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ABSTRACT 

Geometry parameters, fin height (HFin) & fin width (WFin), critically affect the performance 
of FinFET devices. These parametric variations have been assessed in the present work 
by designing silicon-on-insulator (SOI) fin-shaped field effect transistor (FinFET) device 
with optimum metrics. In this work, the designed devices show diminished Short channel 
effects and ameliorated analog parameters for the different range of HFin /Lg & WFin/Lg 
using 3D Visual Technology Computer-Aided Design (TCAD) simulator. Further after 
training the artificial neural network with a set of parameters and delineating the fitness 
function, genetic algorithm (GA) and Whale optimization algorithm (WOA) have been 
implemented. Corresponding to the minimal fitness function, a pair of optimized metrics 
has been provided in less time using the weighted sum approach. It is observed that the 
taller and wider fins serve the need of high ION, larger intrinsic gain and a better early 
voltage whereas narrow fin provides SCEs immunity for device. The results seized 
through optimization techniques are in good reconciliation with the results of Physical 
device simulator’s with a deviation less than 7%.   
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1. INTRODUCTION 

 
In the era of downscaling, leading Semiconductor companies like Intel, Samsung, TSMC etc are 

formulating scaled FinFET (device of a vertical channel with the gate wrapped in different planes) in 

their processors due to its superior electrical characteristics, suppressed short channel effects, high 

drive current, low leakage current & better scaling capability (Schaller, 1997; Ho et al., 2013, 

Bhattacharya and Jha, 2014, Lee, 2016). For multifin SOI FinFET device, Ion/Ioff ratio in order of 1011, 

leakage current in order of 10-19 for SiC3C and reduced Subthreshold Swing (58mV/dec) for GaAs as 

channel material has been obtained as compared to conventional devices (Kaur et al., 2017).  SOI 

technology is preferred in low power and high switching applications due to diminished leakage path 

near the junction of source/drain regions. The exceptional SCEs such as DIBL and leakage current for 

designed FinFET structures are 15.8mV/V and 1.37e-17 A respectively (Aujla and Kaur, 2019). For
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wireless communication system, Fully depleted SOI MOSFET is served as prominent device due to 

enhanced analog and RF performances such as higher cut-off frequency and improved 

transconductance (Raskin, 2019). The comparative analysis of partially depleted SOI, FD-SOI and 

bulk MOSFET devices along with the impact of HALO implantation on analog and RF process 

parameters has been done for the gate length of 0.08µm (Kilchytska et al., 2003). An improvement in 

transconductance, intrinsic gain, cut-off frequency and On/Off drain current ratio has been obtained 

for scaled trigate bulk FinFET device (bha et al., 2019). Moreover, fully-depleted (FD) SOI MOSFET is 

an appropriate device for analog applications as it results in high transconductance to drain current 

ratio and this advantage can make them to work efficiently at high temperature or at high frequency 

(Colinge, 1998). 

Utilization of Meta-heuristic approaches for designing and optimization of engineering problems has 

appeared as a significant tool in obtaining optimum process parameters. Because they do not require 

gradient information, can bypass local optima and easy to implement (Mirjalili and lewis, 2016).The 

electrical characteristics of 20nm bulk FinFET with triangular shaped fin have been optimized using 

artificial neural network (ANN) and Genetic algorithm (GA). It was demonstrated that the performance 

metrics viz. Drain induced barrier lowering (DIBL), leakage current, drive current has been improved 

after optimization (Gaurav et al., 2016). The device optimization using Whale optimization Algorithm 

(WOA) has also been done due to its less convergence time as compared to others algorithms 

(Mukherjee et al., 2017).Traffic path planning system has been implemented with the modified Fuzzy 

cognitive maps (Vascak, J., 2012). A novel gas optimization algorithm has been demonstrated with 

benchmark functions and showed improved efficiency w.r.t GA and particle swarm optimization (PSO) 

algorithms (Shams et al., 2017). An optimum Traffic Light system has been realized with modified 

Fuzzy model (Gil et al., 2018). An efficient novel algorithm based on search and rescue operation has 

been proposed for real world applications (Shabani et al., 2019).Fuzzy controlled system has been 

created using several advanced nature inspired algorithms (Precup and David, 2019).  

