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ABSTRACT

This paper proposes two efficient matrix-free ensemble Kalman filter implementations for
non-linear Data Assimilation (DA). Starting with an ensemble of model realizations, the pro-
posed methods employ Markov chains and Gaussian kernels to sample from posterior error
distributions. The first method employs a Random-Walk to propose candidates, while the
second one does it via the pre-conditioned Crank-Nicholson (pCN) proposal distribution.
For the pCN formulation, an iterative matrix-free method is employed to generate samples
from the proposal distribution. The posterior ensemble can then be built similar to that of
the posterior ensemble Kalman filter implementation. Experimental tests are performed
by using the Lorenz-96 model. Two observational operators are employed: a non-smooth
operator and an exponential one. For full observational networks, prior and posterior errors
differ by order of magnitudes. In terms of Root-Mean-Square-Errors, prior errors are de-
creased by several order of magnitudes for observation coverages of 70%, 80%, and 90%
model components.
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1 Introduction

Numerical models are built to mimic the behaviour of physical systems (Roman, Precup, Bojan-
Dragos and Szedlak-Stinean, 2019; Gil, Johanyák and Kovács, 2018; Nowaková, Prı́lepok
and Snášel, 2017), in practice, these are employed to perform forecast of real-life complex
dynamics. However, since numerical models are imperfect, operational forecasts are valid for
short time periods (i.e., 48 hours). Thus, imperfect numerical forecast must be corrected by
employing, for instance, real-life observations (i.e., sensor data). This is commonly done in the
context of sequential Data Assimilation (DA). In sequential DA, a numerical forecast xb ∈ Rn×1

is modified to account for information brought by an observation y ∈ Rm×1 (Pham, 2001;
Ruiz and Sandu, 2016), where n and m are the spatial domain resolution and the number



of observations, respectively. In this framework, the state to estimate x∗ ∈ Rn×1 evolves
according to some numerical model,

x∗next =Mtcurrent→tnext (x∗current) , (1.1)

Typically, the estimation process rely on Gaussian assumptions on prior and observational
errors. This mainly obeys to computational aspects. Thus, for any x ∈ Rn×1, Gaussian models
are fitted for background errors,

x ∼ N
(
xb, B

)
, (1.2)

and observational ones,

y ∼ N (H (x) , R) , (1.3)

where B ∈ Rn×n holds the background error covariances and R ∈ Rm×m is the estimated data
error covariance matrix. Likewise, H : Rn×1 → Rm×1 is the (non-linear) observation operator
which projects vector states to the observation space. The kernel of the analysis distribution
of errors can be estimated via Bayes’ rule as follows:

P (x|y) ∝ exp (−J (x)) , (1.4)

where J (x) is the well-known Three-Dimensional-Variational (3D-Var) cost function (Buehner,
2005):

J (x) =
1

2
·
∥∥∥x− xb

∥∥∥2
B−1

+
1

2
· ‖y −H (x)‖2R−1 . (1.5)

The posterior mode of (1.4) provides the best approximation to x∗ once observations have
been digested, it can be approximated by solving the 3D-Var optimization problem,

xa = arg min
x
J (x) , (1.6)

where the posterior mode xa ∈ Rn×1 is better known as the analysis state. When H is (nearly)
linear, ensemble based methods such as the ensemble Kalman filter (EnKF) (Evensen, 2009;
Lorenc, 2003) and the local ensemble transform Kalman filter (Hunt, Kostelich and Szun-
yogh, 2007; Ott, Hunt, Szunyogh, Zimin, Kostelich, Corazza, Kalnay, Patil and Yorke, 2008)
(LETKF) can be successfully utilized in order to, among other things, estimate the posterior
mode (1.6). Nevertheless, for non-linear (and non-smooth) observation operators as those
found in practice, the Gaussian assumption on (1.3) can be broken and therefore, the EnKF
and the LETKF methods would likely fail. To account for non-linear observation operators dur-
ing assimilation steps, alternatives to EnKF formulations such as, for instance, Particle Filters
(PF) (van Leeuwen, 2010) are proposed in the current literature. However, in practice, the
model dimension n ranges in O

(
108
)

and since the number of particles (model realizations)
increases exponentially regarding n, the use of PF methods under realistic weather forecast
scenarios can be questionable (Snyder, Bengtsson, Bickel and Anderson, 2008). In general,



robust methods have been proposed in order to draw samples from non-Gaussian (or even
more non-known) probability distributions (Attia, Rao and Sandu, 2015). Nevertheless, an
open question is how those methods can be implemented under practical scenarios such as
those found in the DA context. For instance, there is no doubt that Markov-Chain-Monte-
Carlo (MCMC) methods are potential candidates to be utilized for that purpose but, how to
speed-up the MCMC converge under high-dimensional probability spaces is one of the cur-
rent challenges in many fields of science (Attia, Ştefănescu and Sandu, 2017; Attia, Rao and
Sandu, 2017).
To support the development of MCMC methods in the context of DA, we think that gradient
approximations of (1.5) can be employed to speed-up their convergence. For instance, the ob-
servation operator can be linearized about partial (approximated) solutions of the optimization
problem (1.6) in order to obtain candidates of xa along a descent direction approximation of
J (x). Likewise, MCMC methods can afford the decision of whether or not to accept solutions.
This paper is organized as follows: in Section 2 ensemble-based methods as well as MCMC
methods from the current literature are discussed. Section 3 presents two novel matrix-free
DA methods for non-linear observation operators based on MCMC and convex approximations
of the J (x) function. In Section 4 experimental tests are performed by using the Lorenz 96
model. Finally, conclusions are stated in Section 5.

