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ABSTRACT 

Nowadays, global and local safety and security are gaining increased importance, in terms of 
product and process safety as well. The most important and widespread method for risk analysis 
are Failure Mode and Effect Analysis (FMEA), and its predecessor Failure Mode Effects and 
Criticality Analysis (FMECA), which are used for a wide range of purposes. However, traditional 
FMEA and FMECA have shortcomings as well, which need to be avoided to gain a complex, correct 
analysis. In our work, our goal is to give an overview about the non-conventional Failure Mode and 
Effect methods, which are related to fuzzy logic. Three wide fields are taken into consideration in 
our study: Multi-Criteria Decision Making methods, Mathematical Programming and Artificial 
Intelligence approaches. These approaches tend to solve the major shortcomings of FMEA in 
handling risk analysis. In our work, we sort out the advantages and possible disadvantages of the 
mentioned analysis types. 
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1 INTRODUCTION 
 

The aim our work is to identify conventional and non-conventional Failure Mode and Effect Analysis 

methods and to describe the development of the non-conventional types. In the following, we would like 

to focus on the description of different types (due to purpose, structure and methodological changes) of 

Failure Mode and Effect Analysis. 

Failure Mode and Effect Analysis (FMEA) has approximately 70 years of history since it was invented 

in the 1940’s (Spreafico, C., et al, 2017), (AIAG VDA FMEA Handbook, 2019). At first, the US military 

developed the method, which was later improved by NASA. The first written process description was 

MIL-P-1629, a military standard in 1949 (Stamatis, D. H., 2003). During the second half of the 20th 

century FMEA gained importance in design and process analysis as well.  

Although FMEA has become a very popular and widely applied technique it has some shortcomings 

that led to the development of different non-conventional versions of the original method as well. In this 

paper, we give an overview and classification of those FMEA types that are related to fuzzy logic. The 

rest of this paper is organized as follows.  

http://www.ceser.in/ceserp
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Section 2 describes the conventional FMEA, its types and barriers. In contrast to this, in Section 3 we 

introduce the main non-conventional FMEA types: FMEA based on Multi-Criteria Decision Method; on 

Mathematical Programming approaches; on Artificial Intelligence solutions and Integrated approaches.  

 

2 CONVENTIONAL FAILURE MODE AND EFFECT ANALYSIS 
 

2.1 Basic FMEA types according their purpose 
 

The aim of the Failure Mode and Effect Analysis is to quantify the failure modes of a given system, 

product or process. FMEA has four basic types, which are the following: System FMEA, Product (Design) 

FMEA, Process FMEA and Service FMEA (Stamatis, D. H., 2003). System FMEAs are often considered 

as general analyses, as they obviously cannot contain all sub-FMEAs. Product FMEAs focus on the 

product itself, divided into parts, which depend on the complexity of the products. Process FMEAs in 

general are production related. They focus on the production process itself, and they are the basic 

quality management tools of manufacturers.  

The main advantage of FMEA usage is that in case of an individual product a properly conducted FMEA 

chain (Product-, Design-, Process-FMEA) the failure effects and causes are linked to each other. In the 

end, this results in a complex analysis of even the most insignificant failure, with links to the effects on 

system level as well. According to Stamatis (Stamatis, D. H., 2003) System-, Design- and Process 

FMEAs are linked through failure cause-failure mode connections, as it is shown in Figure 1. According 

to Stamatis the failure cause of the system analysis is linked to the design failure. This way, the design 

cause is related to the process failure mode failures (Stamatis, D. H., 2003). 

 

2.2 FMEA ratings 
 

The failure modes are ranked according their Risk Priority Number (RPN) (Stamatis, D. H., 2003), that 

is calculated by 

 DOSRPN   (1) 

 

where, S denotes Severity, O symbolizes Occurrence, and D stands for Detection. Severity measures 

the seriousness of the failure effect, while occurrence and detection ratings are related to the failure 

cause or the failure mode. Each factor is rated from 1 to 10 (or from 1 to 5). If all factors are rated with 

a maximum value of 10, the RPN is 1000. 

Proper ratings are the basis of a precise FMEA. Therefore, a common rating catalogue is necessary for 

a consequent evaluation. Rating catalogues give a common understanding for the FMEA team when it 

comes to failure evaluation. In the following (Tables 1-3) a widely used FMEA catalogue is described 

for the three different risk criteria (Chang, K.H., et al., 2010) (Liu, H.C. et al., 2013).  
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System FMEA 

Failure mode Effect Cause 

The problem The ramifications of 
the problem 

The cause(s) of the 
problem 

 

 

 

 

Design FMEA 

Failure mode Effect Cause 

The causes of the 
problem from the 

system FMEA 

The effect from the 
system FMEA with 
perhaps a better 

definition 

New root causes for 
the design failure 

modes 

 

 

 

Process FMEA 

Failure mode Effect Cause 

The causes of the 
problem from the 

design FMEA 

The same effect as 
the design FMEA 

Specific root causes 
for the process 
failure modes 

 

Figure 1. Connections between System-, Design- and Process FMEAs  
(Stamatis, D. H., 2003) 

 

Table 1: Rating catalogue for Severity criteria (Chang, K.H. et al., 2010). 