Research on the development of FinFET is on-going at 10 nm and even 7 nm technology node (Kang 

et al., 2013; Eneman et al., 2013). However, no systematic design guideline for the design of the 

channel and source/drain contact has been presented. Hence this article is focused on design of 

14nm SOI FinFET using GA and WOA optimization techniques. 

     This paper is arranged as follows: Section 2 discusses the device design and the Simulation 

framework. The analysis of FinFET performance using metrics like SCEs and analog parameters are 

indicated in the section 3. Device optimization using GA and WOA via ANN and the summary 

comparison of MATLAB and TCAD results with previous literature are demonstrated in section 4. 

Section 5 concludes the work done. 

  
2. DEVICE DESIGN AND SIMULATION FRAMEWORK 

 

The structure of the vertical body profile in the n-channel region SOI FinFET is shown in Figure 1. A 

FinFET with SiO2 as interfacial oxide and N-poly-silicon as a gate electrode in underlap regions has 

been modeled. The design considerations of the device are shown in Table 1.  The doping 
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concentration for channel, source/drain and substrate are 1017 cm-3, 3×1020 cm-3  and 1x1016 cm-3 

respectively. The gate work function for the device is 4.5 eV at 300K temperature and the thickness of 

SiO2 as gate dielectric and buried oxide is 1nm and 20nm respectively (Colinge, 2008; Sun et al., 

2011) 

                       
(a)      (b)  

Figure 1. Bird eye views of designed SOI FinFET devices(a) 2-D view (b) 3D view with device 
dimensions 

Table 1 : Process Parameters of  designed FinFET  
Design Parameters Intel* Present work 

 Gate length, Lg (nm) 14 14 

 Oxide thickness, Tox (nm) 1.0 1.0 

Supply Voltage (V) 0.8 0.7 

*as per ITRS dimensions (2013),http://public.itrs.net 
 
 

Table 2 : Typical Cases Taken For Simulation 
HFin/Lg  WFin/Lg   Design Parameters 

(Colinge, 2008; Ho 
et al., 2013; Sun et 
al., 2011, Mohapatra 
et al., 2015) 
 

0.72,1.43,2.15,2.9,3.58 0.36,0.5, 

0.65,0.79,0.93,1,1.08 

 
 
Typical cases of WFin/Lg and HFin/Lg for simulation of designed device are mentioned in Table 2. The 

proposed device is designed, simulated and analyzed using Cogenda Visual TCAD. The device is 

designed using GDS and process file and the file obtained through this process is in tif3D format. The 

process file involves the description of the device structure including the doping profiles, electrical 

contact, meshing and material regions. The simulator adopted various physical models viz. Drift 

Diffusion, Lucent mobility, Band-to-Band tunnelling, along with Shockley–Read–Hall (SRH) and Auger 

recombination models for solving diffusion and transport equations .Further, the device performance 
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parameters are extracted and their analysis has been done using numerical methods (Kaur et al., 

2019 ; Mohapatra et al., 2015 ; De Andrade et al., 2012). The validation of simulator has been 

examined by comparing TCAD results with existing research work. Figure 2 illustrates that the 

simulation results are in good agreement with the published work (De Andrade et al., 2012). Figure 3, 

demonstrates the V-I characteristic of the device at the drain voltage of 0.7V and 50mV with gate 

ramp from 0 to 0.7V. It is depicted that higher drain voltage (0.7V) has more drive current as 

compared to corresponding drain voltage of 50mV. The output characteristic curve of the device is 

shown in Figure 4 in which graph is plotted for 0.7V and 50mV gate voltages with corresponding ramp 

drain voltages from 0 to 0.7V.  
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Figure 2. Identical Id-Vg simulation results of designed FinFET structure with reference results (De 
Andrade et al., 2012)     
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Figure 3. V-I characteristic curve in Linear and saturation region of designed FinFET device 

 
3. FINFET PERFORMANCE 

The impact of device fin parameters (WFin/Lg and HFin/Lg ) variation on various performance metrics 

such as short channel effects viz. on-current or drive current (ION), off-current or leakage current 

(IOFF), the ratio of ION and IOFF (ION/IOFF), Subthreshold Swing (SS) and analog parameters viz. 