2 Preliminaries

In this section, we briefly describe ensemble-based methods, their limitations, and how those
can be overcome via sampling methods. We restrict ourselves here to specific topics that
are closely related to our proposed EnKF formulations, but readers are properly addressed to
papers with further and rigorous discussions of tangential concepts.

2.1 The Ensemble Kalman Filter

Monte Carlo methods are commonly employed to estimate population parameters. In this
context, the ensemble Kalman filter employs an ensemble of model runs (Gillijns, Mendoza,
Chandrasekar, De Moor, Bernstein and Ridley, 2006)

Xb =
[
xb[1], xb[2], . . . , xb[N ]

]
∈ Rn×N . (2.1a)

to estimate the moments of the background error distribution (1.2) (Evensen, 2006):

x ∼ N
(
xb, B

)
.

Thus:

xb ≈ xb =
1

N
·
N∑
e=1

xb[e] ∈ Rn×1 , (2.1b)



and

B ≈ Pb =
1

N − 1
·∆X ·∆XT ∈ Rn×n , (2.1c)

where xb[e] ∈ Rn×1 stands for the e-th model realization, for 1 ≤ e ≤ N , xb and Pb are the
ensemble mean and the ensemble covariance matrix, respectively. Likewise, ∆X ∈ Rn×N is
the matrix of member deviations,

∆X = Xb − xb · 1T , (2.1d)

where 1 is a vector of consistent dimension whose components are all ones. The assimilation
process, for instance, can be performed stochastically as follows,

Xa = Xb +

[[
Pb
]−1

+ HT ·R−1 ·H
]−1
·∆Y ∈ Rn×N , (2.2)

where H′(x) ≈ HT ∈ Rn×m is the Jacobian of the non-linear observation operator (whose
expansion point is chosen as the background state), and the innovation matrix ∆Y ∈ Rn×m

reads,

∆Y = HT ·R−1 ·
[
y · 1T + R1/2 ·E−H

(
Xb
)]

,

and the columns of matrix E ∈ Rm×N are samples from a multivariate standard Normal dis-
tribution. Since current model resolutions range in the order of the millions while ensem-
ble sizes does it in the hundreds, the ensemble covariance (2.1c) is typically rank-deficient.
Across the years, localization methods have been proposed (Keppenne, 2000; Nino-Ruiz and
Morales-Retat, 2018) in order to overcome this situation. This has triggered the formulation
and the implementation of efficient EnKF based methods (Bishop and Toth, 1999; Ott, Hunt,
Szunyogh, Zimin, Kostelich, Corazza, Kalnay, Patil and Yorke, 2004; Nino Ruiz, Sandu and
Anderson, 2014). A recent EnKF implementation relies on the Bickel and Levina estimator
(Bickel and Padilla, 2014) in order to estimate background error correlations: the EnKF based
on a modified Cholesky decomposition (EnKF-MC) (Nino-Ruiz, Sandu and Deng, 2015; Nino,
Sandu and Deng, 2016; Nino-Ruiz, Sandu and Deng, 2017; Nino-Ruiz, Mancilla and Cal-
abria, 2017). In this method, for each model component 1 ≤ i ≤ n, a neighbourhood P (i , r)

is defined based on its predecessors according to some labelling of model components and a
radius of influence r ∈ R+, therefore (Nino-Ruiz, Sandu and Deng, 2018),

j ∈ P (i, r)⇔ d (xi, xj)
2 ≤ r2, and j < i ,

where d(•, •) denotes a consistent distance function. Notice, each model component is condi-
tionally correlated only with its predecessors given all components, from here, a sparse preci-
sion matrix for the background distribution can be estimated as follows,

B̂−1 = L̂T · D̂−1 · L̂ ∈ Rn×n , (2.3)



where the diagonal entries of the factor L̂ ∈ Rn×n are all ones while its non-zero elements of
row i are given by fitting models of the form,

[
x[i]

]T
=

∑
j∈P (i, r)

−
{

L̂
}
i,j
·
[
x[j]

]T
+ ξ[i] , for 1 ≤ i ≤ n ,

where x[i] ∈ RN×1 denotes the i-th row of matrix, {L̂}i,j ∈ R is the (i, j)-th element of matrix
L̂, and the components of ξ[i] ∈ RN×1 are described by a zero-mean Normal distribution with
unknown variance σ2. Likewise, D ∈ Rn×n is a diagonal matrix whose diagonal entries are the
empirical variances v̂ar(•) of the residuals,

{
D̂
}
i,i

= v̂ar

[x[i]

]T − ∑
j∈P (i, r)

{
−L̂
}
i,j
·
[
x[j]

]T ≈ σ2 , (2.4)

for 2 ≤ i ≤ n, with
{

D̂
}
1,1

= v̂ar
(
x[1]

)
. By replacing (2.3) in (2.2) the EnKF-MC is obtained.

