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ABSTRACT 

In this research, we take a different approach to build a new landslide warning 
system by using the fuzzy rule-based system (FRBS) model rather than either 
satellite remote sensing or dynamical approach that was employed in most 
landslides warning studies. This fuzzy model was developed based on ad hoc 
data covering methods and empirically-based model. In this case, fuzzy rules 
were set by learning from numerical data. We found the model satisfactorily 
simulated the occurrence of landslide with values of area under the Fuzzy 
Receiver Operating Characteristic (ROC) curve at 0.825 (range: 0 to 1, perfect 
score: 1) resulting in a good agreement with the occurrence of landslide data 
obtained from the Indonesian National Agency for Disaster Management 
(BNPB). For the domain research, this warning system is developed at 
Banjarnegara, Central Java, Indonesia, which chosen as an example of a 
populated highland that is highly vulnerable to landslides. In this system, Soil 
Moisture Index (SMI) was calculated based on a regolith-moisture model to 
represent the soil moisture conditions. Besides, the empirical intensity-duration 
(ID) threshold and cumulative rainfall threshold (CT) have been calculated as 
an empirically-based model. They were derived on a numerical basis, starting 
from a database of 141 shallow landslides from 2011 to 2017. Fuzzy ROC 
analysis was employed to validate an FRBS based on continuous time series of 
newest rainfall and evapotranspiration data and landslide database from 2018 
to 2019. Ultimately, the Fuzzy model could simulate the gold standard of the 
landslide alert system with small error measures. 
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1. INTRODUCTION 
 

Landslides are induced either by earthquakes or by excessive rainfall (Ayalew et al., 2005; Huang, 

2015; Keefer, 2002; Wati et al., 2010). It mostly occurs within minutes after a high-intensity 

earthquake, and several hours to weeks after intense, prolonged rainfalls (Malamud et al., 2004). The 

Emergency Events Database (EM-DAT), www.emdat.be, from the Centre for Research on the 

Epidemiology of Disasters (CRED), reported that at least 650 landslides occurred worldwide caused 

49,707 casualties during the period 1900-2017. In Indonesia, Landslides occur almost every year 

during the wet season in many areas due to monsoonal precipitation (Ophiyandri et al., 2009). Aside 

from rainfall, road constructions, building excavations, deforestation, and mining might lead to slope 

instabilities which can cause landslides (Gill and Malamud, 2017). 

It is well understood that Banjarnegara, Central Java Provine, Indonesia, is prone to landslides due to 

its geological conditions, topography, and climate. Historical records reported that Banjarnegara 

experienced many landslides induced rainfall during the wet seasons, resulting in many deaths and 

considerable economic losses (Priyono and Priyana, 2006; Warnadi, 2014). With the frequent and 

destructive landslides that had occurred throughout history in Banjarnegara, the area is an ideal site 

to research how to mitigate landslide damage and how to decrease the economic losses from 

landslides. 

The concern on improving the estimation of landslides can be found in several studies. Liao et al. 

(2010) established the prototype of an experimental early warning system for rainfall-induced 

landslides in Indonesia using satellite remote sensing and geospatial datasets. Notably, Capparelli 

and Versace (2011) developed two mathematical models for early warning of landslides induced by 

rainfall in Italy by analysing the lag time from rainfall as a gamma function that triggers landslide. An 

integrated methodology for landslide early warning systems to reduce the risk from the disaster, 

including risk assessment, mapping, and mitigation strategy was established by Fathani et al. (2016) 

to decrease the negative social and economic impacts of the landslide in Central Java. Despite much 

promising development of landslide early warning system, Frattini et al. (2010) insist that there is a 

need to assess the accuracy of landslide model. In this case, simple statistics such as Threat score, 

Gilbert Skill Score, or Receiver Operating Characteristic (ROC) curve can be used. 

For the fuzzy applications, many scientists have utilised the Fuzzy Logic (FL) algorithm for 

meteorology and hydrology problems (Alvisi et al., 2006; Chang and Chang, 2006; Tayfur and Singh, 

2006; Xiong et al., 2001). In addition, fuzzy models proved to be successful in various fields. Gil et al. 

(2018) developed a fuzzy model to analyse the determination of the optimal green period ratio and 

traffic light cycle time in case of given traffic flow values. Notably, Devasenapati and Ramachandran 

(2011) developed a tool for misfire detection based on fuzzy unordered rule induction algorithm 

(FURIA) with correlation-based feature selection. The stability and sensitivity analysis on the use of 

Popov’s hyperstability theory was established by Precup and Preitl (2006) to provide useful 

information to the development of fuzzy control systems. For a novel mix of two data-driven 

algorithms, Roman et al. (2019) combined data-driven Virtual Reference Feedback Tuning (VRFT) 

algorithm and Compact Form Dynamic Linearization (CFDL) version of the authors’ Model-Free 



 

Adaptive Control Takagi-Sugeno Fuzzy Algorithm (CFDLPDTSFA) to explore the main advantage of 

those methods and the experiential results then plotted to the arm angular position of the non-linear 

crane system. Recent fuzzy implementation was developed by Kviesis et al. (2020) to identify any 

abnormalities inside the honey bee colony employing temperature data as an input parameter and 

fuzzy logic. In addition, previous scientists have used fuzzy logic to model the landslide susceptibility 

mapping or forecast the landslide hazard zonation (Chung and Fabbri, 2001; Pradhan, 2010a; 

Pradhan, 2010b). 