Transconductance (gm), Transconductance Generation Factor (TGF), output conductance (gd), 

intrinsic gain (Av) and early Voltage (VEA) are presented systematically.  
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Figure 4. Output characteristics of SOI FinFET device 

 
 

3.1. Effects of Fin Height 
 The drive current is defined as the value of current calculated at Vd= 50mV and Vg= 0.7 V. Leakage 

current is referred as current value when applied input gate voltage is zero (Vg= 0V).Subthreshold 

Swing (SS) is the inverse of sub-threshold slope (S); it is stated as the ratio of change in applied gate 

voltage to the decade change in drive current.  

                                          
d

g

I
V

SS
10log∂

∂
=                                                           (1) 

   The performance parameters ION, ION/IOFF ratio and SS are calculated for designed devices as 

shown in Figure 5 and 6 .From Figure 5 it is observed that higher drive current is obtained for 

increased Fin height where as in Figure 6 reduction of on-off current ratio occur because of 

enhancement of leakage current with increased fin height. The better SS is required for the high 

speed switching capability of device for digital circuits. The SS presented in Figure 6 is near to ideal 

value i.e. 60mV/dec at 300K (Sakhi and Chowdhury, 2013), also it is observed that SS is less affected 

by fin height variation, it fluctuates between 62.5mV/dec  to 62.8 mV/dec. This happens because of 

the structure of FinFET device, as the gate is wrapped from three sides of channel with thin Fin width. 

Therefore, the device has more immunity to SCEs and greater electrostatic control over the channel.  

  Transconductance (gm) can be calculated by taking the ratio of variable drain current (∂Id) to the 

variable gate voltage (∂Vg) at constant value of drain source voltage (Vd). Basically, gm represents its 

capability of converting input voltage change into output current. It also describes the switching 

capability of device, which means that higher the transconductance, faster the device can switch on 

and off. Therefore, higher clock frequencies can be supported for this type of device. Figure 7 show 

the trend of the variation of transconductance (gm = ∂Id /∂Vg) and transconductance generation factor 

(gm/Id) w.r.t gate voltage for fin height 10nm and fin width 5nm. Both gm and Id are increasing with the 

increase in HFin/Lg ratio of the designed devices, extracted gm for height variation is presented in 

Figure 8. For producing higher drive current, taller fins are preferred whereas for reduced SCEs, thin 

fin is required because it may reduce the cause of an electric field in silicon surface which further 

lessen IOFF. The decreased gd is detected in Figure 9 for lower HFin for designed device. CMOS based 
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analog circuits require transistors with low value of output transconductance (gd=∂Id /∂Vd) and high 

value of gain. Both are obtained for the case of low fin height ratio i.e. 1.43 and high HFin/L g= 2.9 

respectively. Further, TGF is directly proportional to gm and is suitable for the realization of analog 

circuits at low voltage supply. Due to brevity, the extracted values of higher intrinsic gain (AV= 20*log10 

(gm/gd)) and early voltage (VEA= Id/gd) are 125dB and 3.7V respectivley, achieved at the lower fin 

height of 10nm (Sun et al., 2011 ; Mohapatra et al., 2015) 
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Figure 5. ION variation w.r.t HFin/Lg for FinFET device. 
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Figure 6. SS and ION /IOFF variation w.r.t HFin/Lg for FinFET device. 
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Figure 8. Transconductance for HFin/Lg  variation. 
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Figure 9. Drain voltage versus output conductance for HFin/Lg  variation. 

 

3.2. Effect of Fin Width 
The sensitivity of fin width for ION/IOFF  and SS of designed device is shown in Figure 10. Here, it is 

observed that for high fin width, SCEs arises because of larger longitudinal electric field at the 

source side and larger distance between multiple gates, which in turns leads to high leakage current, 

SS and reduced ION/IOFF .Therefore, it is depicted that for SCEs immunity narrow fin width is suitable. 

The analog parameters like TGF and VEA are plotted for WFin/Lg variation in Figure 11 and 12. Larger 

TGF is required for producing highly efficient device. It is predicted that higher value of TGF is 

obtained at least WFin/Lg  as shown in Figure 11.TGF is dependent parameters of transconductance, 

which further depends on Id. More drive current is demonstrated for larger fin width because of 

immense accommodation of charge carriers in the larger area of the device. Better early voltage 