Another efficient EnKF implementation which exploits the structure of B̂−1 is the Posterior
EnKF (P-EnKF) (Nino-Ruiz, 2017). On its square root formulation, the P-EnKF approximates
the posterior covariance matrix by a sequence of rank-one updates over the prior factors in
(2.3),

Â(j) = Â(j−1) + z[j] ·
[
z[j]
]T

=
[
L(j)

]T
·D(j) ·

[
L(j)

]
, for 1 ≤ j ≤ m,

where B̂−1 =
[
L(0)

]T ·D(0) · L(0) = L̂T · D̂−1 · L̂, and z[j] is the j-th column of a square root
approximation of the information matrix Z = HT ·R−1/2, for 1 ≤ j ≤ m. We build the posterior
ensemble as follows:

Xa = xa · 1TN +
[
L̃T · D̃−1/2

]−1
·E ∈ Rn×N , (2.5)

where the columns of E ∈ Rn×N are formed by samples from a multivariate standard Normal
distribution, and the precision matrix Â−1 = L̃T · D̃−1 · L̃ ∈ Rn×n is an estimate of the posterior
error covariance matrix A−1. Note that, the direct inversion of matrix L̃T · D̃−1/2 ∈ Rn×n is not
actually performed since L̃T is a upper triangular matrix while D̃−1/2 is diagonal and therefore,
forward substitutions are sufficient in order to solve the subjacent linear system.
There are many other methods in the context of ensemble-based formulations for (nearly) linear
observation operators, which we do not discuss further here. Recently, a complete survey of
those is detailed by Bannister in (Bannister, 2016).

2.2 Non-Linear Observation Operators

For non-linear observation operators, EnKF based formulations can fail to obtain reasonable
estimates of posterior error distributions. At this point, it is convenient to make use of, for in-
stance, sampling methods (Sarma, 2009; Preitl, Precup, Preitl, Vaivoda, Kilyeni and Tar, 2007)
and as we mentioned before, Markov-Chain-Monte-Carlo (MCMC) methods (Plummer, Best,



Cowles and Vines, 2006) can fit within this context. Roughly speaking, the idea behind MCMC
methods is to implicitly draw samples from a target distribution π(x) (from which, potentially,
it is not clear how to do that) via samples from a proposal distribution φ(x) (i.e., Normal dis-
tribution). Interestingly, such samples, which form a chain, converge to high-probability zones
of π(x). This fact has been theoretically proven (Asmussen and Glynn, 2011). For instance,
in the Metropolis algorithm, MCMC methods with symmetric proposal distributions work as is
shown in the Algorithm 1. The main concern in this context is how to speed-up MCMC methods
in large-dimensional probability spaces. Recently, this issue have been addressed by Cotter
in (Cotter, Roberts, Stuart, White et al., 2013), a novel idea is based on the Crank-Nicholson
proposal which, in the context of DA, has the form:[

I +
1

2
·T ·B−1

]
· zCN =

[
I− 1

2
·T ·B−1

]
· x + [2 ·T]1/2 ξ , (2.6)

where T ∈ Rn×n is a pre-conditioner matrix, and ξ ∈ Rn×1 follows a multivariate standard
Normal distribution. The idea behind this method is to avoid the Random-Walk provided by the
traditional proposal (Lombardi, 2007; Sengupta, Friston and Penny, 2016),

zB = x + B1/2 · ξ , (2.7)

and as a potential consequence, the number of burn-in steps in MCMC methods can be min-
imized. Thus, high-probability zones of the target distribution can be reached faster (Hu, Yao
and Li, 2017; Beskos, Girolami, Lan, Farrell and Stuart, 2017).
There are many other families of methods that can be employed to compute a posterior mode of
(1.6) in the general case. Some of them are based on optimization methods (Precup and Preitl,
2004; Zupanski, 2005; Fan, Huang, Baetz, Li, Huang, Li, Chen and Xiong, 2016), which exploit
the use of gradient information. However, how those methods can be employed in DA wherein
the number of variables ranges in the order of millions is an open question, and further research
is needed in order to extrapolate those to practical contexts (Apte, Hairer, Stuart and Voss,
2007; Bannister, 2016). Besides, in most of the cases, gradient-driven optimization methods
rely on smooth properties of gradient approximations in order to guaranty their convergence
(Nino-Ruiz, 2018), and in DA, for instance, rough observation operators can be found.
The literature proposes sampling methods (Hadfield et al., 2010; Hoang, Schwab and Stu-
art, 2013) which can be contextualized in the DA framework but, how those can be imple-
mented under, for instance, operational weather forecast scenarios is a current issue. We
center our attention on the MCMC methods discussed here (which are widely known by the
scientific community), and we think that, by proposing samples along steepest descent ap-
proximations of (1.5), MCMC methods can rapidly reach high-probability zones of the posterior
error distribution (1.4). The next section proposes two efficient EnKF formulations based on
this general idea.



Algorithm 1 General framework of the Metropolis algorithm.
1: function COMPUTE CHAIN RW(x(0), v)

Require: Initial state x(0) in the chain, and number of iterations v.
Ensure: A chain whose elements converge to high-probability zones of π(x).

2: for k ← 0 to v do
3: Draw z ∼ φ(x(k)).
4: Set,

xk+1 =

z , with probability min
(

1, π(z)

π(x(k))

)
,

x(k) , otherwise.

