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ABSTRACT

To build a general-purpose object recognizer, capable to recognize many different classes
of objects is the most challenging task. Spatial pyramid matching (SPM), an extension and
revision of bag-of-feature (BoF) computes histograms of native features at various levels of
resolution. The support vector machine (SVM) using SPM gained large popularity in object
classification. However, its uses are trivial due to the large computational cost and limited
classification accuracy for very large classes of objects. This paper presents an extension
of SPM based on tuneable SIFT sparse code using multi-class SVM to enhance the per-
formance by encoding the SIFT features into sparse code and tuning its parameters. The
various experimental studies are presented in the paper to investigate the effect of SIFT
parameters to achieve better sparsity in the dictionary. During the number of experimenta-
tion, parameter tuning in SIFT feature extraction with linear-kernel SVM has improved the
recognition accuracy for the datasets having a large number of classes and a huge number
of images for each class. The comparison with state-of-art concludes that optimum tuning
of the parameters of SIFT can minimize the feature vector size reducing the computational
cost and achieving higher classification accuracy.
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1 Introduction

Object classification is an example of the extraction of useful information from image data.
Machine learning plays an eminent role in the classification of objects from real-life images.
The powerful learning capability of supervised machine learning algorithms like neural network
(NN) and support vector machine (SVM) has effectively improved the object classification ac-
curacy. Recent trends in object classification using neural networks proved benchmark results
over the traditional algorithms. SVM works in two stages: feature extraction and classification
whereas, NN integrates these two stages into a whole. But NN is a complete black box and its
computational power, amount of data, selection of proper network and feature interpretability
create difficulties in faster development of the solution to any problem. Moreover, the approx-
imation of the complex function in NN is impossible (Liu and An, 2020). Whereas traditional
algorithms like decision tree, Naive Bayes, SVM, etc in object classification have an easy
understanding of features to control overall performance. Another alternate to this machine
learning classifiers is fuzzy classifiers resulting small model size (Precup and Tomescu, 2015).
However, building optimum fuzzy rules need automated learning approach i.e. Juang and
Chen used SVM to design these fuzzy rules in the classifier (Juang and Chen, 2018).
Researchers have implemented many models on the bases of the famous classical BoF model
for object classification. Though it performs a remarkably over previous methods (Hofmann,
2001) (Fergus, Perona and Zisserman, 2005) for image classification but it fails to discrim-
inate key features for image representation. To address this issue extension BoF was pro-
posed named Spatial Pyramid Matching (SPM) (Lazebnik, Schmid and Ponce, 2006). SPM
claimed many utmost challenging object classifications. Over the years SPM reformed to mul-
tiple extensions using sparse coding (Yang, Yu, Gong, Huang et al., 2009) (Oliveira, Nasci-
mento, Vieira and Campos, 2012) (Balasubramanian, Yu and Lebanon, 2016) and pooling
strategy. Scale-invariant feature transform (SIFT) produces high-dimensional features from
image patches in the spatial domain. It has been proved that the SIFT descriptor with SPM
outperforms any traditional methods in image classification (Yang et al., 2009). Unfortunately,
the procedure involved in codebook formation and feature quantization in the SIFT descriptor
has a high computational cost in the spatial domain. Yang et al (Yang et al., 2009) presented a
sparse based SPM (ScSPM) to reduce the complexity in feature quantization and overlooked
the codebook formulation. In this paper, we revisited the work of sparse coded SPM (ScSPM)
to investigate the effect of codebook formation and SIFT key feature’s orientation. The pa-
rameters involved in SIFT can be altered to check its behavior. Corresponding choice and
amendment of carefully chosen values can be used to improve the performance of the al-
gorithm. We change the SIFT codebook formulation and tuning of feature orientation in the
algorithm presented by Yang et al (Yang et al., 2009) and performance for object classification
is examined. Discriminative power in the large database increases with the complexity of the
SIFT descriptor. We propose tuning of SIFT parameters to improve the performance of the
ScSPM method. The comparison of schematic presentation of the proposed algorithm with
ScSPM (Yang et al., 2009) and standard SPM approach is presented in Fig-1.
In section-2, we reported related work on sparse coding (SC) and revised the ScSPM(Yang
et al., 2009). Section-3 explains the implementation of the proposed algorithm with a discus-



Figure 1: (a) Non-linear SPM (b) ScSPM (c) Proposed tunable SIFT ScSPM

sion on SIFT parameters. Section-4 provides experiment results and compares the obtained
results with SPM approaches i.e. Kernel SPM (KSPM), Linear SPM (LSPM), and Sparse
Coded SPM (SPM). At last, the conclusion of our work with some future scope for further
improvement is presented in section-5.

