
This article can be cited as A. Barros Miranda, D. Jabba Molinares, C. J. Ardila Hernandez, L. Guzman Reyes and J. Ruiz-Rangel,
Adaptation of Parallel Framework to Solve Traveling Salesman Problem Using Genetic Algorithms and Tabu Search, International Journal
of Artificial Intelligence, vol. 19, no. 1, pp. 123-137, 2021.
Copyright©2021 by CESER Publications

Adaptation of Parallel Framework to Solve Traveling
Salesman Problem Using Genetic Algorithms and Tabu

Search

Alber Barros Miranda1, Daladier Jabba Molinares1,
Carlos Julio Ardila Hernandez1, Luis Guzman Reyes1 and Jonathan Ruiz-Rangel2

1Department of Systems Engineering
Universidad del Norte
Barranquilla, Colombia

alberb@uninorte.edu.co
djabba@uninorte.edu.co

lgguzman@uninorte.edu.co
cardila@uninorte.edu.co

2Systems Engineering Program
Universidad Simón Bolı́var

Barranquilla, Colombia
jruiz1@unisimonbolivar.edu.co

ABSTRACT

The modeling of combinatorial optimization problems has acquired great importance both for
research in mathematical processes and for companies starting new projects and seeking
to identify the most efficient, beneficial and economic implementation. One of the most
investigated combinatorial problems in optimization studies is the traveling salesman problem
(TSP). Here we describe a parallel strategy to solve TSP problem using genetic algorithm
and Tabu search based on framework(Guzman, N. Ruiz, Ardila, Jabba and Nieto, 2016)
which make a solution through parallel processing within a Master-Slave structure. In
addition, the proposed approach is compared with an existing algorithm.

Keywords: TSP problem, Parallel program, Genetic algorithm, Tabu search, Combinatorial
optimization problems.

2010 ACM Computing Classification System: 11K45,65C05,65M75,68Q10
2012 ACM Computing Classification System: 90C35

1

mailto:alberb@uninorte.edu.co
mailto:djabba@uninorte.edu.co
mailto:lgguzman@uninorte.edu.co
mailto:cardila@uninorte.edu.co
mailto:jruiz1@unisimonbolivar.edu.co

1 Introduction

The modeling of combinatorial optimization problems has been widely researched in mathe-
matics. In addition, such models bear important practical applications. For example, modeling
of optimization problems is also relevant to companies initiating new projects and interested
in selecting optimal alternatives regarding efficiency, benefits and costs(Precup, David, Petriu,
Szedlak-Stinean and Bojan-Dragos, 2016; Precup and Tomescu, 2015; Niño, Ardila, Perez
and Donoso, 2010). One of the most studied combinatorial problems in optimization anal-
ysis is the traveling salesman problem (TSP), which allows the simulation of many current
problems in industrial processes or mathematical processes, among others(Luo, Lin and
Feng, 2016; Scholz, 2019). Therefore, the study of solutions or tools providing optimal solutions
to the TSP is of significant theoretical and applied importance. Many methods and attempts
have been proposed to identify optimal and fast solutions to the TSP. Some current proposals,
namely those classified as metaheuristic methods, have performed very well at the task. Of such
methods, the tabu search and the genetic algorithm(Caballero-Morales, Martinez-Flores and
Sanchez-Partida, 2018; Kin-Ming, Wei-Ying, Pak-Kan, Kwong-Sak, Yee and Sui-Tung, 2018)
particularly stood out.

Tabu search is an algorithm designed to identify satisfactory solutions to combinatorial op-
timization problems, being recognized as one of the best-known metaheuristics based on the
quality of provided solutions(Karamcheti and Malek, 1991). In addition, the genetic algorithm
has been a efficient approach to large-scale optimization problems and mathematical models
that allow finding solutions to complex problems linked to other fields of science such as Psy-
chology, Biology and Artificial Intelligence(Ruiz-Rangel, Ardila Hernández, Jabba Molinares
and Maradei Gonzalez, 2018). The genetic algorithm produces close approximation solutions
under restricted calculations in comparison to other heuristic methods including simulated
annealing(Kondo and Watanabe, 2011; Mohammad and Lixin, 2018). For this reason, we
believe that the search for optimal solutions to the TSP can be improved through implemen-
tation of an algorithm combining the two metaheuristics(Niño, 2012; Nino-Ruiz, Ardila and
Capacho, 2018), or specifically, by defining genetic algorithm as the master, and Tabu search
as the slave algorithm. The outcome would master algorithm producing a random and initial
solution, followed by slave algorithm fine-tuning the initial solution in order to generate a local
optimum. The parallel processing technique is also included for the sake of higher efficiency
and enhanced quality of the final solution.