(VEA) is demonstrated for lower value of WFin/Lg, because of reduction in substrate effects, body 

heating effects and higher immunity towards SCEs. The gd shows degradation by the order of 104 for 

increased fin width of the device (Mohapatra et al., 2015 ; Nandi et al., 2013). 
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Figure 10. ION /IOFF and SS variation w.r.t WFin/Lg for FinFET device. 
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Figure 11. TGF variation for different WFin/Lg ratios 
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Figure 12. VEA variation for different WFin/Lg ratios 

 

4. PARAMETER OPTIMIZATION WITH GA AND WOA through ANN Training 
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4.1. Training of Artificial Neural Network 
ANN is defined as a computing system which consists of highly interconnected multiple neurons 

which mimic the biological behaviour of human brain. The multilayer feed-forward model of neural 

network contains three interconnected layers: an input, an output and the hidden layer as shown in 

Figure 13.The input layer brings the input signal into system through consecutive layers of neurons for 

further processing. The intermediate hidden layer solves the desired problem using sigmoid transfer 

function (activation function) and a set of associated weighted inputs. The output layer produces the 

output of the network using linear transfer function. In this way, ANNs can be trained by amending the 

weight values of interconnected neurons.The given network is trained with Levenberg-Marquardt 

backpropagation algorithm (trainlm).TRAINLM is preferred because it require less memory and has 

more speed as compared to other algorithms. Although, this algorithm provides training with validation 

and test vectors and also its network has derivative functions for their transfer function, weight and net 

input. Backpropagation is used to calculate the Jacobian ‘jX’ of performance ‘perf’ with respect to the 

weight and bias variables ‘X’. Each variable is adjusted according to Levenberg-Marquardt equation, 

jXjXjj ∗=      2(a) 

EjXje ∗=      2(b) 

( ) jemuIjjdX ∗+−=     2(c) 

where E is all errors and I is the identity matrix (Hagan and Menhaj, 1994; Sapna et al., 2012) 

Training is stopped after satisfying few of conditions viz. Maximum number of epoches (repetitions) is 

reached, Performance is minimized to the goal etc. 

i).Through ANN network, two input elements (WFin & HFin) and five output elements (SS, ION, gm, 

VEA & TGF) has been created with 20 hidden neurons by giving 70 data samples for optimizing 

FinFET parameters. As each input have corresponding five output parameters in the output 

dataset. 

ii).Separately created datasets for device has been applied to NN (Neural Network) Toolbox of 

MATLAB for obtaining the required net files. The total data samples considered for training the 

network has been divided as 70% (48 samples) for training samples, 15% (11 samples) for 

validation and remaining 15% (11 samples) for testing samples. After finishing the training 

process, mean squared error (mse) of the trained network is 0.10125 obtained at the 8th epoch 

is shown in Figure 14. MSE determines the network’s performance and is measured as an 

average squared difference between targets and outputs. Through ANN network, two input 

elements (WFin & HFin) and five output elements (SS, ION, gm, VEA & TGF) has been created with 

20 hidden neurons by giving 70 data samples for optimizing FinFET parameters. As each input 

have corresponding five output parameters in the output dataset. 
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Figure 13. ANN Architecture 

 

Figure 14. Performance of Levenberg-Marquardt Backpropagation Algorithm 

iii).Separately created datasets for device has been applied to NN (Neural Network) Toolbox of 

MATLAB for obtaining the required net files. The total data samples considered for training the 

network has been divided as 70% (48 samples) for training samples, 15% (11 samples) for 

validation and remaining 15% (11 samples) for testing samples. After finishing the training 

process, mean squared error (mse) of the trained network is 0.10125 obtained at the 8th epoch 

as shown in Figure 14. MSE determines the network’s performance and is measured as an 

average squared difference between targets and outputs. The value is nearer to zero which 

indicates improved performance for device. Another measuring parameter is Regression (R) 

which is defined as the correlation between targets and the output. The regression values for 

FinFET device is: Training = 0.99999, Validation=0.99983, Testing= 0.99983 and all=0.99994 as 

outlined in Figure 15. R near to 1 value shows close relationship between target and output 

(https://in.mathworks.com/discovery/neural-network.html).The results obtained by improved 

trained networks are saved in MATLAB and further used for optimization (Aujla and Kaur, 2019; 

Kipli et al., 2012). 
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Figure 15. Regression Analysis Plot for Levenberg-Marquardt Backpropagation Algorithm 

4.2. Optimizing Algorithms 

In the present research, a single objective function has been used for optimizing FinFET 

parameters which produces a single global optimal (minimum) value. The objective function ‘f’ for 

the defined problem (optimized fin width and fin height) of device is given as 

156 101010 −×−−×−×−= TGFVgISSf EAmON                    (3) 

where SS is Subthreshold Swing (mV/dec), ION denotes drive current (A), gm (S), indicates 

Transconductance, Early voltage is VEA (V) and TGF is Transconductance generation factor measured 

as V-1. In order to attain the optimized parameters, the objective function mentioned in equation (3) is 

required to be reduced through optimization algorithms such as Genetic Algorithm and Whale 

Optimization Algorithm. 