Effect Criteria: severity of effect Rank 

Hazardous Failure is hazardous and occurs without warning. 
It suspends operation of the system and/or involves noncompliance with 
government regulations. 

10 

Serious Failure involves hazardous outcomes and/or noncompliance with 
government regulations or standards. 

9 

Extreme Product is inoperable with loss of primary function. The system is inoperable. 8 

Major Product performance is severely affected but functions. The system may not 
operate. 

7 

Significant Product performance is degraded. Comfort or convince functions may not 
operate 

6 

Moderate Moderate effect on product performance. The product requires repair. 5 

Low Small effect on product performance. The product does not require repair. 4 

Minor Minor effect on product or system performance 3 

Very minor Very minor effect on product or system performance. 2 

None No effect 1 

 

Table 2: Rating catalogue for Occurrence criteria (Chang, K.H. et al., 2010). 

Effect Criteria: occurrence of failure cause Rank 

Extremely high: failure almost 
inevitable 

≥1 in 2 10 

Very high 1 in 3 9 

Repeated failures 1 in 8 8 

High 1 in 20 7 

Moderately high 1 in 80 6 

Moderate 1 in 400 5 

Relatively low 1 in 2000 4 

Low 1 in 15000 3 

Remote 1 in 150000 2 

Nearly impossible ≤ in 1500000 1 
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Table 3: Rating catalogue for Occurrence criteria (Liu, H.C. et al., 2013). 

Detection Criteria: likelihood of detection by design control Rank 

Absolute uncertainty Design control does not detect a potential cause of failure or 
subsequent failure mode; or there is no design control 

10 

Very remote Very remote chance the design control will detect a potential cause 
of failure or subsequent failure mode 

9 

Remote Remote chance the design control will detect a potential cause of 
failure or subsequent failure mode 

8 

Very low Very low chance the design control will detect a potential cause of 
failure or subsequent failure mode 

7 

Low Low chance the design control will detect a potential cause of 
failure or subsequent failure mode 

6 

Moderate Moderate chance the design control will detect a potential cause 
of failure or subsequent failure mode 

5 

Moderately high Moderately high chance the design control will detect a potential 
cause of failure or subsequent failure mode 

4 

High  High chance the design control will detect a potential cause of 
failure or subsequent failure mode 

3 

Very high Very high chance the design control will detect a potential cause 
of failure or subsequent failure mode 

2 

Almost certain Design control will almost certainly detect a potential cause of 
failure or subsequent failure mode 

1 

 

The risk assessment process is described in Figure 2.  

 

Figure 2. Description of Risk Assessment process (ISO/IEC 31010:2009) 
 

2.3 Shortcomings of FMEA 

 

FMEA is a traditional method for risk analysis, which takes the aforementioned three factors into 

consideration during the analysis. Equation (1) is a simple multiplication of these factors, which is often 

criticized by researchers (e.g. Liu, H.C. et al, 2013). In the following, the main shortcomings are listed 

and described. 

If the relative importance of S, O, D factors are considered equal, it might cause that some combination 

of them results in lower RPN, but higher risk (Chang, K.H., et al, 2010).  
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For example: 

 96348RPN1    

 108=943=RPN2   

In this case Severity is 8 (hazardous effect), Occurrence is 4 (relatively low rate of occurrence) and 

Detection is 3 (high detection). This RPN1 value is lower than the result of the following risk analysis. 

The second case results in RPN2, which is a multiplication of Severity 3 (minor severity), Occurrence 4 

(relatively low rate of occurrence) and Detection 9 (very remoted detection) (Chang, K.H. et al, 2010). 

Having RPN1 lower than RPN2 means that the seriousness of the failure is not consequent. The same 

problem occurs if different combinations of O, S and D may produce the same RPN value Liu, H.C. et 

al, 2013). 

Concerning the rating catalogues, the following issues might occur: the three risk factors are difficult to 

be precisely evaluated; the conversion of scores is different for the three risk factors; the RPN cannot 

be used to measure the effectiveness of corrective actions and RPNs are not continuous with many 

holes (Liu, H.C. et al, 2013). 

The method itself has the following shortcomings: the value of RPN might be the same, but their hidden 

risk implications may be totally different and the interdependencies among various failure modes and 

effects are not taken into consideration (Liu, H.C. et al, 2013). 

The above-mentioned concerns have led to the development of several non-conventional FMEA 

variants that are presented and described in the following sections. 

 

3 NON-CONVENTIONAL FAILURE MODE AND EFFECT ANALYSIS TYPES 

 

In terms of FMEA, there are multiple non-conventional approaches. According to Hu-Chen Liu et al (Liu, 

H.C. et al, 2013) the following sub-groups can be identified: Multiple Criteria Decision Making 

applications, Mathematical Programming methods, Artificial Intelligence applications, Integrated 

approaches and Other (mixed) approaches. In our work, we focus on MCDM applications, Mathematical 

programming approaches and Artificial Intelligence solutions. 