5: end for
6: Return

{
x(k)

}v
k=0

.
7: end function

3 Proposed Methods

In this section, we propose two matrix-free EnKF formulations, whose analysis steps support
on MCMC methods. The first of them makes use of the traditional Random-Walk (2.7) while
the last one uses the Crank-Nicholson proposal function (2.6). The target distribution in our
framework is given by the posterior distribution (1.4). The precision covariance of the back-
ground error distribution B−1 is estimated via the modified Cholesky decomposition (2.3). The
methods are derived on common assumptions done in the context of ensemble DA: ensemble
sizes are much lesser than model dimensions (N � n), and n oscillates in the order of millions.
As in any sequential DA scheme, we start with an initial ensemble Xb ∈ Rn×N of model states.
The ensemble mean is computed xb and an iterative process is performed. Starting with
x(0) = xb, the idea is to generate a sequence of v states x(k), for 1 ≤ k ≤ v, in such manner
that xa ≈ x(a) = x(v), this is, the last state in the chain serves as an approximation of (1.6)
which in turn is the analysis mean. The posterior ensemble can be built about xa as is done in
the P-EnKF context (2.5). At this point, of course, the observation operator is linearized about
xa.

3.1 A Random-Walk approach: the ensemble Kalman filter based on MCMC
(EnKF-RW)

Intuitively, in MCMC methods, by using the precision covariance (2.3), at iteration k, for 1 ≤
k ≤ v, the proposal distribution reads:

z ∼ N
(

x(k) ,
[
B̂−1

]−1)
,

or simply,

z = x(k) + ν ∈ Rn×1 , (3.1)



where the vector ν ∈ Rn×1 can be computed via the solution of the following linear system of
equations: [

LT ·D1/2
]
· ν = ξ ,

where, recall, ξ ∈ Rn×1 is standard Normally distributed. However, by the Central Limit Theo-
rem, we know that proposed states in the form (3.1) will lie in a small shell about x(k). Conse-
quently, samples can be proposed far from high-probability zones of the target distribution (1.4)
which can impact the speed of convergence in MCMC methods. To overcome this situation,
we consider a first order Taylor polynomial about the current state x(k),

H (x) ≈ Gk(x) = H
(
x(k)

)
+ Hx(k) ·

[
x− x(k)

]
,

where Hx(k) ∈ Rm×n is the Jacobian matrix of H(x) at x(k). Hence, a convex approximation of
the 3D-Var cost function (1.5), about x(k), is as follows:

Ĵ (x) =
1

2
·
∥∥∥x− xb

∥∥∥2
B−1

+
1

2
· ‖y − Gk (x)‖2R−1 , (3.2a)

whose gradient reads,

∇Ĵ (x) = B̂−1 ·
[
x− xb

]
−HT

x(k) ·R−1 · [y − Gk(x)] ∈ Rn×1. (3.2b)

Then, the proposal distribution (3.1) is replaced by an Uniform distribution wherein samples
along the direction −∇Ĵ (x(k)) have the same probability of occurrence, such samples can be
generated as follows:

z = x(k) + λ ·

− ∇Ĵ (x(k)
)∥∥∥∇Ĵ (x(k)
)∥∥∥
 , with λ ∼ U (0, β) , (3.3)

where U (0, β) stands for an Uniform distribution on the interval (0, β). An intuitive range for β
can be,

β ∈
[
1,
∥∥∥∇Ĵ (x(k)

)∥∥∥] ,
where,

∥∥∥∇Ĵ (x(k)
)∥∥∥ can be chosen for (nearly) linear operators while its counterpart for highly

non-linear ones. The main motivation for using this range is that, since H(x) can be highly
non-linear (and even more, non-smooth), (3.2a) can be a good approximation of (1.5) only in a
small region about x(k). In the abscense of prior information about β, one can choose 1.
For the two dimensional target distribution π(x) = exp(−1/2 ·

∥∥x− [2, 2]T
∥∥2 /2) + exp(−1/2 ·∥∥x− [4, 4]T

∥∥2), the MCMC chains are shown in figure 1b for the proposal Random Walk (3.1)
and the gradient driven one (3.3). The computational benefits are just evident.
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(b) MCMC Gradient Driven.

Figure 1: Path followed by traditional MCMC methods vs that based on gradient approxima-
tions. Gradient approximations can be exploited in order to speed-up the convergence of
sampling methods towards high-probability zones of target distributions.

Algorithm 2 Analysis computation via MCMC with Descent Walk.

1: function COMPUTE ANALYSIS DW(xb, v, ∇Ĵ (x), J (x))
Require: The background ensemble mean xb, the maximum number of iterations v, the cost

function J (x), and the gradient approximation ∇Ĵ (x) of ∇J (x).
Ensure: An approximation xa of the analysis state xa.

2: Set x(0) ← xb

3: for k = 0 to v do
4: Draw λ ∼ U (0, β)

5: Set z← x(k) + λ ·
[
− ∇Ĵ (x(k))
‖∇Ĵ (x(k))‖

]
6: Compute δ ← min

(
1, J

(
x(k)

)
/J (z)

)
7: Draw u ∼ U(0, 1)

8: if u < δ then
9: Set x(k+1) ← z

10: end if
11: end for
12: return x(v) as xa

13: end function

Notice, samples from distribution (3.3) can be generated by (3.1) as well (even if that is done
with low probability) but, the subset of samples along the search direction (3.3) provide states
which potentially can maximize the posterior probability. On the other hand, no matrix inversion
is required in this context in order to propose states. The acceptance and rejection criteria of
those rely on the Metropolis-Hastings criterion. The overall sampling procedure is detailed in
the Algorithm 2. Note that, in line 6, a Padé approximant is utilized in order to estimate the ratio

P
(
x(k)|y

)
P (z|y)

∝
exp

(
−J (x(k))

)
exp (−J (z))

≈ 1− J (x(k))

1− J (z)
≈ J (x(k))