 
4.2.1. Genetic Algorithm 

GA is a heuristic search algorithm used in artificial intelligence and computing. It is based on the 

concept of natural selection where the fittest individual are selected for producing optimum results for 

the defined problem with fitness function, ‘f’ as mentioned in equation (3).The constraints given as 

input to GA for the defined problem are : Lower bounds = [5 10] ; Upper bounds= [15 55]. The main 

operators of this algorithm are mutation, selection and crossover. To perform these operations, the 

selected population type is ‘double vector’ due to the integer constraints. The initial size of population 

is selected as 40 and the ‘rank’ has been chosen as fitness scaling function for generation of new 

population of individuals. The ‘rank’ of individual represents its location sorted in increasing order 
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instead of its raw score. The ‘stochastic uniform’ selection function has been used for selecting 

parents for generation of new offsprings. The Probability values of ‘0.8’ for crossover and ‘0.2’ for 

mutation have been used for generation of new offsprings. Migration defines how an individual moves 

between subpopulation numbers (https://in.mathworks.com/discovery/genetic-algorithm.html). The 

stopping criteria for this algorithm includes number of generations (taken as 100) and function 

tolerance (a point where a weighted average change in fitness function is less than the function 

tolerance of 10-12 (Aujla and Kaur, 2019).The optimal input and output parameters of FinFET obtained 

through GA toolbox have been mentioned in Table 3. 

 
4.2.2. Whale Optimization Algorithm 

WOA algorithm imitates the hunting behaviour of humpback whales. This algorithm begins with the 

random population of whales. These whales find the optimum position of prey’s and attack them using 

one of these methods.  

(i) Encircling technique: The whales update their location depending upon best position as given in 

equation (4) and (5) 

      )()( tXtXCD −⊗= ∗      (4) 

     DAtXtX ⊗−=+ ∗ )()1(      (5) 

D is the distance between prey and whale, X*(t) indicate whale earlier best position and X (t+1) is the 

whale current position. The coefficient vectors, ‘A’ and ‘C’ are defined as follows: 

     araA −⊗= 2        (6) 

     rC 2=           (7) 

where r is a random vector having range [0,1] and the value of ‘a’ decreases from 2 to 0 as the 

iterations proceed. The value of ‘A’ and ‘C’ coefficients lie between [-2, 2] and [0, 2].  

(ii) Bubble-net attacking technique: This technique contains two methods. The first method includes 

the shrinking encircling, which can be explained by diminishing the variable ‘a’ and also ‘A’ as quoted 

in equation (6). The second is the spiral updating position. This activity of whales for making spiral 

shape around prey can be expressed as: 

    )()2cos() 1( ' tXleDtX bl ∗+⊗⊗=+ π             (8) 

)()(' tXtXD −= ∗ is the difference between humpback whale and prey, ‘b’ is a constant variable, 

⊗ represents element-by-element multiplication and ‘l’ is random variable with range = [-1,1]. 

The probability of 50% is taken as an assumption for choosing either of two methods for catching the 

prey during iterations of the algorithm. The whales can swim around the prey along a spiral-shaped 

path and at the same time the circle shrunk using as follows: 

⎭
⎬
⎫

<
≥

⎩
⎨
⎧

+⊗⊗
⊗−

=+
∗

∗

5.0      
5.0      

)()2cos(
)(  ) 1(

' p
p

tXleD
DAtXtX

bl π
           (9)  

where ‘p’ is a random probability value lies between 0 and 1. The randomness of probability make 

effective transition between exploration and exploitation phases. It interprets the probability of 

deciding either of the spiral model or the shrinking encircling method to adjust the position of whales.  
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(iii) Search for prey : In this method, the whales randomly searches the position of prey instead of 

the best search agent as follows : 

    )(XC  rand tXD −⊗=        (10) 

    DAtX ⊗−=+ randX  )1(      (11) 

Xrand is randomly search position vector. 