3.1 Multiple Criteria Decision Making applications  

 

According to Massam (Massam, B.H., 1988) Multiple Criteria Decision Making applications (MCDM) 

are related to several decision making applications, as the following: Multi-Attribute Decision Making 

(MADM), Multi-Attribute Utility Theory (MAUT), Multi-Objective Decision Making (MODM) and Public 

Choice Theory (PCT).  

They can be used for planning processes, if multiple decision alternatives are applicable (Massam, B.H., 

1988), or at FMEA processes if multiple choices are applicable for each factor categories. MADM is 

applied if there are finite feasible sets of alternatives and the aim is to choose the best solution, in case 

of planning problems.  
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MCDM is used if the objective is to define finite number of possible alternatives for a given problem (the 

problem is typically solved with mathematical programming). MADM and MODM are applied in case of 

single decision makers or unified opinions (Massam, B.H., 1988). 

In case of MAUT approaches the task is to evaluate the utilities of the given alternatives. As a result, 

the highest utility value is considered as the best possibility (in planning processes) (Massam, B.H., 

1988). PCT is applied if consensus is needed in a certain decision situation, as well in a case of a risk 

category selection. 

In general, it can be stated that the MCDM method consists of three areas, which were previously 

isolated. These are the following: Solution generation via search, Solution selection via preference 

aggregation and trade-off, and Interactive visualization (Massam, B.H., 1988). 

According to the tree fields mentioned, the MCDM methods cover these main solutions of planning 

problems: well-distributed Pareto sets (Solution generation via search), Bayesian and Fuzzy decision-

making techniques (Solution selection via preference aggregation and trade-off, and Interactive 

visualization) (Massam, B.H., 1988). 

 

Table 4: Example of Fuzzy MCDM related applications used for FMEA and other approaches (Liu, 
H.C, et al, 2013), (Boral, S., et al, 2020). 

Method Author/year Practical approaches/Practical FMEA applications 

Fuzzy ME-MCDM Franceschini and 
Galetto, 2001 

risk analysis/Several design and manufacturing 
purposes 

Fuzzy evidence theory Guo et al.,2007  
Li and Liao,2007 
Wang et al., 2006  
Xu et al., 2006 
Yang et al.,2006 

comparison of technical products (cars) 
corporate risk analysis 
environmental impact assessment 
personal performance assessment 
car ranking 

Fuzzy AHP/ANP Hu et al., 2009 
 
Boral et al.,2009  

component risk analysis / Fuzzy FMEA of 
components 
manufacturing risk analysis / Fuzzy Process FMEA  

Fuzzy TOPSIS Boran et al.,2009 
Taylan et al.,2015 
Dagdeviren et 
al.,2009   
Braglia et al.,2003  

supplier selection (automotive, etc.) 
risk assessment of construction projects 
 
weapon selection 
production risk analysis / Fuzzy Production FMEA 

Fuzzy Grey theory Zhou and Thai, 
2016 
 
Shi and Fei,2019 
 
Geum et al.,2011 

failure analysis / Fuzzy FMEA for tanker equipment 
failure prediction 
 
failure analysis / Combined Fuzzy FMEA method for 
medical service process 
failure analysis / Service specific Fuzzy FMEA 
(hospital service) 

Fuzzy DEMATEL Seyed et al. ,2006 
 
Govindan and 
Chaudhuri,2016 

failure analysis / Product specific Fuzzy FMEA 
(turbocharger product FMEA) 
 
risk analysis of third-party logistics service 

VIKOR Liu et al.,2012 
 
Mete et al, 2019 

failure analysis / Fuzzy FMEA for medical processes 
occupational risk assessment of a natural gas 
pipeline construction 

COPRAS Roozbahani et 
al.,2020 

water transfer planning 

SWARA/COPRAS Zarbakhshnia et 
al., 2018 

risk analysis of third-party logistics service 
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Method Author/year Practical approaches/Practical FMEA applications 

ELECTRE(-TRI) Certa et al., 2017 
Liu and Ming 
(2019) 

Fuzzy FMEA / Alternative failure mode classification 
Fuzzy FMECA / Fuzzy FMECA for smart product 
service 

MULTIMOORA Liu et al. (2014) Evaluation of failure modes / Fuzzy MULTIMOORA 
FMEA 

 
3.1.1 Integrated FMEA and FAHP (Fuzzy Analytic Hierarchy Process) for risk analysis 

 

The integrated FAHP (Fuzzy Analytic Hierarchy Process) method is derived from the AHP (Analytic 

Hierarchy Process). AHP is a tool for determining the priority and relative importance of alternatives in 

a MCDM situation (Hu, A.H. et al, 2009). AHP was first introduced by Saaty (Saaty, 1980). In the 

following the integrated FAHP method will be introduced, which is closely linked to the traditional AHP 

method. According to Hu et al. integrated FMEA and FAHP is an effective method for risk analysis.  