J (z)
,



since in the DA context J (z),J (x(k)) � 1. This approximation is done owing to computa-
tional aspects: exponential functions can grow/decay very rapidly in such manner that, having
J (x(k)) and J (z) as exponents can cause memory under/overflows and consequently, the
standard ratio cannot be computed. Unlike MCMC methods based on Random-Walk, this pro-
cedure does not return a chain but only the last state in that. This mainly obeys to the fact
that, gradient approximations of (1.5) are utilized among iterations and therefore, we expect
final iterates to be stationary points of (1.6). On the other hand, the most likely state from the
chain in the Algorithm 2 can be returned as well but, this choice is sensitive to overfitting, for
instance, consider the linear case H = I and R = σ2o · I,

xa = xb +
[
B̂−1 + σ2o · I

]−1
·
[
y − xb

]
, (3.4)

and the Singular Value Decomposition of B̂−1 = U ·Σ ·UT where U ∈ Rn×n is a matrix holding
the left (right) singular vectors of B̂−1 whose corresponding singular values are stored in the
diagonal matrix Σ ∈ Rn×n, typically, in decreasing order. By using this decomposition, (3.4)
can be written as follows:

xa = xb +
[
U ·Σ ·UT + σ2o · I

]−1 · [y − xb
]

= xb + U ·
[
Σ + σ2o · I

]−1 ·UT ·
[
y − xb

]
= xb +

n∑
i=1

(
1

σ[i] + σ2o

)
· u[i] · u[i]T ·

[
y − xb

]
,

where σ[i] denotes the i-th singular value of B̂−1, for 1 ≤ i ≤ n. As is well known, observations
are composed by two sources of information: y = x∗+ỹ, where ỹ ∼ N

(
0, R̃

)
, and R̃ ∈ Rm×m

is the actual data error covariance matrix. Recall that, x∗ is the actual state of the system.
Thus, the likelihood function can be maximized even though σ[i] +σ2o < u[i]T · ỹ, in such cases,
noisy information is injected into the analysis mean xa and even worst, it can be amplified for
small (near zero) singular values. Thus, checking for most likely states does not guaranty to
obtain a better approximation of x∗.

3.2 The Crank-Nicolson proposal: the ensemble Kalman filter based on Crank-
Nicholson (EnKF-CN)

Since matrix dimensions in the context of DA range according to model resolutions, matrix
computations must be performed as efficiently as possible. Efficient manners to generate
samples are a must in this context, we propose a novel and easy manner to draw samples
from a Crank-Nicholson (CN) proposal distribution. Consider the CN like proposal (2.6),[

I +
1

2
·T · B̂−1

]
· z =

[
I− 1

2
·T · B̂−1

]
· x(k) + [2 ·T]1/2 · ξ (3.5)

where B−1 has been estimated via the modified Cholesky decomposition B̂−1. Consider T =

γ · I, where γ > 0 is a parameter to be chosen later, and by multiplying both sides by 2, we



obtain:

z = q(k) + 2 ·
√

2 · γ ·
[
2 · I + γ · B̂−1

]−1
· ξ , (3.6a)

where q(k) ∈ Rn×1 is obtained via the solution of the next linear system:[
2 · I + γ · B̂−1

]
· q(k) =

[
2 · I− γ · B̂−1

]
· x(k) . (3.6b)

Notice, samples proposed by (3.6a) can be characterized via the distribution:

z ∼ N
(

q(k), 8 · γ ·
[
2 · I + γ · B̂−1

]−2)
. (3.6c)

Following a similar reasoning to that of the EnKF-RW, a descent direction of (1.5) at q(k) can
be approximated as follows:

∇J̃ (x) = B̂−1 ·
[
x− xb

]
−HT

q(k) ·R−1 ·
[
y −H

(
q(k)

)]
∈ Rn×1. (3.7)

The CN proposal (3.6) is replaced in such manner that, samples along the direction (3.7) are
proposed with equal probability, such samples can be generated as follows:

z = q(k) + λ ·

− ∇J̃ (q(k)
)∥∥∥∇J̃ (q(k)
)∥∥∥
 , with λ ∼ U (0, β) . (3.8)

Since large matrix dimensions are common in this context, the direct solution of linear system
(3.6b) is prohibitive, let us write such linear system in the form,[

2 · I + γ · B̂−1
]
· q(k) = w(k) , (3.9)

where w(k) =
[
2 · I− γ · B̂−1

]
· x(k) ∈ Rn×1. Equation (3.9) can be written as follows,

2 · q(k) + γ · B̂−1 · q(k) = w(k) , (3.10)

which yields to the iterative method,

2 · q(k, p+1) = w(k) − γ · B̂−1 · q(k, p) ,

or equivalently,

q(k, p+1) =
1

2
·
[
w(k) − γ · B̂−1 · q(k, p)

]
. (3.11)

To ensure convergence of the iteration (3.11), we need the γ value to satisfy (Nino-Ruiz, 2020,
Theorem 1): ∥∥∥γ · B̂−1∥∥∥ < 2 , (3.12)



which can be guaranteed, for instance, by either,

γ =

 n∑
i=1

∣∣∣∣{B̂−1
}
i,i

∣∣∣∣+
∑

j∈P (i, r)

∣∣∣∣{B̂−1
}
i,j

∣∣∣∣
−1 , (3.13a)

or

γ =

[
max

1≤i,j≤n

∣∣∣∣n2 · {B̂−1
}
ij

∣∣∣∣]−1 . (3.13b)