2 Combinatorial optimization problems

Different researchers have worked several combinatorial problems; below there is a list of the
most studied combinatorial problems in computer science:

2.1 Knapsack problem

The knapsack problem is a complete N-P problem, which refers to a backpack with a certain
weight capacity. Each of N objects must be placed in the knapsack taking into account its weight

and value. The aim is to fit as many objects as possible in the knapsack to maximize value and
minimize weight, given the weight capacity of the knapsack. Formally(Hajarian, Shahbahrami
and Hoseini, 2016), the problem includes the following parameters:

Wk = weight of each object Xk, for k = 1, 2, .., N. (2.1)

Rk = value associated with each object Xk, for k = 1, 2, .., N. (2.2)

c = maximum weight capacity of knapsack. (2.3)

Thus, the problem can be formulated as:

max
N∑
k=1

(RkXk) (2.4)

Subject to:
N∑
k=1

(WkXk ≤ c) (2.5)

Various studies have works proposed methodologies to solve this problem(Ohlsson, Peterson
and Sderberg, 1993; Chen, Weng and Li, 2010; Ji, Huang, Liu, Liu and Zhong, 2007; Niu
and Bi, 2014), and some approximate solutions to real-life problems through modeling of the
knapsack problem.

2.2 Minimum coloring problem

The minimum coloring problem consists in finding the smallest integer number of colors
χ(G) required to color a graph G so that there are no two adjacent vertices. The graph
G consists of n vertices forming a set V (G) = v1, v2, v3, ..., vn and m edges forming the set
E(G) = e1, e2, e3, ..., em. Each ek is incident uniquely with an unordered pair of final vertices
vi and vj , with (vi, vj) = ek ∈ E(G) for any given i, j, k. A(G) is an n ∗ n symmetric binary
adjacency matrix, where Aij = 1 if (vi, vj) ∈ E(G); and Aij = 0 otherwise(Marappan and
Sethumadhavan, 2016); see figure 1(Bensouyad and Saidouni, 2016).

Figure 1: Minimum coloring problem.

Different algorithmic approaches have attempted to find the optimal solution to the minimum
coloring problem, also bearing in mind the importance of the speed of the algorithm. Multiple
solutions based on metaheuristic algorithm have been proposed(Dadaneh, Markid and Zakerol-
hosseini, 2015; Marappan and Sethumadhavan, 2013; Fister and Brest, 2011; Hong, Vaidya, Lu
and Shafiq, 2011; Azlan and Hussin, 2013) and results show that it represents a satisfactory
candidate for its solution.

2.3 The traveling salesman problem (TSP)

This problem consists in finding the shortest route, with the minimum travel costs across
a list of cities that need to be visited by a salesman(Sharma and Gupta, 2015; Hussain,
Shad Muhammad, Nauman Sajid, Hussain, Mohamd Shoukry and Gani, 2017); see Figure
2(Hussain et al., 2017). The cost of the route formula is determined as follows:

cost =
N∑
k=1

(Cij) (2.6)

Figure 2: Representation of the TSP.

Many real-life the problems can be seen as variants of the TSP, and therefore significant effort
has been dedicated to finding optimal solutions to the TSP. The m-crossover operator(Mudaliar
and Modi, 2013; Anaya Fuentes, Hernández Gress, SeckTuoh Mora and Medina Marı́n, 2018)
was proposed as a new genetic algorithm to solve this problem. This model produces 18 differ-
ent descendant chromosomes derived from either of the two possible parental chromosomes,
and selects two newly generated chromosomes from them. The crossing operator results in a
faster search for best solutions in comparison to alternative models.

Another hybrid scheme was recently proposed(Khan, Khan and Iqbal, 2012) as a way of
identifying the shortest traveling distance across each city until the return of the salesman to the

starting point. The scheme tackles the problem by creating a multilevel partition of the graph
and then individually solving each partition through the application of the Lin and Kernighan’s
algorithm. The procedure generates an optimal solution to the TSP and can be applied to other
complex problems.

