robot must initiate. For the second turning at about t = 7 seconds

(Fig. 12), the robot has to go right; however, the turning angle is not as significant as the
precedent. The same phenomenon occurs at t = 22 seconds and t = 33 seconds where the
robot needs to go right and left, respectively. At the last turning of the robot (to the left) at
about t = 38 seconds (Fig. 12), the right and left velocities of the robot change greatly before
becoming null at t = 40.53 seconds (Fig. 13).

5.4 Comparison

We have mentioned that the same scenario (same environment and same conditions) has been
carried out using GA-PCHIP approach in (Bakdi et al., 2017). To confirm the effectiveness and
superiority of our approach, Table 3 shows a comparison between the results of executing
these two algorithms (RRT-PCHIP and GA-PCHIP) on the same environment in terms of (i)
generation time, (ii) length of the path, (iii) number of segments and finally, (iv ) transfer time.



It must be noted here that the considered final results for the GA-PCHIP approach are those
for generating a feasible path (not for the optimal path).
From Fig. 12, RRT-PCHIP avoids the first obstacle from the left; on the other hand, the GA-
PCHIP did this from the right. This can be justified by the purposes of both approaches. In-
deed, the main difference between the two methodologies remains in the fact that GA-PCHIP
searches for the optimal path (in terms of its objective function); whereas, RRT-PCHIP only
seeks for a feasible path (without collision). From Table 3, in order to generate the path con-

Table 3: Summary of comparative analysis between RRT-PCHIP and GA-PCHIP.
Parameters RRT-PCHIP GA-PCHIP

Generation time (s) 0.81 6.33
Path length (mm) 6401.00 6587.76

Number of segments 10 18
Transfer time (s) 40.53 43.91

necting Source to Target, our approach is approximately six times faster than GA-PCHIP ap-
proach. Second, we noted that GA-PCHIP takes longer distance to move between these two
configurations comparing with RRT-PCHIP. Third, the proposed RRT-PCHIP algorithm gener-
ates a path with less number of segments than GA-PCHIP. Finally, the transfer time given by
the proposed approach is better than that of the GA-PCHIP. All these differences can simply
be justified by the objective function to be optimized by the GA-PCHIP (length, total deviation
and collision avoidance).
Another comparison is done regarding the calculation times of generating feasible paths for
different workspaces with different dimensions and number of obstacles. For each case, we
considered an array of Kinect cameras with various Source − Target positions. Table 4 and
Fig. 14 summarize the average for 10 different runs of RRT-PCHIP and GA-PCHIP algorithms
(without path optimization and path execution). From Table 4, it is clear that RRT-PCHIP

Table 4: Summary of the average calculation times of 10 different runs with different number
of Kinect cameras and Source− Target positions.

Resolu-
tion

Number of Generation time of a feasible path (s)
obstacles RRT-PCHIP GA-PCHIP

640*480 05 0.80 05.09
(01 Kinect 10 1.04 05.59
camera) 15 1.25 06.46
640*960 10 1.54 06.33

(02 Kinect 15 1.78 08.03
camera) 20 2.11 08.47
640*1280 15 3.03 09.62
(04 Kinect 20 3.20 10.60
camera) 25 3.51 10.96

is better and more efficient compared with GA-PCHIP proposed in (Bakdi et al., 2017). The



Figure 14: Average of generation times for 10 runs with different number of obstacles and
Source− Target positions.

generation time of feasible paths using RRT-PCHIP in the different environments is around
three times faster than GA-PCHIP.

6 Conclusions and future works

This paper presented an off-line Kinect-based collision-free path planning for autonomous mo-
bile robot using the RRT-PCHIP algorithm. The robot is able to successfully achieve several
tasks including (i) perceiving and modeling its surrounding environment and (ii) planning its
collision-free smoothed path. ROS is used as a framework to implement the proposed strat-
egy, while RVIZ is used for visualizing the obtained results. RRT and PCHIP have been imple-
mented to rapidly generate a feasible smoothed path connecting Source to Target, ensuring
that the robot will safely move between these two configurations. Comparisons with similar
works of the literature (same environment and conditions) using GA-PCHIP have been done.
Obtained results confirm that RRT-PCHIP is better than GA-PCHIP in terms of (i) generation
time, (ii) length of the path, (iii) number of segments and (iv ) transfer time.
The results reported in this article can be extended in a number of directions. The developed
RRT-PCHIP approach will be extended first to deal with optimal path planning problem. After
that, it will be validated in more complex and dynamic environments. Finally, the developed
RRT-PCHIP will be extended to deal with on-line path planning problems for non-static envi-
ronments with larger workspaces.
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