Their proposed solution corrects the disabilities of the traditional AHOP method, which handles 

uncertainty and imprecision of decision makers less effective. In their study they have analysed the risk 

of green components and hazardous materials. According to Hu et al.’s approach the integrated method 

consists of three sub-processes: definition of criteria and risk assessment with FMEA, definition of 

relative importance of factors, utilization of integrated approach (Hu, A.H., et al, 2009). 

The outcome equation of Hu et al.’s approach is 
 

 )(S) (S)(S)(S)(D)(D)(O)(O 22111111
S×W+S×W+S×W+S×W=RPN  (2) 

 

where W is the weight of criteria of RPN, and S is the score of criteria of RPN.  

3.1.2 Franceschini and Galetto’s Fuzzy ME-MCDM method 
 

Bellman and Zadeh (Bellman and Zadeh,1970) introduced fuzzy sets within MCDM, which resulted later 

in the establishment of FCDM (Fuzzy Multicriteria Decision Making). Due to the usage of linguistic 

variables FN (Fuzzy Numbers) are implemented. FN can be either Gaussian, trapezoidal or triangular 

(Franceschini, F. and Galetto, M., 2001). 

 

 )} (ag)),(g[Max{Neg(IMin=)RPC(a i ji ji , (3) 

 

Where: 

  : Risk Priority Code for the failure mode ai 

         : the importance associated with each criteria gi; gi is the evaluation criteria (S, O, D  

                       factors), j=1,…,n   

: the negation of the importance assigned to each decision-making criterion. 

 

With the usage of fuzzy MCDM FMEA method the failure mode with the maximum risk priority code is 

defined as follows (Franceschini, F. and Galetto, M., 2001): 

 

)RPC(ai

)I(gi

))Neg(I(gi
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 )},{RPC(a Max=RPC(a*)  iAai 
 (4) 

 

where a is the set of failure modes, RPC (ai)is defined on a new 10-point ordinal scale as those values 

utilized for expressing index evaluations. 

With the usage of Franceschini and Galetto’s method a different level of importance of S, O, D factors 

can be defined as follows (Franceschini, F. and Galetto,M.,2001) 

 )]RPC(a),RPC(a),RPC(a),[RPC(aMax=) RPN(a* n3 2 1ai A
 (5) 

The most important advantage of this method is that different importance levels can be given to each 

FMEA factors (Severity, Occurrence, Detection). This is important in terms of the FMEA’s purpose as 

well. In case of Design FMEA (Product FMEA) the severity values can have more importance, whilst in 

case of Process FMEA, the same applies for the Occurrence factor. 

  )NERS(FM,…1,=n)),(FM ERS+) (FM (ERS 
2

1
=)(FM )ERS( n n

U

n

L

n  (6) 

 

3.1.3 Grey theory used for Fuzzy FMEA  

 

The Fuzzy FMEA based on grey theory proposed by Zhou and Thai (Zhou and Thai, 2016) is based on 

the assumption that with the fuzzification each risk criteria can be weighted (in contrast to the traditional 

method). 

In the following, linguistic terms for each risk criteria are mentioned. In Table 5, the linguistic terms of 

Occurrence are presented. In this proposed example 5 levels are mentioned, i.e. VH (Very High), H 

(High), M (Moderate), L (Low), and R (Remote) (Zhou and Thai, 2016): 

Table 5: Linguistic terms of Occurrence (factor O) (Zhou and Thai, 2016). 

Rating Probability of occurrence Fuzzy number 

Very high (VH) Failure is almost inevitable (8, 9, 10,10) 

High (H)  Repeated failures  (6, 7, 8,9) 

Moderate (M)  Occasional failures (3, 4, 6,7) 

Low (L)   Relatively few failures (1, 2, 3,4) 

Remote (R) Failure is unlikely  (1, 1, 1,2) 

 

In Table 6, the linguistic terms of Severity are presented. 10 different levels are differentiated in this 

example (HWOW, HWW, VH, H, M, L, VL, MR, VMR, N): 

Table 6: Linguistic terms of Severity (factor S) (Zhou and Thai, 2016). 

Rating Severity of occurrence Fuzzy number 

Hazardous without 
warning (HWOW) 

Very high severity ranking without 
warning 

(9,10,10) 

Hazardous with 
warning (HWW) 

Very high severity ranking with 
warning 

(8, 9,10) 

Very high (VH) System inoperable with destructive 
failure 

(7, 8,9) 

High (H) System inoperable with equipment 
damage 

(6, 7,8) 

Moderate (M) System inoperable with minor damage (5, 6,7) 
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Rating Severity of occurrence Fuzzy number 

Low (L) System inoperable without damage (4, 5,6) 

Very low (VL) System operable with significant 
degradation of performance 

(3, 4,5) 

Minor (MR) System operable with some 
degradation of performance 

(2, 3,4) 

Very minor (VMR) System operable with minimal 
interference 

(1, 2,3) 

None (N) No effect (1, 1,2) 

 

In Table 7, the linguistic terms of Detection are defined (AU, VR, R, VL, L, M, MH, H, VH, AC). 