2 Related Work

Sparse code expresses the vectors using a linear combination of a small number of weighted
basis functions. Sparse coding learns compact and concise representation using a few num-
bers of coefficients to represent vectors. And dictionary formation using a linear combination
of sparse atoms is a suitable method for unknown model (Tang, Panahi, Krim and Dai, 2019).
The sparse coding and dictionary-based image classification approach have attracted many re-
searchers. Many supervised (Aharon, Elad and Bruckstein, 2006) (Boureau, Bach, LeCun and
Ponce, 2010) (Jiang, Lin and Davis, 2011) (Zhang, Berg, Maire and Malik, 2006) (Zhang and
Li, 2010) and unsupervised (ShenghuaGao and Liang-TienChia, 2010) (Lazebnik et al., 2006)
(Wang, Yang, Yu, Lv, Huang and Gong, 2010) (Yang et al., 2009) techniques are proposed
based on sparse dictionary to solve multiclass reorganization problem. Based on this state-of-
art are presented results on standard benchmark datasets i.e. Caltech-101 (L. Fei-Fei and Per-
ona, 2004), Caltech-256 (Griffin, Holub and Perona, 2007) and Scene-15 (Ali and Zafar, 2018).
Where spatial pyramid integrates local and global representation and hence it is very efficient
in scene recognition with large datasets.
The vector quantization to sparse code with max-pooling was presented in (Yang et al., 2009).
This approach exceptionally reduces the computation complexity of SVM to O(n) from O(n2).
In this technique, a linear SPM kernel based on SIFT sparse codes were used. To speed up



the process and to remove the constraint of dictionary learning Hu et al (Hu and Guo, 2012)
proposed a new descriptor in SPM for object classification. This descriptor combines local
binary patterns (LBP) and three-patch local binary pattern (TBLBP) in SPM. Oliveira et al
(Oliveira et al., 2012) proposed a new off-line method entitled orthogonal class learning (OCL)
derived on support vector decomposition (SVD) for high dimensional feature space. Based
on spatial constraint on the coding stage this method named spatial sparse coding (SSC)
and it obtained better accuracy in comparison with accuracy stated in (Yang et al., 2009).
In (Seidenari, Serra, Bagdanov and Del Bimbo, 2013) multi-resolution pyramids in SIFT (P-
SIFT) feature space were introduced for matching multilevel detail locally during learning and
recognition stages. This P-SIFT showed promising results in streamline work.
In (Balasubramanian et al., 2016), authors proposed two techniques called kernel smooth-
ing and marginal regression for SC where non-parametric kernel smoothing presents feature
similarity or temporal information in dataset more flexible. Feature space partitioning for analo-
gous category images into clusters of visual prototypes was proposed by Alameen et al(Najjar,
Ogawa and Haseyama, 2015). In which Bregman co-clustering applied offline on training data.
That method also achieved good results on standard datasets but the computational cost was
higher because of the high dimension of feature, dictionary, and pre-processing data to gen-
erate clusters. In all these studies, authors have not reported the effect of SIFT parameters in
their algorithms. Table 1 list the parameters controlling the SIFT features. Major experiments
in the literature use default values without tuning them according to the task.

Table 1: Parameters involved in SIFT features extraction process

Parameter Description

Octaves No of Gaussian function producing set of scale-space im-
age

Sigma Amount of blur in an image
Scale Down-sample factor of an image
Orientation of histogram bins Number of bins in histogram to assign orientation
Orientation radius Radius of the region in orientation assignment
Feature vector Dimension of the feature vector

In the section, we presented the empirical study on SIFT parameters on sparse based dictio-
nary approach for image classification as suggested by Yang et al (Yang et al., 2009). Effect
of other parameters like the size of a dictionary, pooling method, and Kernels affecting the
accuracy of classification algorithms was discussed in (Yang et al., 2009).