Specifically, most studies about the implementation of fuzzy model are focused on the landslide 

susceptibility maps, even though a landslide formation alerts also were developed. This paper takes a 

new approach to explore and ideally combine both the use of Fuzzy Rule-Based System (FRBS) and 

empirically-based model to build R-LEWS. We employed the use of empirical rainfall thresholds and 

soil moisture index (SMI) as an input parameter of FRBS model. Those input parameters were applied 

since they are one of the most critical parameters to trigger landslide in complex terrain areas, 

especially regions that routinely experience heavy rainfall (Liao et al., 2010). Ultimately, the first goal 

of the paper is to create the threshold of rainfall and SMI that induced landslides (especially for 

shallow landslides and debris flows), while earthquake-induced acceleration and human activities are 

neglected. The second goal of this paper is to develop R-LEWS utilising FRBS based on ad hoc data 

covering methods by using with an empirically-based model from that rainfall threshold and SMI. For 

the FRBS input parameters, we shall transform empirical rainfall thresholds and moisture indexes to 

be the possible outcome represented by the degree of membership. 

 
1.1. Previous applications of fuzzy approach in landslide studies 

 
Several studies have used a Fuzzy model to determine landslide susceptibility with several 

modifications on the algorithm. Landslide susceptibility is determined generally in three stages; 

landslide inventory, susceptibility analysis, and validation (Pradhan, 2013). The fuzzy approach has 

several advantages compared to other statistical methods, such as straightforward to apply, and the 

weighting of the supporting factors can be controlled (Shahabi et al., 2015). Identification and 

mapping of a suitable set of instability factors having a relationship with slope failures require a priori 

knowledge of the leading causes of landslides (Guzzetti et al., 1999). This instability factor then 

becomes the input of the fuzzification process in determining susceptibility. 

Shahabi et al. (2015) tried to map landslide susceptibility in Iran using three statistical approaches 

such as Logistic Regression, Frequency Ratio, and Fuzzy Logic (FL). A central Zab basin located in 

the mountain areas in the southwest West Azerbaijan province in Iran was used for the study domain 

in that research. The result shows that Logistic regression has the best result in determining the area 

affected by landslide and the factor maps (slope, elevation, distance to road, distance to drainage 

network, distance to fault, NDVI, land cover, precipitation, and lithology). However, FL approach is 

modified, one can find that FL Gamma (lambda = 0.975) produce nearly similar prediction accuracy to 

Frequency Ratio Method (FL Gamma (0.975) = 94.64% and Frequency Ratio = 94.62%). Therefore, 

the modification of FL can bring completely different results and prediction accuracy. It shows the 

importance of choosing the right operator in each study area for maximising output quality. 



 

Another research that uses an entirely expert opinion-based approach is conducted by Akgun et al. 

(2012) for Sinop (Northern Turkey). The model is called MamLand, which uses a Mamdani fuzzy 

inference system (FIS) in MATLAB environment. The model used seven conditioning parameters 

(altitude, lithology, slope gradient, curvature, normalise difference vegetation index, stream power 

index, and topographical wetness index) to determine landslide susceptibility degrees. FIS is 

constructed using IF-THEN rules which are described using expert opinion. A total of 192 rules were 

applied for classifying the degree of susceptibility into five classes. Then the result is exported to GIS 

to produce maps. Validation using Area Under Curve (AUC) obtained from ROC shows that this 

model is successful in mapping the susceptibility of the study area, Sinop (Northern Turkey), and 

allows it to be applied in other regions with some adjustments needed. 

The performance of the FL model is evaluated by comparing it against other models or fellow fuzzy 

models with variations. For example, Shahabi et al. (2015) compared FL with other two statistical 

methods and several modifications in the FL approach. Another study from Pradhan (2013) examined 

the predictive ability among three statistical purposes; Decision tree (DT), Support Vector Machine 

(SVM) and Adaptive Neuro-Fuzzy Inference System (ANFIS). The three develop different landslide 

susceptibility mapping (Pradhan, 2013). The model used five variations in the number of input 

parameters. As a result, a total of fifteen models was obtained, and the resultant maps were validated 

using the landslide locations. ROC checked the prediction performances of these maps by using both 

the success rate curve and the prediction rate curve. The best predictive ability among all models was 

generated from ANFIS. It shows that the FL approach is quite reliable as a method for landslide 

susceptibility mapping. 

However, rather than following most of the landslide studies to explore the use of the fuzzy model in 

landslide mapping or susceptibility, we employed the application of the FRBS to build a landslide 

warning system. Thus, the development of landslide warning system can be applied to mitigate the 

landslide impact and decrease the physical and economic loss, especially in the complex terrain 

areas. 

 
2. GENERATION OF THE DATA 

 
2.1. Study site 

 
To develop R-LEWS, finding a suitable study site is important. In this case, Banjarnegara, Central 

Java, Indonesia, is chosen as the study site (Figure 1). 



 

 

Figure 1. Domain location. 
 
Banjarnegara regency is located in Central Java. Parts of Banjarnegara, especially in the west and 

north, are barely showed higher precipitation than other areas in Central Java. The location on the 

northern side of Banjarnegara experienced high annual rainfall up to 4000 mm/year. In addition to 

industrial forest, dryland agriculture, and shrubs spread in some locations (Figure 2). 

This location is an instance of a populated highland that is highly susceptible to debris landslide, 

which is mainly caused by intense precipitation. In 2014, as reported by Haryono and Widjaja (2015), 

the landslide forced Karangkobar district at Banjarnegara on Friday evening. At least 93 people were 

believed to have been buried in the disaster. Then, Quiano and McKirdy contested that in 2016, 

approximately 35 people died after heavy rains and floods triggered landslides in Banjarnegara, the 

Indonesian province of Central Java. 

 

Figure 2. Land use in the model domain. 
 