Table 7: Linguistic terms of Detection (factor D) (Zhou and Thai, 2016). 

Rating Severity of effect Fuzzy number 

Absolute uncertain (AU) No chance (9,10,10) 

Very remote (VR) Very remote chance (8, 9,10) 

Remote (R) Remote chance (7, 8, 9) 

Very low (VL) Very low chance (6, 7, 8) 

Low (L) Low chance (5, 6, 7) 

Moderate (M) Moderate chance (4, 5, 6) 

Moderately high (MH) Moderately high chance (3, 4, 5) 

High (H) High chance (2, 3, 4) 

Very high (VH) Very high chance (1, 2, 3) 

Almost certain (AC) Almost certainty (1, 1, 2) 

 

Finally, the S, O, D factors are de-fuzzified according to their membership functions: 

 

     


n

i

n

i ii

n

i i dacbcbxK
0 00

)()(/)()(  (7) 

 

where K(x) is the defuzzified crisp number, n is the number of alpha levels. In case of the grey coefficient 

calculation, there is a correlation measure between xi, yi . 

 

   )y,(xXyx, m0,1,2,...,iI,i|xXset  For the iiisi,i   (8) 

 

where ∆0j(k) is the absolute difference between x0(k) and xj(k), x0 contains standard series, xi contains 

comparative series. In this case, according to the above mentioned definitions, the grey coefficient is 

calculated as follows: 

   (max)])(0/[(max)(min)(k))x(k),(x i0 xkixx    (9) 

Where: 

 

  (k)minmin=x(min) 0iki   (10) 

 (k)maxmax=x(max) 0iki   (11) 

According to the principle of minimum ζϵ[0,1] is generally ζ=0.5. The degree of relation is defined as the 

value of grey relation coefficient: 

 )()()( 00 kxkxk ii   (12) 
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 )),(),(( 0 kxkx i  nk ,...,2,1  (13) 

  


n

k ii kxkx
n

xx
1 00 ))(),((

1
),(   (14) 

 

As a conclusion, the following equation stands for the FMEA calculation: 

 

 ))(),(())(),(())0(),0((),( 00000 DxDxSxSxxxxx iDisii    (15) 

 

Finally, Zhou and Thai propose a joint method of fuzzy and grey theory. Their method is separated into 

three main parts: the establishment of fuzzy rules, determination of linguistic terms and fuzzy 

membership function; the calculation of FRPN (Fuzzy RPN) by weighted geometric mean method and 

the defuzzification of S, O, D for obtaining a crisp number (Zhou and Thai, 2016). 

The advantage of the joint method is that the advantage of grey theory usage can be applied as well. 

Grey theory reflects on the nature of relative ranking, which is fortunate, if the evaluation information is 

not reliable, or incomplete (Zhou and Thai, 2016). 

 

3.2  Mathematical programming applications 
 
Mathematical programming applications are relevant parts of the non-conventional FMEA methodology. 

There are three main of the mentioned applications, summarized in Table 8: Fuzzy RPN method, Fuzzy 

DEA FMEA and Fuzzy Interval DEA FMEA. Fuzzy RPN method is used in cases of process and product 

level risk analyses, fuzzy DEA FMEA is used mainly for specific purposes (nuclear system risk analysis), 

as fuzzy interval DEA FMEA (system FMEA for fishing vessel construction). 

 

Table 8: Applications of Fuzzy Mathematical programming related to FMEA (Liu, H.C, et al., 
2013), (Boral, S. et al, 2020). 

Method Author/year Practical approaches/Practical 
FMEA applications 

Fuzzy RPN Wang et al. (2006), Gargama 
and Chaturvedi (2011), Chen 
and Ko (2009) 

wide usage for both Design-, 
and Process FMEA 

Fuzzy DEA FMEA Garcia et al.(2013) example of nuclear system risk 
analysis 

Fuzzy Interval DEA FMEA Chin et al (2009) example of System FMEA for 
fishing vessel 

 
In the following (3.2.1, 3.2.2 and 3.2.3) we introduce the above mentioned methods in detail. 
 