The TSP was also used to test the performance of a new hybrid particle swarm optimiza-
tion approach(Bouzidi and Riffi, 2014). This method combines particle swarm optimization
with the harmonic search algorithm, which improved the swarm. This algorithm showed higher
efficiency than any existing metaheuristics. A case study of Anti-Ceva Automotive Logistics
Ltd(Liu, Zhang and Du, 2014) simulated the TSP by using relative location coordinates as the
parameters of the problem. The simulated annealing algorithm was used to obtain the optimal
solutions, with a circular trajectory being generated as a final solution. An agent-based evolu-
tionary search algorithm (AES) was presented to solve the problem of dynamic salesman(Dazhi
and Shixin, 2010). The algorithm uses a cooperative learning mechanism in which agents in
the current population coevolve to perform optimal dynamic monitoring. In addition, a local
update rule is induced and is very similar to the learning permutation scheme utilized by the
application to maintain the diversity of dynamic environments. Experimental results show that
this method is efficient and has great potential of application to other optimization problems of
dynamic combinatory.

3 Solution of the TSP problem through metaheuristic algorithms

Based on previous work,(Guzman et al., 2016) this article proposes a new strategy to solve
the combinatorial TSP. The strategy takes advantage of existing metaheuristics by merging
them into a parallel processing master-slave structure. Essentially, the proposed algorithm is
composed as follows:

Initially, a master (or main) computing node transmits an initial condition to its workers (slaves),
and this condition represents a possible initial solution to the TSP. In the first round, the initial
solution is randomly generated.

Next, each slave node uses the genetic algorithm and Tabu search to create a scheme includ-
ing master algorithm and slave algorithm. Within the scheme, the genetic algorithm (master
algorithm) identifies a random solution and sends it to the Tabu search (slave algorithm) that pro-
cesses the delivered solution and returns an improved one. This process is performed in parallel.

Finally, each slave node sends its optimal solution to the master node once optimization
has been finalized. Then, the master node chooses the best solution among all slaves. The
best solution is returned to the slaves as a new initial condition, and the process is repeated;
see Figure 3.

Figure 3: Diagram with proposed algorithm.

3.1 Adaptation of genetic algorithm

First, the genetic algorithm defines a population P (0) with a set of initial solutions, and those
are then evaluated. Next, a generic operator creates an offspring set through crossing and
mutation operations. A new randomly generated population is then added, and the population
is reevaluated so that the strongest chromosomes are selected for the next generation. A
population P (t + 1) with the same number of individuals is sampled, and those steps are
repeated until convergence is achieved. See Algorithm 1.

Algorithm 1: GENETIC-ALGORITHM-TSP-PARALLEL
Input: costM , nCity, inputcities, mutrate, xoverrate
Output: bestSolution

1 population← GenerateInitialPopulation(nCity, inputcities)

2 k ← 0

3 bestSolution← evaluatePopulation(population)

4 while k < nCity do
5 if ProbabilityCrossover < xoverrate then
6 population← CrossOver(population)

7 end
8 if ProbabilityMutation < mutrate then
9 population←Mutate(population)

10 end
11 bestSolution← evaluatePopulation(population)

12 k ← k + 1

13 end
14 return(bestSolution)

3.2 Adaptation of Tabu search

Initially, the Tabu search algorithm builds a Tabu list with the solution delivered by the genetic
algorithm and labels it as the best solution. At each iteration, a new possible solution is created
through a search around the neighbors of the current solution, by exchanging one element of
the path with another and comparing the cost of each exchange. The exchange engendering the
lowest cost then becomes the new compared solution. See Algorithm 2(Guzman et al., 2016).
If the new solution is not on the Tabu list and is superior to the current best solution, it replaces
the old solution and the Tabu list is updated. The update of the Tabu list consists in the new
solution being appended to the list, and the age of each item on the list being calculated. If a
solution is old enough, it is removed from the list(Guzman et al., 2016).