The value (3.13b) can be easily obtained by noting that B̂−1 is a covariance matrix and there-
fore, per row, the largest value is on the diagonal. This allows us to write (3.13b) as follows:

γ =

[
max
1≤i≤n

∣∣∣n2 · {B̂−1
}
ii

∣∣∣]−1 ,
or, by the definition of B̂−1 (2.3),

γ =

max
1≤i≤n

n2 · ∑
j∈P (i, r)

{L}2i, j · {D}ii

−1 ,
which is a computational friendly expression of (3.13b). Besides, the necessary number of
iterations q to approximate the solution (3.9) via the iteration (3.11) with a precision η is given
by (Nino-Ruiz, 2020, Theorem 2),

q ≥
log

(
2·ε
‖w(k)‖

)
log

(
‖γ·B̂−1‖

2

) .

Putting it all together, a posterior mode (1.6) can be estimated based on the ensemble (2.1a)
via the Crank-Nicholson proposal as is shown in the Algorithm 3.



Algorithm 3 Analysis computation via MCMC with CN proposal.

1: function COMPUTE ANALYSIS CN(xb, v, B̂−1, ∇Ĵ (x), J (x), η)
Require: The background ensemble mean xb, the number of iterations v, an estimate B̂−1 of

the precision matrix B−1 via a modified Cholesky decomposition, the cost function J (x),
the gradient approximation ∇Ĵ (x) of ∇J (x), and the precision η.

Ensure: An approximation xa of the analysis state xa.
2: Choose γ according to (3.13).
3: Set x(0) ← xb.
4: for k = 1 to v do
5: Set w(k) ←

[
2 · I− γ · B̂−1

]
· x(k).

6: Set q ← log

(
2·η
‖w(k)‖

)
/ log

(
‖γ·B̂−1‖

2

)
7: for p = 0 to q do
8: Set q(k, p+1) ← 1

2 ·
[
w(k) − γ · B̂−1 · q(k, p)

]
9: end for

10: Set q(k) ← q(k, v)

11: Draw λ ∼ N (0, β)

12: Set z← q(k) + λ ·
[
− ∇J̃ (x(k))
‖∇J̃ (x(k))‖

]
13: Compute δ ← min

(
1, J

(
x(k)

)
/J (z)

)
14: Draw u ∼ U(0, 1)

15: if u < δ then
16: Set x(k+1) ← z

17: end if
18: end for
19: return x(v) as xa

20: end function

3.3 Proposed matrix-free sampling filter

Once a posterior mode of the error distribution is obtained by either, the Crank-Nicholson
proposal or the traditional Random-Walk, the posterior ensemble is built about it. The Algorithm
4 details a complete assimilation cycle of the proposed methods. We denote by EnKF-RW the
EnKF implementation based on the Random-Walk (3.3) while EnKF-CN stands for that based
on the Crank-Nicholson proposal (3.8).



Algorithm 4 Analysis computation via MCMC with CN proposal.

1: function PERFORM ASSIMILATION(Xb, y, v, ∇Ĵ (x), J (x), ε)
Require: The background ensemble Xb, the observation y, the number of iterations v for the

sampling methods, the cost function J (x), the gradient approximation ∇Ĵ (x) of ∇J (x),
and the precision ε.

Ensure: Approximated samples Xa of the posterior distribution (1.4).
2: Compute the ensemble mean xb according to (2.1b).
3: Estimate B̂−1 via the modified Cholesky decomposition (2.3).
4: Set xa ← COMPUTE ANALYSIS CN(xb, v, B̂−1,∇Ĵ (x) ,J (x) , ε). . (EnKF-CN)
5: Set xa ← COMPUTE ANALYSIS RW(xb, v,∇Ĵ (x) ,J (x)). . (EnKF-RW)
6: Linearize H(x) about xa.
7: Compute the posterior ensemble Xa via (2.5).
8: return Xa

9: end function

4 Experimental Results

In this section, experimental tests are performed in order to assess the accuracy of the pro-
posed EnKF implementations: the EnKF-RW and the EnKF-CN. We make use of the Lorenz-96
model (Lorenz, 2005) as our surrogate model during the experiments. The Lorenz-96 model is
described by the following set of ordinary differential equations (Fertig, Harlim and Hunt, 2007):

dxj
dt

=


(x2 − xn−1) · xn − x1 + F for j = 1,

(xj+1 − xj−2) · xj−1 − xj + F for 2 ≤ j ≤ n− 1,

(x1 − xn−2) · xn−1 − xn + F for j = n,

(4.1)

where F is external force and n = 40 is the number of model components. Periodic boundary
conditions are assumed. When F = 8 units the model exhibits chaotic behavior, which makes
it a relevant surrogate problem for atmospheric dynamics (Karimi and Paul, 2010; Gottwald
and Melbourne, 2005). A time unit in the Lorenz-96 represents 7 days in the atmosphere. The
experimental settings are described below:

• We obtain an initial condition x̃b−2 after a long-time numerical integration of a random vec-
tor state. As should be expected, the solution x̃b−2 is consistent with the model dynamics
(4.1).

• We sample a perturbed state from the following distribution

x̃b−2 ∼ N
(
x∗−2, 0.052 · I

)
,

we numerically integrate this state for a long-time period, after which, the initial back-
ground solution xb−1 is obtained.