3.2.1 Usage of fuzzy risk priority numbers (FRPNs) 
 

According to Wang et al. (Wang et al, 2006) Risk Priority Numbers (RPNs) can be fuzzified and 

considered as FRPNs (Fuzzy Risk Priority Numbers). FRPNs are calculated as fuzzy weighted 

geometric means of Severity (S), Occurrence (O), and Detection (D) ratings. FRPNs can be defined 

with α-level sets and with linear programming. Defuzzification is done with centroid defuzzification 

method (Liu, H.C, et al, 2013). 
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Gargama and Chaturvedi (Gargama and Chaturvedi, 2011) calculated FRPNs as well, but with using 

benchmark adjustment instead of linear programming (Liu, H.C, et al, 2013),  

Chen and Ko’s (Chen and Ko, 2007) approach is a FRPN definition which is based on fuzzy ordered 

weighted geometric averaging of S, O, D factors (Liu, H.C, et al, 2013). They have defined fuzzy FMEA 

as the following: 

 J,,…1,2,=j  ,)D
~

×O
~

×S
~

max(=N)P
~

(R  jt srj  (16) 

 

where �̃�𝑟 , �̃�𝑠, �̃�𝑡 are fuzzy subsets [0, 1]. Chen and Ko (Chen and Ko, 2007) introduced a FOWGA (fuzzy 

ordered weighted geometric averaging) operator. The FOWGA operator is used to aggregate m (>1) 

fuzzy sets. 

 
iW

 

m

1i im21 )b
~

(=)a~,…,a~,a~f(  (17) 

 

where �̃�𝑖 is the ith largest set of the (�̃�, �̃�, �̃�), wi is the weight of the 𝑏�̃� and  

FOWGA can be formulated as the following: 

 

  


3

11ts,r,jj )(max)D
~

,O
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,S
~

f(N)P
~

(R iw

jbi  (18) 

 

where w is the weighting vector, 𝑤 = (𝑤1 , 𝑤2, 𝑤3)
𝑇. RPN is defined with its membership function. The 

membership function is defined by deriving the lower and upper bounds of the α-cuts of (RPN)j : 
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After defining the membership function, the defuzzification is the following: 
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The advantages of the method are that different combinations of Severity, Occurrence and Detection 

factors result in different FRPNs (unless the relative weights used are the same), and more risk factors 

can be used during the analysis (Chen and Ko, 2007). 

3.2.2 Garcia et. al’s fuzzy DEA FMEA 
 

According to Garcia et al. (Garcia, P. et al, 2013) Risk Analysis evaluations are carried as a part of the 

Probabilistic Safety Analysis (PSA). In their research they have pointed out that that the different 

combinations of S, O, D factors produce the same value. 

As Garcia et al. states (Garcia, P. et al, 2013), that this shortcoming can be solved with the modelling 

of RPN factors (Severity. Occurrence, Detection) as fuzzy sets. In case of this method, Occurrence and 

Detection factors are considered to have equal importance and Severity is considered to have more 

importance than O and D. 
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where ε is a non-Archimedean figure, which should be as small as possible. ε should be defined as a 

number different from 0, if ε=0 the model defines one or more factors as not important.  

Regarding the disadvantage of the method, according to Chin et al. (Chin, K.S, et al., 2009) Garcia et 

al.’s method is needs to be corrected, as it does not provide a complete evaluation for the failure modes. 

Due to Chin et al.’s approach the relative importance weights are taken into consideration, without 

subjective specification (Liu, H.C. et al., 2013). 

 

3.2.3 Chin et. al’s fuzzy DEA FMEA 
 

According to Chin et al.’s (Chin, K.S. et al, 2009) model there are n failure modes, which need to be 

prioritized. These failure modes are evaluated with the selected m risk factors. Despite the traditional 

FMEA method (which equally considers Severity, Occurrence, Detection factors), in this case RPN is 

calculated as follows (Chin, K.S. et al, 2009): 
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If the maximum value of importance ratio is considered as 9, the ratio of maximum weight to minimum 

weight is defined between the range of 1 and 9. 
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Chin et al (Chin, K.S. et al, 2009) define Occurrence and Detection ratings on a scale of 1 to 10, whilst 

Severity is defined on a scale from 1 to 9 (as no importance has no point in this case). 
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 jkm;,…1,=kj,0,9w-w kj   (32) 

 

According to the before mentioned, FMEA DEA models are defined as the maximum and minimum 

risks of each failure mode (additive failure modes), according to the following (Chin, K.S. et al, 2009): 

 

 0
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0 MaximizeR=R  (33) 

 

Subject to: 
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min
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Subject to:  
 

 n,,…1,=i    1,Ri   (38) 

 jkm;,…1,=kj,   0,9w-w kj   (37) 

 

The sum risk of each failure is defined with the following equation, which gives the geometric average 

of the maximum and minimum risk (Chin, K.S et al., 2009): 

 

 n,…1,=i,) R(R=iR min

1
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i   (38) 

In case of defining multiple failure modes, the same equation can be used, but transformed to a 

logarithmic scale: 
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Subject to: 
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 n,,…1,=i    1,lnRi   (40) 

 jkm;,…1,=kj,   0,9w-w kj   (41) 

 0

min

0 lnR Minimize=lnR  (42) 

 

Subject to: 

  (43) 

 jkm;,…1,=kj,   0,9w-w kj   (44) 

 

The geometric average risk is defined with exponential function: 

 

  n,,…1,=i,) EXP(lnR)(EXP(lnR=Ri min

i

max

i   (45) 

 

The advantages are like Wang et. al’s approach (Wang et al, 2006), as more risk factors can be used 

during the analysis, and there is no need to use if-than rules. 