 

As illustrated in Figure 2, Banjarnegara shows a big contrast in land use. Most of the areas are 

industrial forests (green). The southern region is the dominant residential area (purple) surrounded by 

rice fields (yellow) and bush-dry land agriculture (seaweed colour). This condition is supported by the 

presence of water bodies that are more commonly found in this area. Bush-dry land agriculture and 

some part of ricefield can be seen in the north-west region, and dryland forests occupy the north-

eastern area. Banjarnegara can be divided into three parts; northern zone, middle zone, and southern 

zone, based on its topography (Figure 3). The middle zone is a depression area called Serayu 

Depression, where the residential area surrounded by ricefield. Northern zone and the most southern 

zone are mountains with steep slopes. Those areas are prone to landslides and mostly covered by 

industrial forests. 

 

Figure 3. Map exhibiting regions of Banjarnegara rain gages and 15 major landslides in the database 
used to evaluate the thresholds. Landslides that shown in the maps are included major landslides 

because those landslides could be detected in google earth. The remaining 246 landslides have only 
address locations (Table 1). 

 

Figure 3 shows the map of historical major landslides and rain gauge stations located in Banjarnegara 

overlaid with its topography. Daily rainfall data has been collected from two different national agencies, 

Semarang Climatological Station and Regional Agency of Water Resources Management (PSDA) 

Banjarnegara form 2011-2019 (9 years). It was taken from 23 rain gauges located in the study area 

(blue triangle). The historical landslide database is obtained from the Indonesian National Agency for 

Disaster Management (BNPB) contained the date, location, and impacts of the landslides. 

Furthermore, Google Earth software is used to detect landslide events from reported inventory. From 

the trails left by landslides, Google Earth can identify the major landslides events but the minor ones. 

It also can be used to find landslide events that are not reported but can be observed on google earth 

satellite images (Yamagishi and Moncada, 2018). 



 

 
2.2. Input Data 

 
Data from various sources have been collected based on the availability and relevance of the 

Banjarnegara regency. Table 1 employs the data used to develop R-LEWS of the study area. 

Parameters needed to build landslide warning using the FL model are obtained from several 

institutions, as summarised in Table 1. 

Table 1. Input data sources and their date of acquisition used for landslide susceptibility analysis of 

the study area. 

Data Source Date Acquisition 

Daily rainfall data Indonesia Agency for Meteorology, Climatology, and 
Geophysics (http://bmkgsoft.database.bmkg.go.id/) 

2011-2019 

Evapotranspiratio
n data 

the United States Geological Survey (USGS), 
(https://lpdaacsvc.cr.usgs.gov/appeears/) 

2011-2019 

Map of the earth 
face of Indonesia 

Geospatial Information Agency, (1:25,000 scale map), 
(https://tanahair.indonesia.go.id/). 

2000 

Google Earth www.google.com/earth/desktop/  

Historical 
landslides 
database 

BNPB 
(http://geospasial.bnpb.go.id/pantauanbencana/data/datalon
gsorall.php) 

2011-2019 

(261 landslide) 

 

2.3. Determination of rainfall Intensity-Duration (ID) and Cumulative Rainfall (CT) threshold 
 
Caine (1980) depicts a rainfall intensity – duration (ID) threshold for the landslides that occurred on a 

global scale to measure the triggering influence of rainfall in producing shallow (less than 2 to 3 m 

deep) landslides and debris activity. A rainfall threshold may define the rainfall conditions that are 

likely to trigger landslides when exceeded or reached. Rainfall thresholds can be portrayed on 

physical (conceptual, process-based) or empirically-based models (Glade, 2001). Since the work of 

Caine (1980), many studies attempt to calculate the ID thresholds from the global to local scales 

(Glade, 2001; Guzzetti et al., 2007; Guzzetti et al., 2008). One of the most complete and 

comprehensive studies which continue the work of Caine (1980) is the study by Guzzetti et al. (2007). 

The rainfall threshold for the initiation of landslides may define how much rainfall is likely to cause 

landslides when reached or exceeded. Guzzetti et al. (2007) proposed the rainfall ID threshold by 

measuring lower-bound lines to the plotted rainfall intensities on the y-axis and the duration on the x-

axis that yielded in landslides in Cartesian, semi-log, or logarithmic coordinates. In this research, the 

empirically-based model derived from landslide historical data was used to calculate a rainfall ID 

threshold for the initiation of landslides. As the domain research is a small regency (1.204 km2), it can 

be grouped as a local scale. Most studies describe that local and regional rainfall thresholds 

demonstrate good results in the area where the models were built. However, it cannot be handily used 

to other locations (Crosta, 1998). Based on Guzzetti et al. (2007), the general formula to calculate the 

rainfall ID threshold is: 



 

βαDcI +=       (1) 

where I  is hourly rainfall, which is obtained from the 24-h average of daily rainfall data (mm per hour), 

D  is rainfall duration, c  is a constant with α,0>c  and β  are empirical parameters. In addition, we 

used local empirical rainfall thresholds proposed by several researchers in many areas compiled by 

Guzzetti et al. (2007) to be plotted in a graph to compare the ID threshold in this paper. 

Furthermore, the formula of Cumulative Rainfall Threshold (CT) is derived from the sum of rainfall 

three days and fifteen days before the three days (in mm) when a landslide occurs (Chleborad, 2000). 

Antecedent precipitation amounts were obtained using data records from stations closest to the 

individual landslide locations. Detail information on location and time of landslide occurrence was 

captured in the Indonesian National Agency for Disaster Management (BNPB) reports. Most of the 

landslides in the reports of 261 landslides from 2011 to 2019 are debris flows, slides, or shallow 

slumps (estimated failure depths equal or less than to 2 m); however, the landslide report also 

contains more deep-seated landslides. 
 