Algorithm 2: TABU-SEARCH-TSP-PARALLEL
Input: costM , nCity, inputcities
Output: bestTour, bestCost

1 previousDistance← TourCost(inputcities, costM)

2 bestTour ← inputcities

3 tempCities← inputcities

4 bestCost← previousDistance

5 tabuList← initialTabu(inputcities)

6 numIter ← nCity

7 i← 1

8 while i ≤ numIter do
9 tempCities← GenerateBestNeighborhood(tempCities)

10 if Not IsIn(tempCities, tabuList) then
11 minDist← TourCost(inputcities, costM)

12 if minDist < bestCost then
13 bestCost← minDist

14 bestTour ← tempCities

15 end

16 end
17 updateTabuList(tempCities)

18 i← i+ 1

19 end
20 return(bestTour, bestCost)

3.3 Master-slave algorithmic structure

The proposed master-slave algorithmic structure receives parameters from the main algorithm
and enters them into the genetic algorithm, which searches for a random solution for the whole
domain. Next, the outcome is entered into the Tabu search algorithm, which performs a local
search to refine the solution; see Algorithm 3.

Algorithm 3: MASTER-SLAVE ALGORITHMIC STRUCTURE

Input: costM , nCity, inputcities,mutrate,xoverrate
Output: TabuSearchTSPParallel(costM, nCity, inputcities)

1 inputcities← GeneticAlgorithmTSPParallel(costM, nCity, inputcities,mutrate, xoverrate)

2 return(TabuSearchTSPParallel(costM, nCity, inputcities))

3.4 Main algorithm

The main algorithm initially loads the data necessary to solve a specific TSP. Then, a random
possible solution is generated and used as the initial parameter of metaheuristic instances,
which are created and executed in parallel in each core of the master-slave algorithmic structure.
See Algorithm 4. The best solution from each instance is stored on a list, and the best one is
selected as the new initial solution in the next iteration for each metaheuristic instance. In the
tests, the number of iterations was 10.

Algorithm 4: MAIN ALGORITHM.

1 [MatrixCost, nCities]← LoadData()

2 bestTour ← createCity(nCities)

3 minDist← TourCost(tempCities,MatrixCost)

4 nNodes← getNumberNodes

5 nInstances← nNodes/2

6 bestTours[]

7 i← 1

8 while i ≤ numIter do
9 bestTours.Add(CallinParallel(MasterSlaveAlgorithmic, nInstances,MatrixCost,

10 bestTour, nCities))

11 bestTour ← getBest(bestTours)

12 i← i+ 1

13 end
14 showBest(bestTour)

4 Methodology and analysis

In this section, it is presented in more the detail the experimental methodology to test the
accuracy of the algorithm proposed to solve the TSP. Results are described and compared in
the light of algorithm proposed in (Guzman et al., 2016). Finally, positive and negative aspects
of the results are discussed. In the following, section 4.1 describes the hardware specifications
of test scenarios. Section 4.2 presents the software environments used to develop and test the
method. Section 4.3 present the TSP libraries that execute the two algorithms.

4.1 Hardware Specifications

Implementation of the algorithms was tested in a virtual machine on a Hewlett-Packard server
running the Windows 10 Pro 64bit operating system, with 36 Intel (R) Xeon (R) CPU E5-2690
3.00GHz 2.99 GHz processors, 64GB RAM, and 31.5GB hard drive. During the execution of
the tests, the machine was not networked to avoid sharing resources with network-related tasks.
Finally, the machine was configured to stop any other demanding resource service running on
the computer, in order to channel any available resources into the system.

4.2 Software Specifications

Development and compilation of metaheuristic algorithms with parallel processing were imple-
mented in the Matlab programming language. The number of iterations in the tests was 10
using 16 cores.

4.3 TSP libraries

In the execution of the experiments, a selection of instances with symmetric structure from the
TSPLIB library is used, providing a large sample of data. The symmetric data structure means
that the cost of traveling from city i to city j is similar to the cost of traveling from j to city i,
where i and j are cities included in the TSP. Table 1(Guzman et al., 2016) shows names of the
TSPLIB samples, information data structure, and number of cities.

Table 1: TSPLIB instances.