3 SIFT features analysis and Proposed Implementation

For the given dictionary V best coefficient U for signal X can be found using sparse coding. This
paper adopts this encoding of SIFT features into sparse code and investigates the performance
by tuning the parameters. In the proposed algorithm, the conversion of the SIFT feature’s



vector quantization to the sparse code is solved using the following equation:

min
U,V

M∑
m=1

∥∥xm − umV 2
∥∥2

+ λ |um| (3.1)

subject to ‖vk‖ ≤ 1,∀k = 1, 2, ...K. Where V is NxK size over-complete (K>N) dictionary and
um is sparse coefficient matrix for signal xm.
In this unit L2-norm on V and L1-norm on um is typically applied with regularization parameter
λ. The problem in equation-(3.2) is convex in V and U simultaneously. This can be solved
for the fixed number of iteration to achieve optimization over V or U while fixing any other. By
fixing codebook V equation-(3.3) can be solved as a linear regression problem with L1-norm
regularization on sparse coefficients.

min
um

‖xm − umV ‖22 + λ |um| (3.2)

And fixing U, the same problem will be transformed to least square with quadratic constraints:

min
V
‖X − UV ‖2F (3.3)

s. t ‖vk‖ ≤ 1, ∀k = 1, 2, ...K. Lagrange dual (Lee, Battle, Raina and Ng, 2007) can cleanly
deal with it. The success of the object classification relies on the highly descriptive capacity of
the dictionary or sparse representation. Therefore, the first phase of the experiment involves
a study on dictionary formation. The second phase involves a study on the effect of SIFT
parameters on image classification accuracy. These two phases are explained as follows:
Phase 1: Effective sparsity generation in the dictionary is an important aspect of the image
classification algorithm. The ratio of the number of zero elements to the number of non-zero
elements referred to as sparsity of the dictionary and proportion of the number of non-zero
elements to total elements referred as average coefficients generated by the sparse dictio-
nary. The lower the average coefficients provide better sparsity (Cai, Wang and Zhang, 2014)
and consecutively low arithmetic operation and less memory requirement. The studies on the
selection of the dictionary formation methods were presented in (Patel and Mewada, 2018).
The comparative analysis of the sparse dictionary formation using wavelet transform, discrete
cosine transform, and Kronecker delta was presented. Wavelet features found better in com-
parison with other features. However, to achieve more sparsity, better localization is required
and therefore SIFT becomes one of the suitable choices amongst all. However, a large num-
ber of SIFT features are the problem for multi-class scene classification in terms of scalability
and speed. In (Liu, Yu, Chen, Li and Fan, 2019), the removal of redundant features using
the SIFT features’ selection algorithm was presented. In the proposed approach, a correct
tuning of the parameters is presented providing a balance between the speed and accuracy.
Designing a comprehensive model for inferring a discriminative visual dictionary is the key to
an efficient image retrieval framework(Arun and Govindan, 2015). In the proposed experiment,
200000 patches are used randomly to train the k-SVD and to create a sparse dictionary. The
experiments are performed on the standard datasets containing a large number of classes
i.e. Caltech-256, Caltech-101, and Scene-15. Experiments are repeated with 30 iterations to
find the appropriate selection of the number of iteration and size of the dictionary achieving



maximum sparsity. In this experiment we fixed Dictionary dimension (NxK) to some standard
dimensions 256, 512, 1024 and 2048 which are used in other literature(Yang et al., 2009)
(Zhang, Wang, Shi, Gong, Xia and Zhanga, 2018) (Huang, Mu and Zeng, 2016). Figure-2,
Figure-3, and Figure-4 shows the average coefficient value achieved in each iteration for three
datasets. We can analyze that for the first ten to twelve iterations it converges fast then there
is a marginal decrement in the average number of coefficients. This suggests 30 iterations are
sufficient to achieve the maximum sparsity in the dictionary.

Figure 2: Average coefficient value for each KSVD iteration on Caltech-101 dataset

Figure 3: Average coefficient value for each KSVD iteration on Caltech-256 dataset

Phase 2: The average number of coefficients has been achieved in phase 1 after 30 itera-
tions during the generation of a sparse dictionary. This phase investigates the effect of these
dictionary sizes on overall classification accuracy for the given dataset. Multiclass classifica-
tion usually disintegrates into a group of a binary 1,-1 problem that can easily accommodate



Figure 4: Average coefficient value for each KSVD iteration on Scene-15 dataset

the functionality of standard SVM. There are two famous approaches one-versus-rest and
one-versus-one. In this experiment we have implemented the SVM classifier as proposed in
(Aharon et al., 2006) to solve the following unconstraint convex optimization problem.