2.4. Calculation of soil moisture indice 
 
Aside from rainfall ID and CT, antecedent soil wetness is an essential factor for the initiation of 

landslides (Baum et al., 2005; Chleborad, 2000; Tubbs, 1974). Specifically, during the rainy season, 

the landslides mostly occurred when the soil is relatively wet. It shows that soil moisture indexes must 

be exceeded before the ID and CT can be employed. In addition, the soil moisture index is a 

significant factor in developing a hydrological model related to the occurrence of the landslide 

(including to determine the interception of rainfall by vegetation) (Crozier, 1999). 

Based on Crozier (1999), This paper calculates groundwater system and soil moisture index that 

initiate a landslide with the following schemas: (i) positive pore pressures (one of the physical soil 

wetness factors that causing landslides) do not rise until the groundwater exceeds the soil field 

capacity, and (ii) moisture above field capacity is drained fast. We determine the initial magnitude of 

soil moisture index ( 0M ; mm) as the negative value of the soil field capacity ( cF ; mm) and started at 

the end of the dry season. The general form to calculate soil moisture index (Gabet et al., 2004) are: 

cFM =0       (2) 

the value cF  is determined as: 

)( dc nnHF −=      (3) 

Where n  is total porosity, 
d

n  is drained porosity, and H  is regolith depth (mm) measured vertically. 

Furthermore, the effective rainfall that assists water to the hillslope is calculated as follow: 

IPR tt −=       (4) 



 

Where tR  is effective rainfall and tP  is total daily rainfall (mm) at time t . The intensity of rainfall (mm) 

intercepted by vegetation indicated by I . Then, daily moisture values )( tM are calculated as: 

ttttt EDRMM −−+= −1      (5) 

Where 1−tM  is the value of the moisture index on the previous day, tD suggests the drainage and tE  

depicts the daily evapotranspiration (mm). In this study, daily evapotranspiration data were 

downloaded from the United States Geological Survey (USGS) agency. Furthermore, the drainage tD  

schema is determined as follow: 
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Where k  is a constant of dimensionless )9.0( =k  (Gabet et al., 2004). The drainage calculates for 

water that drains rapidly from the soil after the field capacity has been surpassed. 
 

2.5. Fuzzy Rule-Based System (FRBS) Construction 
 

The benefit of the fuzzy method is that output is resulted by a combination of the degree of 

membership from each rule. In the development of the FRBS algorithm in forecast and control, there 

are mainly two methods: the first one is the Takagi-Sugeno, and the other is Mamdani approach. The 

theory of fuzzy sets strongly supports the Mamdani fuzzy system (Pereira et al., 2015). For Takagi-

Sugeno algorithm (Tagaki and Sugeno, 1985), they do not have a precise defuzzification method. In 

contrast, the Mamdani method depicts clear steps, i.e. fuzzification, inference, and defuzzification 

schema. In addition, Mamdani method is easy to use and provide good performances (Dhar et al., 

2015). Therefore, this research employs the Mamdani approach to construct FL rules. Thus, a 

Mamdani-type FRBS is composed of the following components (Figure 4): 

• A Knowledge Base, that comprises the linguistic rules and membership function which 

introduce the fuzzy system behaviour. 

• A Fuzzification Interface, that maintains the transformation of the crisp input data in values 

that may be treated in the fuzzy reasoning process. 

• An Inference System, that uses these values and information kept in the base to include the 

effect of the inference process.  

• A Defuzzification Interface, that is responsible for transforming the fuzzy action resulted from 

the inference process in a crisp work that makes up the global output of FRBS. 

 



 

 

Figure 4. Flow chart to the show of methodology obtained from Mehran (2008). 

 

Further analysis will be described in the next subsections. 

 
2.5.1 The Knowledge Base 

 

Knowledge base saves several rules that enclose two different parts: 

• RB: Built by a set of IF-THEN operators while there are multiple inputs but single output 

FRBS. The structure is explained by equation (7) 

BisYTHENAisXandandAisXIF nn...11     (7) 

with iX  and Y  being input and output linguistic variables, respectively, and with 
i

A  and B  

being linguistic labels. 

• DB: Consisting of the descriptions of the fuzzy sets connected to the operators used in the 

rules associated with RB. 

 

2.5.2 Fuzzification interface 
 

The management of real inputs and outputs in Mamdani-type FRBSs is handled by the Fuzzification 

Interface. This component creates a structured mapping of the correspondence between each value 

in the crisp input space and fuzzy set. It defined the universe of discourse of the input, securing 

membership function related to each one of the system inputs. 

Symbolically, this component is calculated as follows: 

)(' 0xFA =       (8) 

with 0x  being a crisp input value for the FRBS defined in the universe of discourse U , 'A  being a 

fuzzy set defined in the same domain, and F  being a fuzzification operator. We can choose the 

operator F  with these following possibilities:  



 

1. Punctual fuzzification: 'A  is generated as a punctual fuzzy set (singleton) with the aid of 0x . It 

is declared as membership function 

⎩
⎨
⎧ =

=
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xxif
xA
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)(' 0      (9) 

2. Non-punctual or approximate fuzzification: Based on equation (9), The value of )(' 0xA  

starting from 0 (the furthest from 0x ), as it is closer to 0x , the values climb up to the value of 

1. The second operator is used to deal with other types of membership functions. For 

instance, the triangular membership functions can be described by 

⎪⎩

⎪
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≤−
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=
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1
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0 σ
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The former is the one most used due to its simplicity. 