N TSPLIB Structure Number of cities
1 a280.tsp EUCLIDEAN2D 280
2 berlin52.tsp EUCLIDEAN2D 52
3 bier127.tsp EUCLIDEAN2D 127
4 ch130.tsp EUCLIDEAN2D 130
5 ch150.tsp EUCLIDEAN2D 150
6 d198.tsp EUCLIDEAN2D 198
7 d493.tsp EUCLIDEAN2D 493
8 d657.tsp EUCLIDEAN2D 657
9 eil101.tsp EUCLIDEAN2D 101
10 eil51.tsp EUCLIDEAN2D 51
11 eil76.tsp EUCLIDEAN2D 76
12 kroA100.tsp EUCLIDEAN2D 100
13 kroA150.tsp EUCLIDEAN2D 150
14 kroA200.tsp EUCLIDEAN2D 200
15 kroB100.tsp EUCLIDEAN2D 100
16 kroB150.tsp EUCLIDEAN2D 150
17 kroB200.tsp EUCLIDEAN2D 200
18 kroC100.tsp EUCLIDEAN2D 100
19 kroD100.tsp EUCLIDEAN2D 100

Table 1 continued from previous page
20 kroE100.tsp EUCLIDEAN2D 100
21 lin105.tsp EUCLIDEAN2D 105
22 lin318.tsp EUCLIDEAN2D 318
23 linhp318.tsp EUCLIDEAN2D 318
24 p654.tsp EUCLIDEAN2D 654
25 pcb442.tsp EUCLIDEAN2D 442
26 pr76.tsp EUCLIDEAN2D 76
27 pr107.tsp EUCLIDEAN2D 107
28 pr124.tsp EUCLIDEAN2D 124
29 pr136.tsp EUCLIDEAN2D 136
30 pr144.tsp EUCLIDEAN2D 144
31 pr152.tsp EUCLIDEAN2D 152
32 pr226.tsp EUCLIDEAN2D 226
33 pr264.tsp EUCLIDEAN2D 264
34 pr299.tsp EUCLIDEAN2D 299
35 pr439.tsp EUCLIDEAN2D 439
36 rat99.tsp EUCLIDEAN2D 99
37 rat195.tsp EUCLIDEAN2D 195
38 rat575.tsp EUCLIDEAN2D 575
39 rat783.tsp EUCLIDEAN2D 783
40 rd100.tsp EUCLIDEAN2D 100
41 rd400.tsp EUCLIDEAN2D 400
42 st70.tsp EUCLIDEAN2D 70
43 ts225.tsp EUCLIDEAN2D 225
44 tsp225.tsp EUCLIDEAN2D 225
45 u159.tsp EUCLIDEAN2D 159
46 u574.tsp EUCLIDEAN2D 574
47 u724.tsp EUCLIDEAN2D 724
48 gil262.tsp EUCLIDEAN2D 262
49 fl417.tsp EUCLIDEAN2D 417

Data are represented in a 2D Euclidean structure, and therefore the cost associated with a given
traveling distance is calculated with the Euclidean distance function (Guzman et al., 2016):

d =

√
(xi − xj)2 + (yi − yj)2 (4.1)

4.4 Results

Here it is compared the results from the two TSP algorithms, which were executed in the same
environment for each instance of the TSPLIB library. Table 2(Guzman et al., 2016) shows the
optimum value of the library for each instance, the value obtained from the two algorithms, and
the relative error of each. The relative error is obtained by subtracting the optimal value from
the obtained solution.

Table 2: Comparison between optimal value and ob-
tained solutions.

N TSPLIB
Optimal

value

Values of
proposed
algorithm

Errors
of the

proposed
algorithm

Values
from

Algorithm

Errors
from

Algorithm

1 a280 2.579,00 4.987,30 93,38% 6.631,50 157,13%
2 berlin52 7.542,00 8.151,90 8,09% 9.023,90 19,65%
3 bier127 118.282,00 140.760,00 19,00% 161.770,00 36,77%
4 ch130 6.110,00 8.232,90 34,74% 10.757,00 76,06%
5 ch150 6.528,00 9.359,00 43,37% 12.451,00 90,73%
6 d198 15.780,00 20.978,00 32,94% 37.183,00 135,63%
7 d493 35.002,00 65.744,00 87,83% 82.927,00 136,92%
8 d657 48.912,00 127.000,00 159,65% 142.310,00 190,95%
9 eil101 629,00 761,81 21,11% 1.645,70 161,64%