min
wc

{
J(wc) = ‖wc‖2 + C

n∑
i=1

l(wc; y
c
i , zi))

}
(3.4)

Where yci = 1 if yi = c else yci = -1 and hinge loss l(wc; y
c
i , zi) utilize differentiable quadratic form

as shown below equation (3.5)

HingLoss =
[
max(0, wT

c z · yci − 1)
]2

(3.5)

According to the equation-(3.3), Dimension of feature vector U and Dictionary V must match for
matrix multiplication. SIFT feature dimension is proportional to its number of bins and angles
as shown in Fig-5 and the discrimination between the images depends on this feature vector
(Lowe, 2004). The dictionary formation with variation in size using the different combinations

Figure 5: 2x2 SIFT descriptor with 8 orientations

of orientation and number of bins in each orientation is presented in Table 2.
Using these different sizes of a sparse dictionary, the investigation of the classification accuracy
for each database is carried out in the experiment. The sample results for CalTech-101 dataset



Table 2: SIFT descriptor and Dictionary size

Angles(a) Bins(b) SIFT descriptor size(ab2) Dictionary size

1 8 64 64x256,
4 4 64 64x512,
16 2 64 64x1024
1 16 256
4 8 256 256x1024
16 4 256
64 2 256

is presented in Fig-6 and Fig-7.

Figure 6: Results for 256 SIFT descriptor size on Caltech-101

It has been analyzed that lower angle and higher bins or vice versa fail to bind quality local
details and hence accuracy for classification is lower. Hence, the classification accuracy is less
for such a combination. Based on this we fixed our descriptor size 256 with 16 orientations and
the width is 4 throughout the remaining experiments.

4 Experiments and Results

This experiment was conducted to find the finely tuned parameters of ScSPM. In this exper-
iment, we used three benchmark datasets named Caltech-101, Caltech-256, and Scene-15.
This experiment was focused on ScSPM (Yang et al., 2009) work and exclude the comparisons
of other types of SPM(KSPM and LSPM) discussion in detail by referencing their results only
for comparison. ScSPM uses linear kernel on spatial-pyramid pooling for sparsified SIFT fea-
tures. By detailing the work for ScSPM(Yang et al., 2009) we selected three possible tuning



Figure 7: Results for 64 SIFT descriptor size on Caltech-101

Table 3: Results on Caltech-101 dataset

Algorithm Dictionary Size 15 training 100 training

Zhang et al(Zhang et al., 2006) 59.10±0.60 66.20±0.50
NBNN(Boiman, Shechtman and Irani,
2008)

65.00±1.14 70.40

ML+CORR (Jain, Kulis and Grauman,
2008)

61.00 69.60

KC (Van Gemert, Geusebroek, Veenman
and Smeulders, 2008)

- 64.14±1.18

KSPM(Lazebnik et al., 2006) 56.40 64.40±0.80
KSPM(Yang et al., 2009) 56.44±0.78 63.99±0.88
SIFT-WCS-LTP (Huang et al., 2016) 1024 65.59±0.005 73.05±0.010
PD-KSVD (Wang, Tu and Chiang, 2019) 6120 67.02
DASDLp (Yang, Chang and Luo, 2017) 1024 75.54
N3SC (Zhang et al., 2018) 2048 67.45±0.97 73.87±1.06
Zhang et al(Zhang and Lu, 2018) 2048+1024 73.05±0.010
LSPM(Yang et al., 2009) 512 53.23±0.65 58.81±1.51
ScSPM(Yang et al., 2009) 1024 67.00±0.45 73.20±0.54

Proposed 256 66.94±0.54 74.12±0.41
method 512 68.32 76.12±0.57

1024 70.55±0.40 77.08±0.31

areas that need to be revisited for accuracy enhancement were patch size reference to dic-
tionary size, the number of training and testing samples and SVM itself after literature survey.



Figure 8: Example Images of datasets used in this experiment.