 

2.5.3 The inference system 
 

The following fuzzy rule approach characterises the inference system of the Mamdani approach: 

BisythenAisxIF      (11) 

From a functional viewpoint, a Mamdani schema is a non-linear mapping from an input domain 
nRX ∈  to an output domain mRY ∈ . Without loss of generality, we presume that both the input and 

the output domain are defined as hyper-intervals:  

mnnn ZZZZZYX ++ ×××××==× ...... 11     (12) 

where [ ] mniiMimiz +== ,...,2,1,,   

This input/output mapping is created by averages of R  rules of the following approach: 

)()( rr BisYThenAisXIF      (13) 

where Rr ,...,2,1=  is the index of the rule, while )(rA and )(rB  are fuzzy relations over X  and Y  

serially. When an input vector x  is presented to the schema, a fuzzy set B  is inferred according to 

the following approach: 

( ))()()( )()(

1
V yBxAyB rr

R

r
∧=

+
     (14) 

where the formalism (.)A  indicates the membership function of a fuzzy set A , and ∨∧,  are  

normT −  and conormT −  respectively (generally the min and the max functions are employed). 



 

 
2.5.4 The defuzzification interface 

 

Since the system must give a crisp output, the Defuzzification Interface has to develop the task of 

aggregating the information provided by each one of the fuzzy sets and transform it into a single crisp 

value. The fuzzy set output can be defuzzified by averages of several approaches, among which the 

most frequently depicted is the centroid or centre of gravity (COG) of the area under the membership 

function, defined as: 

∫
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.).(~      (15) 

Mamdani methods can be acquired with different schemas of defuzzification, as well as different 

awareness of normT −  and conormT − . The detail of Mamdani forms is described in (Jang and Sun, 

1995). 
 

2.6. Evaluate the model using fuzzy Receiver Operating Characteristic (ROC) curve 
 
The Receiver Operating Characteristic (ROC) approach calculates the likelihood to recognise the true 

identity of each individual. This identification is acquired by a criterion that is impartial of the tests 

being analysed, generally stated as the “gold standard”. However, in the medical study, for instance, 

the gold standard is also a deficient evaluation, and for this reason, Langlotz (2003) addresses it as a 

“reference standard” The gold standard commonly separates parameters in two groups, and in this 

study, we determine it as (i) Warning )(W  and (ii) Outlook )(W  to evaluate the model. Thus, a 

membership function of fuzzy set Warning can depict the gold standard into a set with a possibility 

that varies from 0 to 1. For the test result, it described by a membership function of a fuzzy set 

determined as a “fuzzy test result”. This means that the cut-off threshold ceases to be a constant 

value )(k  and becomes a membership function of the Positive )(P  or Negative )(P set. 

For an individual to be classified correctly by the test based on the gold standard, it must be included 

in both sets W  and P . Should the parameter belong to one of the sets but does not belong to the 

other, it is classified as False Positive )(FP  or False Negative )(FN . For the fuzzy set, if I  be a set 

of individuals and { }nxxxX ,...,, 21=  the set of test results to the n  individuals should include setting 

I . The fuzzy subset (Positive P ) X  indicated by a membership function [ ]1,0: →Xpμ  where 

)(xpμ  shows the possibility (degree of membership) of the individual with the test result x  in the 

Positive set. Regarding the fuzzy subset, Negative P  is its complement, the membership function of 

)(1)( xx pp μμ −= . The same form also applied for the gold standard of the Warning set 

[ ]1,0: →Xwμ  , and its complement has )(1)( xx ww μμ −= . 

Furthermore, to calculate fuzzy ROC, Parasuraman et al. (2000) determine the fuzzy membership 

with a degree of membership in a range [0,1] for each response category as follow:  
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For calculating ROC, two necessary performance skills (sensitivity and specificity) must be calculated 

for each cut-off point. As this point shifts, the sensitivity increases during the specificity decline or vice 

versa. In addition, for the fuzzy method, they are calculated by the following form: 
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where ix  is the test result for the thi  individual, and n  is the total number of individuals in the 

population studied. The ROC curve is developed by drawing the true positive fraction )( ysensitivit  

(sensitivity) on the ordinate as a function of the false positive fraction )1( yspecificit−  for all cut-off 

values of the test. Further details of fuzzy ROC forms and example of its applications can be found in 

(Castanho et al., 2007; de Paula Castanho et al., 2008; DeLeo and Campbell, 1990; Gomez and 

Dasgupta, 2002; Orfila et al., 2003; Zadeh, 1965).  
 

 

3. RESULTS 
 

3.1. Cumulative Rainfall Thresholds (CT) for Banjarnegara 
 

We employed the mean of daily rainfall, historical landslide database, and soil wetness conditions to 

define the initiation of landslides. We used these thresholds as input parameters to the FRBS model 

for developing the R-LEWS at Banjarnegara area. To improve the CT condition, we compare the 

amount of rainfall in the last three days (72 hours) to the rainfall in the previous 15 days. We used 

historical rainfall data associated with landslide events from 2011 to 2017, and we calculated the 

formula regarding the linear trend characteristic. 

 

As can be seen in Figure 5, the CT formula for Banjarnegara area is 153 443.062.110 PP −= . The solid 

red line is a lower-bound value that is probably triggering landslide for the intensity of 15-day 

antecedent rainfall is lower than 250 mm. In addition, as demonstrated in Figure 5(A), we determine a 

lower-bound threshold formula when a 15-day antecedent rainfall less than 250 mm. An estimation for 

lower-bound CT is defined as 153 443.062.110 PP −= . For the 15-day antecedent rainfall below 250, 



 

the lower-bound threshold depicts the downward trend of 3-day rainfall, taking a minimum value of 

previous 15-day rainfall from 57.9 mm to 230 mm. 

 

 
Figure 5. Cumulative 3-day and previous 15-day rainfall threshold (CT) associated with historical 

landslides at Banjarnegara. (A) CT plot showing cumulative 3-day and last 15-day rainfall from 2011 
to 2017, and (B) CT plot exhibiting antecedent rainfall associated with an expanded landslide 

database from 2019 to 2019 period (filled red circles). 
 