 

3.2.4 Fuzzy Interval DEA FMEA 
 

According to Chin et al. (Chin, K.S. et al, 2009) the idea of an interval DEA FMEA is based on the team 

approach of the team method of FMEA. If the incomplete evaluation is transformed to an expectation 

interval, the maximum, minimum and the average risks are stated as intervals as well (Chin, K.S. et al, 

2009). 

The geometric average risks are calculated as follows 
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 (46) 

This method is related to the minimax regret approach (MRA), implemented by Wang et al (Wang et al, 

2006) MRA uses the maximum regret value (MRV) for comparing and ranking of interval numbers: 
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3.3 Artificial intelligence approaches related to FMEA 

 

In the following we would like to give a summary of the artificial intelligence approaches related to FMEA, 

according to Hu-Chen Liu et al (Liu, H.C. et al 2013). Based on the grouping of Hu-Chen Liu et al (Liu, 

H.C. et al 2013), there are four major groups of FMEA related solutions. These are the following: rule-

base system (Sankar and Prabhu, 2001) fuzzy rule-based system (Sharma ,R.K., Sharma,P,2010), 

n,,…1,=i    1,lnRi 
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fuzzy ART (Adaptive Resonance Theory) algorithm (Keskin, G et al.,2010) and fuzzy cognitive map 

(Peláez, C.E. and Bowles,J.B,1996). 

Table 9: Applications of artificial intelligence approaches related to FMEA. 

Method Author/year Practical approaches/Practical 
FMEA applications 

Rule base system Sankar and Prabhu (2001)  Process FMEA example of off-
shore cooling plant example 

Fuzzy rule-base system Sharma and Sharma (2010)  Process FMEA example for 
paper mill system 

Fuzzy ART algorithm Keskin, G.,(2010) Process FMEA for testing 
purposes 

Fuzzy cognitive map Peláez and Bowles (1996), 
Gargama and Chaturvedi 
(2011)  

Design FMEA for water tank 
levelling system 

 

3.3.1 Rule base system for FMEA 

 

According to Shankar and Prabhu (Sankar, N.R. and Prabhu, B.S, 2001) the rule-based system for 

FMEA is carried out according to the following steps: 

(1) Description of the part name, number, and function.  

(2) Listing the possible failure modes  

(3) Estimation of failure severity values  

(4) Listing the potential failure causes  

(5) Estimation of occurrence frequency of failures  

(6) Description of failure detection methods 

(7) Estimation of failure detection  

(8) Evaluate the RPR (Risk Priority Rank)  

(9) Recommendation of corrective actions 

Step 8 is an addition to the traditional FMEA process with an implementation of a new risk priorization 

scale. The suggested variable, RPR (Risk Priority Rank) can take up values from 1-1000, and is 

calculated with If-Then relations. In this case the rules are formulated in numerical form (Sankar, N.R. 

and Prabhu, B.S., 2001). With the usage of the rules, we receive the RPR value, which differs from the 

traditional RPN, which is the multiplication of the Severity, Occurrence and Detection factors. RPR 

indicates relative priority. For visualization purposes the outcome of the analysis is represented in an 

ordering matrix. 

Table 10: Example of ordering matrix of a functional FMEA of a centrifugal pump  

(Sankar, N.R. and Prabhu, B.S., 2001). 

Causes OR DR E1 
SR8 
FM1 

E4 
SR7 
FM4 

E2 
SR6 
FM2 

E3 
SR5 
FM3 

E5 
SR5 
FM5 

C4 9 5 784(360) 0 0 0 0 

C6 6 7 759(336) 0 0 0 0 

C29 8 3 754(192) 0 0 0 0 

C17 8 5 0 754(280) 0 0 0 
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Causes OR DR E1 
SR8 
FM1 

E4 
SR7 
FM4 

E2 
SR6 
FM2 

E3 
SR5 
FM3 

E5 
SR5 
FM5 

C27 7 8 0 739(392) 0 0 0 

C14 7 5 0 732(245) 0 578(175) 0 

 

In the ordering matrix the columns represent the following:  

 Causes (Cx): the identified failure causes in the failure net, 

 OR (Occurrence Rating): the value of failure cause occurrence (1-10), 

 DR (Detection Rating): the value of failure cause detection (1-10), 

 Ex (Effect): the identified failure cause effect, 

 SRx (Severity): the identified failure effect severity, 

 FMx (Failure Mode): the identified failure mode 

 

The ordering matrix can be understood as follows: each failure cause (Cx) is related to an occurrence 

(OR), detection (DR) and severity (SR) value. The failure net consists of failure effects (Ex), and failure 

modes (FMx) as well, as in case of the traditional FMEA. RPN value is generated from the multiplication 

of S, O, D factors. The RPN values are placed in brackets. With the usage of the previously defined 

rules are placed besides the brackets. If there is no connection between a certain failure cause and a 

failure mode or failure effect, 0 is placed in the cell. This visual method helps to identify the potential 

problematic areas of a product or process (Sankar, N.R. and Prabhu, B.S, 2001). According to the 

before mentioned the first row of Table 10 can be illustrated in a net as well. 