• Following the previous steps, we sample from the distribution,

x̃
b[ê]
−1 ∼ N

(
xb−1, 0.052 · I

)
, for 1 ≤ ê ≤ N̂ ,

to obtain samples that become initial ensemble members after a propagation time of
10 time units. We perform this step several times to build an initial pool of ensemble
members X̂b

0 whose dimension reads N̂ = 104 members. A two dimensional projection
of this pool is shown in figure 2a.

• We build an assimilation window of M = 20 time-spaced observations. Observations are
taken every 3.5 days, and we describe their error statistics via the following Gaussian
distribution,

yk ∼ N
(
Hk (x∗k) , [ε

o]2 · I
)
, for 1 ≤ k ≤M ,

where the standard deviations of observational errors εo = 10−2 (as is typicall, in prac-
tice). The components are randomly chosen at the different assimilation cycles. We use
two observation operators from the literature, a non-linear and non-smooth operator (van
Leeuwen, Cheng and Reich, 2015):

{H (x)}j =
{x}j

2
·



∣∣∣{x}j∣∣∣

2

α−1

+ 1

 , (4.2)

and a very challenging one, an exponential operator (Attia and Sandu, 2015):

{H (x)}j = exp
(
{x}j

)
, (4.3)

where j denotes the j-th observed component from the model state.

• The radius of influence is set to r = 1 while the inflation factor is set to 1.02 (a typical
value).

• The ensemble size for the benchmarks is N = 20. These members are randomly chosen
from the pool X̂b

0 for the different experiments in order to form the initial ensemble Xb
0

for the assimilation window. Evidently, Xb
0 ⊂ X̂b

0.

• The `2 norm of errors are utilized as a measure of accuracy at the assimilation step k,

εk =

√[
x∗k − xak

]T · [x∗k − xak
]
, (4.4)

where x∗k and xak are the reference and the analysis solutions, respectively. In figure 2b,
the `2 norm error distribution is shown for the initial background. The estimated error, in
average, reads εb ≈ 31.73 while its standard deviation equals σεb ≈ 3.09. By convenience,
these values are expressed in the log scale: log(εb) = 3.45, and log(σεb) = 1.13.

• We employ the Root-Mean-Square-Error (RMSE) as a measure of performance for a



given assimilation window,

ε =

√√√√ 1

M
·
M∑
k=1

ε2k . (4.5)
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Figure 2: 2D projection of the background ensemble (pool of N = 104 members) as well as its
estimated `2 norm error distribution. In average, the `2 norm of errors are 31.73 with standard
deviation of 3.09.

4.1 Single Assimilation Step - Full Observational Network

In this part, we make use of the non-linear observation operator (4.2) with a full observational
network for a single assimilation step. The values of α are varied from 1 (linear operator) to
10 (highly non-linear operator). We set the number of iterations to v = 100, 200, and 300. The
experiments, for each configuration (α, v), are run 10 times in order to assess, in average, the
errors. The logarithms of such errors are shown in figure 6. As can be seen, the EnKF-RW is
lesser sensitive to increments in α than the EnKF-CN implementation. This can be explained
as follows: as the values of α increases, the high-probability zones of the posterior distribution
become sharper, the proposed states in the EnKF-CN context are based on candidates of a
shifted state and therefore, since their acceptances are probabilistic, candidates with a lower
posterior probability can be accepted along steepest descent approximations of J (x) when
these are near to current solutions. Nevertheless, as the number of iterations is increased,
the impact of increments in α is mitigated. On the other hand, the EnKF-RW formulation does
not suffer from such condition, recall that, in this method candidates are compared against the
current solution. For all cases, the estimated posterior errors are lesser than those of the prior
log(εb) ≈ 3.45 and the observations log(εo) ≈ −2 as should be expected for full observational
networks. In the Table 1, we report the standard deviations of errors across different runs as
well. Note that, the uncertainty of errors in all cases is lesser than that of the prior distribution
log(σεb) ≈ 1.13 , and in some cases, by several order of magnitudes.
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Figure 3: Experimental results with the Lorenz-96 model (4.1) and the non-smooth observation
operator (4.2). The average of the `2 error norms across 10 iterations are shown for different
values of v and α.

Figure 4 shows some snapshots of the initial ensemble, the ensemble mean (background),
the actual state of the system, the posterior ensemble, and the path followed by the proposed
methods starting from the ensemble mean for different values of α and v = 100. The percent-
age of variance explained by such plots is about 90%. As can be seen, the EnKF-RW path is
affected as the value of α increases, such case is not notorious in the EnKF-CN context. For
instance, regardless the value of α, the EnKF-CN path seems to be “straight”. The EnKF-CN
method can quickly reach high-probability zones of posterior distributions but, as we noted
before, it is sensitive to sharp shapes (given by the α value) in those.



log (ε̄) log (σε)

v α EnKF-CN EnKF-RW EnKF-CN EnKF-RW

100

1 -5.66 -5.29 -6.09 -4.78
2 -5.75 -5.91 -5.76 -6.13
3 -5.72 -6.08 -4.85 -6.47
4 -5.69 -5.70 -6.46 -6.20
5 -5.63 -5.70 -5.89 -6.44
6 -6.26 -5.98 -6.38 -6.12
7 -5.80 -5.32 -5.62 -4.60
8 -5.72 -4.38 -5.53 -3.27
9 -5.58 -4.05 -5.02 -3.32