10 eil51 426,00 461,99 8,45% 853,69 100,40%
11 eil76 538,00 608,95 13,19% 1.362,60 153,27%
12 kroA100 21.282,00 26.800,00 25,93% 38.583,00 81,29%
13 kroA150 26.524,00 37.300,00 40,63% 48.308,00 82,13%
14 kroA200 29.368,00 47.200,00 60,72% 57.510,00 95,83%
15 kroB100 22.141,00 27.600,00 24,66% 37.757,00 70,53%
16 kroB150 26.130,00 36.600,00 40,07% 45.250,00 73,17%
17 kroB200 29.437,00 47.300,00 60,68% 61.941,00 110,42%
18 kroC100 20.749,00 26.600,00 28,20% 36.000,00 73,50%
19 kroD100 21.294,00 26.300,00 23,51% 30.851,00 44,88%
20 kroE100 22.068,00 27.700,00 25,52% 37.249,00 68,79%
21 lin105 14.379,00 18.300,00 27,27% 24.638,00 71,35%
22 lin318 42.029,00 84.900,00 102,00% 116.570,00 177,36%
23 linhp318 41.345,00 85.400,00 106,55% 114.340,00 176,55%
24 p654 34.643,00 74.700,00 115,63% 341.980,00 887,15%
25 pcb442 50.778,00 118.000,00 132,38% 124.490,00 145,17%
26 pr76 108.159,00 123.000,00 13,72% 153.300,00 41,74%
27 pr107 44.303,00 56.100,00 26,63% 117.380,00 164,95%
28 pr124 59.030,00 82.000,00 38,91% 142.460,00 141,33%
29 pr136 96.772,00 136.000,00 40,54% 166.960,00 72,53%
30 pr144 58.537,00 89.100,00 52,21% 136.060,00 132,43%
31 pr152 73.682,00 101.000,00 37,08% 201.160,00 173,01%
32 pr226 80.369,00 141.000,00 75,44% 322.160,00 300,85%
33 pr264 49.135,00 80.400,00 63,63% 206.910,00 321,11%
34 pr299 48.191,00 97.600,00 102,53% 133.020,00 176,03%
35 pr439 107.217,00 225.000,00 109,85% 340.140,00 217,24%

Table 2 continued from previous page
36 rat99 1.211,00 1.510,00 24,69% 2.942,00 142,94%
37 rat195 2.323,00 3.690,00 58,85% 5.687,50 144,83%
38 rat575 6.773,00 16.260,00 140,07% 17.356,00 156,25%
39 rat783 8.806,00 25.048,00 184,44% 26.376,00 199,52%
40 rd100 7.910,00 9.866,00 24,73% 11.942,00 50,97%
41 rd400 15.281,00 32.295,00 111,34% 38.770,00 153,71%
42 st70 675,00 734,66 8,84% 1.711,20 153,51%
43 ts225 126.643,00 256.330,00 102,40% 301.380,00 137,98%
44 tsp225 3.916,00 6.418,90 63,91% 8.386,20 114,15%
45 u159 42.080,00 64.611,00 53,54% 86.214,00 104,88%
46 u574 36.905,00 93.203,00 152,55% 99.177,00 168,74%
47 u724 41.910,00 120.080,00 186,52% 127.280,00 203,70%
48 gil262 2.378,00 4.214,50 77,23% 6.506,70 173,62%
49 fl417 11.861,00 23.483,00 97,98% 64.332,00 442,38%

Comparing the relative error of each of the algorithms against the optimal solution, it is seen
that the results obtained by the proposed algorithm are closer to the optimal solution. In other
words, it is achieved greater convergence using the proposed algorithm. On the other hand, it
is inferred that as the iterations increase and the number of workers increases, the proposed
algorithm arrives faster at a closer solution, without any possibility that the algorithm only finds
a local optimum due to the random behavior of the genetic algorithm.

5 Conclusions

The results of the tests indicate that our parallel algorithm improves the TSP solution in compar-
ison with (Guzman et al., 2016) framework, providing better convergence to the optimal value.
In addition, it can be concluded that a greater number of iterations and nodes leads to improved
solutions, with no danger of the proposed algorithm stagnating at a local optimum due to the
randomness of the genetic algorithm. An increase in the number of iterations in each node
may lead to a considerable improvement in the quality of solutions. The performance of the
proposed algorithm should also be evaluated in more robust computational systems.