As discussed in section-II we were interested in parameter tuning in this experimental so we
fixed the multiclass-SVM algorithm. Here dictionary size referenced to patch size was very im-
portant to match dimensions when sparse coding is used[equation (3.2)]. In this experiment,
we used the same size of patches used in reference work 16x16 but dictionary sizes were
256x256, 256x512, and 256x1024 used for experimenting their effects on overall accuracy
change. Each dictionary was trained for 30 iterations for KSVD.
Each sparsified SIFT features sets for Caltech-101 and Caltech-256 were divided for 30 and
15 training samples and Scene-15 for 100 and 150 training samples. Training was done with
multiclass SVM for the linear kernel. We tested the performance for 5 independent runs and
noted average accuracy achieved after 5 runs.
Caltech-101: This dataset contains 9145 images for 101 different classes in a variety of object
categories like animals, instruments, vehicles, flowers, plants, etc. As shown in Table 3 ScSPM
has accuracy higher than its baseline work SPM. This experiment shows that by selecting a
proper number of bins and dictionary size accuracy can also be increased by ∼5 percent. We
noted that even with the small size of dictionary 256 atoms classification accuracy with 15
training samples is comparable to reference work of ScSPM with 1024 atom and 30 training
samples as shown in Table 3.
Caltech-256: This dataset contains 30000 images for a wide range of object categories in 256
classes. Each class has a higher intra-class covariance than Caltech-101. As discussed for
Caltech-101 results were quite better than KSPM, LSPM, and ScSPM for the small size of the
dictionary and less number of training samples of Caltech-256 dataset shown in Table 4.
Scene-15: This dataset contains main categories of indoor and outdoor scenes like the kitchen,
living room, offices, etc. Though the number of classes is less bus it has low interclass covari-
ance which makes it difficult to achieve high accuracy. A total of 4000 images are available in
15 classes ranging from 200 to 400. Again the same improvement was achieved with a small
size of the dictionary and 100 training samples from each class shown in Table 5.



Table 4: Results on Caltech-256 dataset

Algorithm Dictionary Size 15 training 100 training

KSPM(Lazebnik et al., 2006) - 34.10
KC(Van Gemert et al., 2008) - 27.17±0.46
KSPM(Yang et al., 2009) 23.34±0.42 29.51±0.52
SIFT-WCS-LTP (Huang et al., 2016) 256 26.75±0.003
PD-KSVD (Wang et al., 2019) 15420 31.03
N3SC (Zhang et al., 2018) 2048 34.09±0.75
LSPM(Yang et al., 2009) 512 13.20±0.62 15.45±0.37
ScSPM(Yang et al., 2009) 1024 27.73±0.51 34.02±0.35

256 25.91±0.42 -
Proposed 512 - 27.38±0.24
method 1024 29.05±0.52 34.23±0.31

2048 28.02 31±0.29

Table 5: Results on Scene-15 dataset

Algorithm Dictionary Size 100 training

KC(Van Gemert et al., 2008) 76.67±0.39
KSPM(Yang et al., 2009) 76.73±0.65
LSPM(Yang et al., 2009) 512 65.32±1.02
ScSPM(Yang et al., 2009) 1024 80.28±0.93

Proposed 256 76.64
method 512 78.13

1024 81.13±0.53

5 Conclusion and Future Work

This paper presents the investigation of SIFT features and dictionary size for object/scene
classification accuracy. The large sparsity in the formed dictionary requires less memory to
store the coefficients and fewer arithmetic operations. This leads to a reduction in computa-
tional cost. The size of the dictionary and its sparsity is depended on the selection of the SIFT
parameters. Therefore, the effect of orientation and orientation bins describing feature vector
size and the sparsity of the dictionary is presented in the paper. After getting maximum sparsity
of the dictionary, the effect of dictionary sizes on overall classification accuracy is presented.
The study concludes that 30 iterations are sufficient to achieve the maximum sparsity in the
dictionary by reducing the average number of coefficients. Further investigation concludes that



the classification accuracy will be less for the low value of either orientation or orientation bins
in histogram formation. Therefore, the appropriate selection of these two parameters leads
to boost the performance as presented in section 4. This empirical study was carried out us-
ing linear kernel SVM. In the future, the fusion of features (Wang et al., 2019), evolutionary
optimization of regularization parameter λ in equation-3.1 using heuristic algorithms (Téllez,
Jimeno, Salazar and Nino-Ruiz, 2018) (Nino-Ruiz, Ardila and Capacho, 2018) (Precup, David,
Petriu, Szedlak-Stinean and Bojan-Dragos, 2016) or integration of multiple kernels in SVM
(Tang, Chen, Zhao, Huang and Luo, 2019) using concluding remarks of the paper can be used
to boost the accuracy further.
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