Furthermore, as illustrated on that downward trend plot, the cumulative 3-day rainfall shows its 

highest value of 3 days cumulative precipitation of 216 mm when a 15-day antecedent rainfall value is 

up to 109 mm. Then, we determine the threshold of 3-day cumulative rainfall at 0 mm as a minimum 

rainfall that probably to initiate landslide should exceed the previous 15-day cumulative rainfall greater 

than 250 mm. This clarifies that, for 15-day cumulative rainfall excess 100 hours, a slightly lower 

cumulative 3-day rainfall after that could affect slope failures that initiate debris landslide in the 

Banjarnegara. 

 



 

Furthermore, as illustrated in Figure 5(B), we compared cumulative 3-day and previous 15-day rainfall 

threshold (CT) from 2011 to 2017 with additional landslide events from 2018 to 2019 to see the 

performance of this CT. The new data from 2018 to 2019 are consistent with the previously 

established CT threshold; approximately 90% of the added data points (red triangles) fall on or over 

the CT. In addition, the landslide events that rarely occur were not included in this threshold. For 

instance, some landslides event below the solid red line in figure 4 is included as an infrequent 

condition because it falls outside from the dominant landslide cluster. In addition, based on this fact, 

we employ the FRBS model to manipulate the data and transform a conclusion as fuzzy logic rather 

than classical logic to develop R-LEWS. 
 

3.2. Rainfall Intensity Duration (ID) thresholds 
 

For developing ID thresholds, the rainfall intensity that occurred during and before the landslide 

events have been checked with the landslide known date that accessed from the BNPB database. 

The landslide database collected for this analysis be composed of information on 141 reported 

landslides that occurred in the regency of Banjarnegara from 2011 to 2017. We compiled the daily 

rainfall data from the nearest rain gauge to the landslide event. It was taken from 15 rainfall stations 

located in the study domain (Figure 6). 
 

 
Figure 6. Rainfall intensity and duration threshold (ID) for Banjarnegara regency, Central Java, 

Indonesia. 
 

The intensity of rainfall that caused the landslide is explained as the sum of rainfall that occurred 

during consecutive rainy days immediately during and before the landslide. As illustrated in Figure 6, 

we plotted the intensity of precipitation on the y-axis against rainfall duration on the x-axis. In this 

research, the duration of rainfall (D) is in the range of from 24 hours to 600 hours (25 days). 

Specifically, based on figure 6, the intensities of rainfall are considered in the field of 0.4 mm/hours to 

12.2 mm/hours. The ID threshold is drawn as a power function on the rainfall lower-bound data in the 



 

scatter plot. Based on this lower-bound threshold line, we determine the ID formula as a power 

function of 85.02.31 −= DI . As demonstrated by Figure 6, the hourly rainfall intensity presents a 

downward trend over the given time. This rainfall intensity has a downward trend until it reaches a 

consistent value at 0.4 mm after 196 hours. 

In addition, we plotted the logarithmic function of local rainfall ID thresholds from many local regions 

obtained from Guzzetti et al. (2007) and newly threshold (green line) from Banjarmangu area, the sub-

district part of Banjarnegara regency, proposed by Irawan et al. (2019) and compared them to the ID 

threshold for Banjarnegara. As demonstrated in Figure 7, the ID thresholds from other areas in the 

world extend a substantial range of precipitation amounts intensities and their durations. In addition, 

as described in Figure 7, most of the thresholds comprise the range of intensities between 1 and 100 

mm per hour and the variety of durations under 200 hours. All of the local ID thresholds employ a 

simple power formula indicated by 0=c  at equation (1). For Figure 6, all the listed ID thresholds have 

a negative scaling exponent (Guzzetti et al., 2007), where the ID formula in this study at Banjarnegara 

showed the highest negative scaling exponent at -0.85. This negative exponent of power-law shows 

the decrease of rainfall needed to initiate slope failures against rainfall duration. Meaning, the longer 

the rainfall duration, the less rainfall intensity is required to cause landslides. In addition, they show 

the range of α operators from 1.7 to 85.58 (Guzzetti et al., 2007). 

 
Figure 7. ID thresholds on a logarithmic scale. Legend: The grey lines depict other local ID thresholds 
obtained from Guzzetti et al. (2007); thick blue line is the local threshold for Banjarnegara regency; 
the thick green line represents a local threshold for Banjarmangu sub-district proposed by Irawan et al. 
(2019) that visually also has a similar pattern compared to ID threshold at Banjarnegara regency; the 
solid red dots show Banjarnegara historical landslides from 2011-2017. 
 

The analysis of Figure 7 reveals that ID relationships for Banjarnegara are generally lower than other 

areas in duration above 100 hours. This means rainfall duration excess 100 hours; a slightly lower 

average rainfall could affect slope failures that initiate debris landslide in the Banjarnegara areas. 

Generally, local thresholds that potentially trigger landslide are affected by varied topography so that 



 

lead for more varied ranges of rainfall duration, especially when compared to the global and regional 

thresholds (Guzzetti et al., 2007).  
 

3.3. Soil moisture index 
 

For the third FRBS inputs, the antecedent rain that falls over the soil and exceeds its regolith field 

capacity was estimated by moisture index regarding equation (4). This moisture above regolith 

capacity is rapidly drained. It should be noted, this moisture index calculation for R-LEWS in this study 

ignored any physical factor. In addition, we neglected the impact of bedrock topography on 

subsurface drainage convergence (Anderson and Burt, 1978). As an impact, we presume that the 

highly weathered bedrock and the soil possess identical hydrologic and hillslope properties. However, 

this regolith-moisture index can estimate the interception of rainfall by vegetation and consider the 

impact of the hillslope hydrology (Gabet et al., 2004). 