Acknowledgment

This work was supported by Yahwed God, the Lord Jesus Christ and Holy Spirit. He made this
possible.

References

Anaya Fuentes, G. E., Hernández Gress, E. S., SeckTuoh Mora, J. C. and Medina Marı́n, J.
2018. Solution to travelling salesman problem by clusters and a modified multi-restart
iterated local search metaheuristic, PLoS ONE (2): 1–20.

Azlan, A. and Hussin, N. M. 2013. Implementing graph coloring heuristic in construction phase
of curriculum-based course timetabling problem, 2013 IEEE Symposium on Computers
and Informatics (ISCI) (1): 25–29.

Bensouyad, M. and Saidouni, D. 2016. A guide to graph colouring. algorithms and applications,
2016 Springer International Publishing (1): 1–25.

Bouzidi, M. and Riffi, M. E. 2014. Discrete novel hybrid particle swarm optimization to solve trav-
elling salesman problem, 2014 5th Workshop on Codes, Cryptography and Communication
Systems (WCCCS) (2): 17–20.

Caballero-Morales, S.-O., Martinez-Flores, J.-L. and Sanchez-Partida, D. 2018. Dynamic
reduction-expansion operator to improve performance of genetic algorithms forthe traveling
salesman problem, Hindawi Mathematical Problems in Engineering (1): 1–10.

Chen, M. R., Weng, J. and Li, X. 2010. A novel multiobjective optimization algorithm for 0/1
multiobjective knapsack problems, 2010 5th IEEE Conference on Industrial Electronics and
Applications (1): 1511–1516.

Dadaneh, B. Z., Markid, H. Y. and Zakerolhosseini, A. 2015. Graph coloring using intelligent
water drops algorithm, 2015 23rd Iranian Conference on Electrical Engineering (1): 595–
600.

Dazhi, w. and Shixin, L. 2010. An agent-based evolutionary search for dynamic travelling
salesman problem, 2010 WASE International Conference on Information Engineering
(2): 111–114.

Fister, I. and Brest, J. 2011. Using differential evolution for the graph coloring, 2011 IEEE
Symposium on Differential Evolution (SDE) (1): 1–7.

Guzman, L. G., N. Ruiz, E. D., Ardila, C. J., Jabba, D. and Nieto, W. 2016. A novel framework
for the parallel solution of combinatorial problems implementing tabu search and simulated
annealing algorithms, 2016 6th International Conference on Computers Communications
and Control (ICCCC) (1): 259–263.

Hajarian, M., Shahbahrami, A. and Hoseini, F. 2016. A parallel solution for the 01 knapsack prob-
lem using firefly algorithm, 2016 1st Conference on Swarm Intelligence and Evolutionary
Computation (CSIEC) (1): 25–30.

Hong, Y., Vaidya, J., Lu, H. and Shafiq, B. 2011. Privacy-preserving tabu search for distributed
graph coloring, 2011 IEEE Third International Conference on Privacy, Security, Risk and
Trust and 2011 IEEE Third International Conference on Social Computing (2): 951–958.

Hussain, A., Shad Muhammad, Y., Nauman Sajid, M., Hussain, I., Mohamd Shoukry, A. and
Gani, S. 2017. Genetic algorithm for traveling salesman problem with modified cycle
crossover operator, HindawiComputational Intelligence and Neuroscience (2): 1–7.

Ji, J., Huang, Z., Liu, C., Liu, X. and Zhong, N. 2007. An ant colony optimization algorithm
for solving the multidimensional knapsack problems, 2007 IEEE/WIC/ACM International
Conference on Intelligent Agent Technology (IAT’07) (2): 10–16.

Karamcheti, V. and Malek, M. 1991. A tsp engine for performing tabu search, Proceedings of
the International Conference on Application Specific Array Processors (2): 309–321.

Khan, A. A., Khan, M. U. and Iqbal, M. 2012. Multilevel graph partitioning scheme to solve trav-
eling salesman problem, 2012 Ninth International Conference on Information Technology -
New Generations (1): 458–463.

Kin-Ming, L., Wei-Ying, Y., Pak-Kan, W., Kwong-Sak, L., Yee, L. and Sui-Tung, M. 2018. A
genetic algorithm with new local operators for multiple traveling salesman problems, 2018
International Journal of Computational Intelligence Systems 11(1): 692–705.