 

Figure 3. Example of failure net (Functional FMEA of rotation pump)  

(Sankar, N.R. and Prabhu, B.S, 2001) 

 

The main advantage of this method is that it gives relative importance for each failure, which helps to 

improve the numerical shortcoming of traditional FMEA, visualization is surplus solution as well, as it 

gives a good overview of the process or design. The proper definition of rules is essential in this case, 

as it has major influence of the sequence of failure importance. 

 

3.3.2 Fuzzy rule-base system  
 

Rule-based systems are implemented in fuzzy FMEA methods as well. According to Sharma and 

Sharma (Sharma and Sharma, 2010), shown on Figure 4, fuzzy methodology (FM), root cause analysis 

(RCA) and FMEA can be merged in a common approach. RCA is tool for the comprehensive 

classification of cause into 4M’s (4M stands for Machine, Method, Man and Material) (Sharma, R.K. and 

C4 (OR9, DR5): 

Wrong direction of 

rotation  

E1 (SR8): Does 

not develop any 

head, nor does it 

deliver water 

FM1:No operation 
RPR(RPN) 

784(360) 
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Sharma, P, 2010). In this integrated approach, FMEA defines the input variables (Of, S, Od) which form 

RPN. 

The third so-called tool is FM, which is responsible for the quantification of imprecise and uncertain 

information provided by the experts and their analysis (Sharma, R.K. and Sharma, P, 2010). In Sharma 

and Sharma’s example (Sharma, R.K. and Sharma, P, 2010) maintenance decision making is aided 

with this merged approach. 

 

 

Figure 4. Merged approach for maintenance decision making (Sharma, R.K. and Sharma, P, 2010) 

 

As shown on Figure 5, the knowledge base is provided by data analysis and expert knowledge, which 

are evaluated with fuzzy rule-based analysis. The inputs of the integrated approach are Of (Probability 

of occurrence of failure), S (severity) and Od (likelihood of non-detection of failure) factors. Of is 

determined as a function of mean time between failures, Od is estimated (for example as 0.5 % in case 

of visual inspection of operator’s), S is the numerical definition of failure effect on system performance. 

This way, the fuzzified factors are the inputs of the fuzzy interference systems, which results in FRPNs 

after defuzzification.  

For the determination of the FRPN variable both triangular and trapezoidal membership functions were 

used (Sharma, R.K. and Sharma, P., 2010). In Sharma and Sharma’s example (Sharma, R.K. and 

Sharma, P, 2010) five fuzzy sets were applied in case of each factor (Of, S, Od) and a total of 125 rules 

were used. For the interference system Petrinet models are used. 
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Figure 5. Definition of fuzzy rule base system (Sharma, R.K. and Sharma, P., 2010) 

 

The main advantage and disadvantage of this solution is related to the same root: information and data 

are gathered from three sub-systems, which makes the tool complex or even too complex for the 

analysts. Upon the whole, the usage of this method provides a more realistic overview of industrial 

systems (modelling, predictions an analysis) (Sharma, R.K. and Sharma, P., 2010).  

 

4 CONCLUSIONS 

 

Failure Mode and Effect Analysis has almost 80 years of history to look back on. In the past, it was 

implemented to analyse complex problems (e.g. military related) or structures (e.g. aeronautical). As 

products became more complicated, industry (e.g. automotive, machinery industry) implemented FMEA 

as well. After decades of usage, it became known that the traditional method has shortcomings, which 

might cause non-conformities whilst usage. The non-conventional FMEA methods came to life to solve 

these issues.  

In our work, we have summarized the main fuzzy logic related non-conventional FMEA solutions, which 

are the following: Multi-Criteria Decision Making related, Mathematical Programming related and 

Artificial Intelligence related approaches. MCDM approaches are effective in risk analysis, as well in 

terms of supplier selection.  

Mathematical programming solution implement the term FRPN, and are basically used for system 

analysis, whilst Artificial intelligence solutions provide great visual aid (Rule-based solutions) for 

decision makers. According to our research, artificial intelligence solution might provide the widest aid 

for engineering problems, but the summarized methods need to be improved, as their complexity might 

slow down the analysis process of a given problem. Further research plans include investigation of the 

application possibilities of rule interpolation (Vincze, G. and Kovács, S., 2015), fuzzy control techniques 

(Guechi, E.H. et al, 2010; Precup, R.E. et al, 2013; Precup, R.E. and Preitl, S., 2003), fuzzy cognitive 

maps (Mls, K.  et al, 2017), and fuzzy signatures (Bukovics et al, 2020). 
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