10 -5.64 -3.78 -6.04 -3.13

200

1 -5.40 -5.24 -5.32 -4.87
2 -6.14 -6.16 -6.35 -6.07
3 -5.82 -5.98 -5.41 -6.02
4 -6.28 -6.38 -6.85 -7.60
5 -6.01 -6.15 -6.12 -6.59
6 -5.84 -5.92 -6.15 -6.56
7 -6.03 -5.33 -6.74 -4.45
8 -5.87 -4.87 -6.21 -3.91
9 -5.97 -4.23 -7.00 -3.17

10 -6.02 -4.52 -6.13 -3.61

300

1 -5.55 -5.53 -5.41 -5.49
2 -5.91 -6.24 -6.16 -7.14
3 -5.92 -6.00 -7.37 -9.02
4 -5.92 -6.56 -4.91 -7.74
5 -6.32 -6.42 -6.91 -7.28
6 -5.96 -5.92 -6.83 -6.45
7 -6.29 -5.62 -5.77 -4.56
8 -6.38 -5.34 -8.37 -4.44
9 -6.01 -5.15 -8.23 -4.36

10 -5.91 -4.23 -6.05 -3.33

Table 1: Experimental results with the Lorenz-96 model (4.1). The average of the `2 error
norms as well as their standard deviations across 10 runs are shown for different values of v
and α.
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Figure 4: Path followed by the EnKF-RW and the EnKF-CN formulations for a single assimila-
tion step and the non-smooth observation operator (4.2) for different values of α.

4.1.1 Exponential Operator

Following the experimental settings of the previous section, we report in figure 5 the results
for the exponential observation operator (4.3). As can be seen, despite this operator is highly
non-linear, it is smooth, and therefore, the EnKF-CN estimate posterior moments better than
those of the EnKF-RW. Furthermore, as the number of iterations increases, errors in posterior
estimates can be mitigated. Note that, in all cases, posterior errors are lesser than those of
prior and observation ones. Besides, since the exponential operator is smooth, the actual gra-
dient of (4.3) can be employed during the proposal steps, which can speed-up the convergence



of our proposed filter implementations. Figure 6 shows the path followed by the proposed im-
plementations for some runs. Both methods exhibit similar behaviors among iterations. For
instance, their convergence is not impacted by the number of iterations v. Moreover, the last
members of the Markov chain are near the actual state of the system. In all cases, a good
estimate of the posterior mode (1.6) is reached.

100 200 300
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-4

-3.5

-3

-2.5

EnKF-RW

EnKF-CN

Figure 5: Experimental results with the Lorenz-96 model (4.1) and the exponential observation
operator (4.3). The average of the `2 error norms across ten iterations are shown for different
values of v.
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Figure 6: Path followed by the EnKF-RW and the EnKF-CN formulations for a single assimila-
tion step and the exponential observation operator (4.3), and different values of v.

4.2 Assimilation Window - Exponential Observation Operator

In this section, we test our proposed filters making use of an assimilation window with M =

20 observations (as we described above), the exponential observation operator, and three
observational networks wherein s = 70%, 80%, and 90% of model components are observed,
respectively. Again, for each configuration, ten runs are performed. The observational network
is randomly formed at each assimilation cycle. In figure 7 results for s = 70% and s = 90% are
shown in terms of RMSE in a log scale. As expected, as the number of observed components
is increased, a better approximation of the posterior state is obtained by either: the EnKF-



RW or the EnKF-CN. This is a direct consequence in ensemble-based methods since actual
information about the physics and the dynamics of model components is injected into the
imperfect numerical model. In both cases, posterior errors are lesser than those given by
the prior, and even more, their standard deviations are small, considering that no all model
components observed. This can be seen in the Table 2. Note that, as the number of iterations
increases, the uncertainty of posterior errors can be mitigated.

(a) EnKF-RW and s = 70% (b) EnKF-CN and s = 70%

(c) EnKF-RW and s = 90% (d) EnKF-CN and s = 90%

Figure 7: Mean and standard deviations, in log scale, of RMSE values across 10 runs for
different values of s, and v = 100.



log (ε) log (σε)

s v EnKF-CN EnKF-RW EnKF-CN EnKF-RW

70%
100 -1.65 -1.26 -1.65 -1.26
200 -1.93 -1.34 -1.93 -1.34
300 -1.74 -1.67 -1.74 -1.67

80%
100 -1.65 -1.65 -1.65 -1.65
200 -2.07 -2.04 -2.07 -2.04
300 -2.12 -1.89 -2.12 -1.89

90%
100 -2.01 -1.78 -2.01 -1.78
200 -2.04 -1.79 -2.04 -1.79
300 -1.78 -1.62 -1.78 -1.62

Table 2: Mean and standard deviations of errors for 10 realizations of experiments, and an
assimilation window of M = 20 observations.

5 Conclusions

Two efficient EnKF formulations based on MCMC methods are proposed. The main idea be-
hind our approaches is to extend the ensemble Kalman filter capabilities to account for non-
linear observation operators. The first method employs the well-known Random-Walk to pro-
pose candidates while the last formulation does it via the Crank-Nicholson proposal function.
The posterior ensemble is built similar to that of ensemble square-root formulations. Exper-
imental tests are performed by using the Lorenz-96 model. Two observation operators are
employed during the experiments: a non-smooth and non-linear operator and an exponential
one. In both cases, prior errors are decreased by several orders of magnitudes for full ob-
servational networks. Moreover, for an assimilation window of 20 observations, the prior error
is considerably decreased when 70%, 80%, and 90% of model components are observed in
terms of Root-Mean-Square-Errors.
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