Kondo, F. and Watanabe, T. 2011. A tsp engine for performing tabu search, 2011 IEEE
International Conference on Systems, Man, and Cybernetics (2): 675–680.

Liu, X., Zhang, B. and Du, F. 2014. Integrating relative coordinates with simulated annealing
to solve a traveling salesman problem, 2014 Seventh International Joint Conference on
Computational Sciences and Optimization (2): 177–180.

Luo, W., Lin, D. and Feng, X. 2016. An improved ant colony optimization and its application on
tsp problem, 2016 IEEE International Conference on Internet of Things (iThings) and IEEE
Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social
Computing (CPSCom) 2(40): 136–145.

Marappan, R. and Sethumadhavan, G. 2013. A new genetic algorithm for graph coloring, 2013
Fifth International Conference on Computational Intelligence, Modelling and Simulation
(2): 49–54.

Marappan, R. and Sethumadhavan, G. 2016. Solution to graph coloring problem using di-
vide and conquer based genetic method, 2016 International Conference on Information
Communication and Embedded Systems (ICICES) (1): 1–5.

Mohammad, H. R. and Lixin, T. 2018. Parallelizing combinatorial optimization heuristics
with gpus, 2017 International Symposium on Computer Science and Intelligent Controls
(ISCSIC) 3(2): 265–280.

Mudaliar, D. N. and Modi, N. K. 2013. Unraveling travelling salesman problem by genetic
algorithm using m-crossover operator, 2013 International Conference on Signal Processing
, Image Processing and Pattern Recognition (1): 127–130.

Niño, E., Ardila, C., Perez, A. and Donoso, Y. 2010. A genetic algorithm for multiobjective hard
scheduling optimization, International Journal of Computers Communications & Control
5(5): 825–836.

Niño, E. D. 2012. Samods and sagamods: Novel algorithms based on the automata theory for
the multi-objective optimization of combinatorial problems, International Journal of Artificial
Intelligence 12(8): 147–165.

Nino-Ruiz, E., Ardila, C. and Capacho, R. 2018. Local search methods for the solution of implicit
inverse problems, Soft Comput 22, Springer (22): 4819–4832.

Niu, B. and Bi, Y. 2014. Binary bacterial foraging optimization for 0/1 knapsack problem, 2014
IEEE Congress on Evolutionary Computation (CEC) (1): 647–652.

Ohlsson, M., Peterson, C. and Sderberg, B. 1993. Neural networks for optimization problems
with inequality constraints: The knapsack problem, Neural Computation 5(2): 331–339.

Precup, R. E., David, R.-C., Petriu, E. M., Szedlak-Stinean, A.-I. and Bojan-Dragos, C.-A. 2016.
Grey wolf optimizer-based approach to the tuning of pi-fuzzy controllers with a reduced
process parametric sensitivity, 4th IFAC Conference on Intelligent Control and Automation
SciencesICONS 2016 Reims, 13 June 2016, IFAC-PapersOnLine,France 49(5): 55–60.

Precup, R. E. and Tomescu, M. 2015. Stable fuzzy logic control of a general class of chaotic
systems, Neural Computing and Applications 26(3): 541–550.

Ruiz-Rangel, J., Ardila Hernández, C., Jabba Molinares, D. and Maradei Gonzalez, L. 2018.
Ernead: Training of artificial neural networks based on a genetic algorithm and finite
automata theory, International Journal of Artificial Intelligence 16(1): 214–253.

Scholz, J. 2019. Genetic algorithms and the traveling salesman problem a historical review,
Neural and Evolutionary Computing (cs.NE) (1): 1–8.

Sharma, P. and Gupta, M. 2015. Tsp problem using modified abc based on dynamically
division of bees, 2015 International Conference on Computing Communication Control and
Automation (1): 427–431.

	TABU-TSP-PARALLEL.pdf
	Introduction
	Combinatorial optimization problems
	Knapsack problem
	Minimum coloring problem
	The traveling salesman problem (TSP)

	Solution of the TSP problem through metaheuristic algorithms
	Adaptation of genetic algorithm
	Adaptation of Tabu search
	Master-slave algorithmic structure
	Main algorithm

	Methodology and analysis
	Hardware Specifications
	Software Specifications
	TSP libraries
	Results

	Conclusions