As is demonstrated in Figure 8, when the wet season started, the soil moisture index increases rapidly 

during storms when field capacity is reached. The analysis of Figure 8 shows that when soil moisture 

index depicts negative value, its shape decreases slightly as an impact of evapotranspiration. In 

contrast, the rapid decrease shape occurred in the positive pore pressure, when moisture index 

depicts positive value, regarding the combination of evapotranspiration and drainage. In addition, this 

soil moisture index shows a similar pattern compared to the observation data that not always the 

cumulative rain that falls within the domain area leads a landslide. Furthermore, based on figure 8, 

landslide phenomena generally occur should the pore pressure indicating the value exceeds 0 mm in 

this moisture index. 

 
 

Figure 8. The example of shifts in the soil moisture index started from the end of the dry season from 
01 December 2018 to 30 March 2019. We choose Banjarmangu as an example of the sub-district 
area in Banjarnegara. Columns bar represents daily precipitation, and the red line indicates soil 

moisture index (M). Positive pore pressures (above dashed line area) show the soil moisture index 
exceeds the regolith field capacity. In this soil moisture model, we defined the interception = 2 

mm/day, k = 0.9, and field capacity = 150 mm. 
 



 

In 2019, during the wet period, there were nine landslides occur at Banjarmangu. All of the landslide 

events were detected greatly with this soil model, indicated by high rainfall and moisture index that fall 

on the positive pore pressure during landslide events. For instance, based on the BNPB report 

dataset, there were two landslides occur in Banjarmangu sub-district on 21 and 22 March 2019 (days 

112 and 113), as illustrated in Figure 8. This landslide occurrence can be detected when this soil 

moisture index shows positive value exceeds 0 mm and a peak of rainfall during that month. However, 

as employed in figure 8, many soil moisture indexes show positive values without coupled with the 

landslide. Based on this fact, we applied this soil moisture index as an indicator for soil wetness and 

used it together with ID and CT as rainfall thresholds for developing an R-LEWS. 
 

3.4. The application of ad hoc data covering methods by using the empirically-based model 
 

Wang and Mendel (1992) developed the ad hoc data covering methods which is simple and has high 

performance. It analyses the behaviour of the problem being worked on, in a represented input-output 

data set. This Wang and Mendel method is relevant to the Mamdani approach, which is designed in 

term of described input and output (Moallem et al., 2015). The ad hoc data covering method is applied 

to the following provisions (Alcalá et al., 2000): 

1. Decide a fuzzy partition of the input parameter spaces. It can be obtained from the available 

expert information or the numerical examples of the used datasets. In our study, we work with 

non-symmetric fuzzy partitions of trapezoidal membership functions, as illustrated in Figure 9. 

This fuzzy class interval (Figure 9) is specified based on lower bound of the plotted ID, CT, and soil 

moisture index and will be written as non-punctual fuzzification system. For instance, the following is 

the moisture index (M) fuzzification interface based on Figure 9: 
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Figure 9. Assignment of FRBS value to empirical rainfall thresholds and soil moisture index and 
output variable representation. Those membership functions were developed using 2011-2017 

dataset as training data. 
 

2. Construct a preliminary linguistic rule set, best covered each input-output data pair contained 

in the input-output dataset. It may be obtained by analysing a specific case, i.e., an n+1-

dimensional real array (n input and 1 output values), then assign each variable to the 

linguistic labels (associated fuzzy set) for every array component. 

3. Choose an importance degree to each rule: Let 

CisyTHENAisxandandAisxIFR nnl ...11= be the linguistic rule created from the example 

),,...,( 1
ll

n
l

l yxxe = . The importance degree associated with it has resulted as follows: 

)()(...)()( 11
l

B
l
nn

l
Al yxAxRG μμμ ⋅⋅⋅=     (18) 

4. Obtain an RB from the preliminary fuzzy ruleset: The rule that has maximum importance 

degree is selected for each antecedent combination. For the case considered in this study, 

i.e., generating fuzzy rules from numerical data, only “and” rules are chosen since the 

antecedents are different components of a single input vector. The results of fuzzy rules and 

defuzzification were illustrated in Table 2. 

 



 

Table 2. R-LEWS Fuzzy rules use ad hoc data covering method to develop FRBS inference system. 

These rules have chosen by considering both the rule that has a maximum degree and empirical 

threshold formula of rainfall and SMI. The first column is the rule numbers, and the last column is the 

output of each rule. 

Number IDh−24  3P  Moisture Index ( M ) Alert Level 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Low 

Low 

Low 

High 

High 

High 

Low 

Low 

Low 

High 

High 

High 

Low 

Low 

Low 

Low 

Low 

Low 

High 

High 

High 

High 

High 

High 

Low 

Mod 

High 

Low 

Mod 

High 

Low 

Mod 

High 

Low 

Mod 

High 

Outlook 

Outlook 

Outlook 

Outlook 

Outlook 

Outlook 

Outlook 

Warning 

Warning 

Outlook 

Warning 

Warning 

 

The following labels were used to the output variables alert level: (i) Outlook, if rainfall threshold and 

soil moisture index shows the range from low to moderate class categories; (ii) Warning, if all input 

variables met the criterion for landslides. We used the equation (15) as a defuzzification method to 

model FRBS. The output of the alert levels exhibits a real number. Therefore, in this study, for 

landslide warning level where the system output is developed from input variables, we have  )(xpμ   

in the range [0,1] shows that the closer to 1, the bigger the occurrence of the landslide. The input 

values were obtained from a historical dataset of each variable. The following is an example of our 

FRBS calculation from input parameters that contains two rules (rule number 5 and 11): 

OutlookisLevelAlertTHENModisMandLowisPandHighisIDhIFRule 324:5 −  

WarningisLevelAlertTHENModisMandHighisPandHighisIDhIFRule 324:11 −  

the Defuzzification Interface has to develop the task of aggregating the information provided by each 

one of the fuzzy sets and transform it into a single crisp value. For the previous instance, if the value 

of the parameter IDh−24  is set as high (6.25 mm), the value of the parameter 3P  is set in the two 

classes as low and high (79 mm), and the value of the parameter M  is placed in the two criteria as 

Mod and High (24.9 mm), then the results of defuzzification (Centroid) regarding rule number 5 and 

11 is 0.64. This defuzzification value )~(Y  was obtained by calculating the aggregation from rule 

number 5 and 11 using the centroid method following equation (15). Furthermore, )( ip xμ  that 

showing the possibility (degree of membership) of each alert level will be used for calculating ROC as 

the validation method of the R-LEWS. 



 

 

3.6. Evaluating the performance of the R-LEWS 
 

To see how far the accuracy of the model, we use newly the landslide database from BNPB and daily 

rainfall data obtained from Indonesia Agency for Meteorology Climatology and Geophysics from 2018 

to 2019. For the validation, we used the new data of daily rainfall, evapotranspiration, and landslide 

database from the beginning of the wet season in 2017 to the end of the wet season in 2019. 

Therefore, for a more realistic model, we build a membership function to explain the gold standard 

based on the frequency of landslide warning levels compared to the landslide database information. 

For this, 7904 individuals of the landslide database (when landslide occur and otherwise) were used 

for the validation. Thus, we construct the landslide frequency in which each output result exhibits the 

landslide warning level. The total population distribution is shown in Figure 10. 

 

 
 

Figure 10. Population distribution with alert levels of outlook (No Occur), and with a warning (Occur). 
 

Based on the distribution illustrated in Figure 11, we build the membership function only from the 

“Outlook” set to represent the fuzzy gold standard. In this study, the gold standard specifies the 

frequency in which the event of landslide did not occur. Furthermore, based on a fuzzy gold standard, 

we develop an ROC curve to evaluate the performance of this FRBS model (Figure 12).  

Plotting the fuzzy ROC curve, as illustrated in Figure 12, we review a family of membership functions 

of the “Outlook” set as decision threshold, and we calculate the sensitivity and specificity using the 

equation of (12) and (13). To determine the ‘‘best” cut-o� point, we calculate the test e�ciency 

defined as the arithmetic average between sensitivity and specificity. The highest values show the 

best cut-off point, both defined by the arithmetic average and the product of these measures. The cut-

off point that exhibits the highest e�ciency is 0.88, where the test sensitivity is 0.646 and specificity is 

0.882. Furthermore, we calculate the area under the fuzzy ROC curve using the trapezoidal numerical 



 

integration method. For the results, it shows the values at 0.825. This area under the fuzzy ROC 

curve can be analysed as the possibility that a randomly selected event with the landslide did not 

occur has a test result that is higher than the one for a randomly chosen event with landslide has 

occurred. 

 
 

Figure 11. Membership function of the gold standard 
 

 
 

Figure 12. Fuzzy ROC curve calculated using both fuzzy test results and the gold standard. 
 

 



 

4. DISCUSSION AND CONCLUSION 
 

This contribution explored the extent to which the FRBS method can use as an approach to develop 

R-LEWS. We built the system input of FRBS by using empirical rainfall thresholds and soil moisture 

index to overcome the absence of soil-related variables. For the validation of the model, we employ a 

fuzzy ROC curve based on the chosen gold standard to stretch the limitation of dichotomous 

classification decided by the traditional ROC approach. The primary benefit of using the proposed 

methodology is to avoid the disadvantage of information and to analyse vague concepts. Using fuzzy 

sets, the error of classification can be almost totally abolished at the cost of many numbers of 

uncertain classifications. However, to develop FRBS, there are some limitations to this study. A small 

number of fuzzy sets cause unrepresentative predictions, whereas a large number of fuzzy sets lead 

to many calculations. In previous researches, many numbers of fuzzy sets are selected initially from 3 

to 6 (Kucukali and Baris, 2010; Stuber et al., 2000). Therefore, it is difficult to determine the length of 

interval for FL methods. In this study, we set the number of fuzzy from 2 to 3 and labelled with, low, 

medium, and high regarding the highest accuracy of the training landslides dataset. Thus, we 

employed 3 number of fuzzy sets to save computational resources. For the FRBS, membership 

functions play a critical key in representing problems (Zadeh, 1996). Several authors documented the 

landslide behaviour from expert knowledge and training data. Furthermore, in this study, we selected 

importance degree to each rule based on ad hoc data covering methods. Besides, we used triangular 

and trapezoidal membership functions based on the functioning of the landslide that visually matched 

with its pattern criteria.  

For the results, the model satisfactorily simulated the occurrence of landslide with values of area 

under the fuzzy ROC curve at 0.825 (range: 0 to 1, perfect score: 1), resulting in a good agreement 

with the occurrence of landslide data obtained from BNPB landslide database. However, if we 

construct an ROC curve based on the stage of warning (events of landslide occur), the area under the 

fuzzy ROC depicts value around 0.3. Therefore, we need to add other factors causing landslides, i.e. 

elevation, slope gradient, slope aspect, land cover type, or lithology, to increase the accuracy of the 

landslide at the warning stage. It is also possible to compare this FRBS approach with another 

method such as Logistic Regression, Frequency Ratio, or ANFIS to get the better skill of landslides 

prediction. 
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