(https://in.mathworks.com/matlabcentral/fileexchange/55667-the-whale-optimization-algorithm). 

The defined fitness function ‘f’ quoted in equation (3) has been applied to WOA algorithm for 

optimizing the parameters of designed FinFET. The WOA started randomly with population size of 40 

in search domain of input elements : height and width range of [10 55] and [5 15] respectively for 100 

iterations. For each pair of input parameters, the fitness function mentioned in equation (3) is 

calculated for best solution. The ‘A’ and ‘C’ parameters are determined depending on decreased 

value of ‘a’ and better solution is updated based on probability metric ‘p’.The preceding steps are 

repeated until stopping criteria is reached (number of iterations=100) and optimized parameters are 

obtained as shown in Table 3 Therefore, WOA algorithm has the capability of providing high local 

optima avoidance and convergence speed over the course of iterations. WOA algorithm converges 

earlier as compared to GA algorithm because it eliminate the problem of staying in local optima and 

hence the speed of WOA algorithm incresed with respect to others. The flowchart for WOA operation 

is shown in Figure 16. 

 WOA converges at 8th iteration and whereas GA converges at 17th iteration for FinFET device with 

lesser time i.e.51s (approx.) as compared to GA as shown in Table 3 (Aziz et al., 2018 ; Mathworks, 

2020 ) and in Figure 17. The source code of WOA is available at http://www.alimirjalili.com/WOA.html. 
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Figure 16. Flowchart for WOA operation 
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Table 3 : Optimized Input parameters obtained through GA and WOA for FinFET 
 

Applied 
Algorithm in 
MATLAB 

Total 
Function 
Evaluations 

Optimum 
fitness 
function, f 

Output Parameters Input 
Parameters Time 

Genetic 
Algorithm  4000 47.662 

ION=6.0542 X 10-5 A 
SS= 62.7092 
mV/dec 
gm =3.1474 X 10-5 A 
VEA=3.433 V 
TGF= 24.123 V-1 

WFin =5nm 
HFin =45nm 

64.367 
sec 

Whale 
Optimization 
Algorithm 

4000 47.662 

ION=6.0542 X 10-5 A 
SS= 62.7091 
mV/dec 
gm =3.1474 X 10-5 A 
VEA=3.433 V 
TGF= 24.123 V-1 

WFin=5nm 
HFin =45nm 

50.972 
sec 

 
 

 
    Figure 17. Convergence Curves for both devices created through GA and WOA algorithms 

 

The comparison of results obtained through MATLAB optimizing tools (GA & WOA) and TCAD has 

been mentioned  in Table 4. MATLAB provides two optimal input metrics viz. Height =45nm & 

width=5nm and their corresponding output parameters such as ION, SS, gm VEA and TGF. The same 

input dimensions has been used for designing a optimal FinFET device in TCAD tool. Then, the 

difference between output parameters result obtained through MATLAB and TCAD has been 

evaluated in terms of percentage change in order to validate the tool. The results obtained after 

applying optimization tool to a proposed device are compared with previous literature. It is observed 

that the designed device illustrate the improvement for analog parameters and have comparable 

values of ION & gm, along with reduced leakage current, output transconductance  and higher value 

of early voltage as compared to previous work. 
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Table 4 : Verification of Optimized results and comparison of obtained optimized results with 
existing work 
 
Proposed FinFET 
(Lg= 14nm,WFin= 5nm, HFin= 45nm, Tox=1nm, Vg=0.7V, 
Vd=50mV) 

MATLAB 
 TCAD 

Percentage 
change  
(%) 

FinFET 
(Lg= 20nm, 
WFin= 10nm, 
HFin= 26nm, 
Tox=0.9nm, 
Vd=Vg=0.7V) 
(Han, 2017) 

SOI FINFET 
(Lg= 14nm, 
WFin= 8nm, 
HFin= 26nm, 
Tox=1nm, 
Vd=Vg=0.9V) 
 
(Lee, 2016) 

 
ION=6.0542 X 10-6 A 

 
ION=5.78 X 10-6 A 
 

 
4.51 
 
 

ION=0.35 X 10-6 A ION=14 X 10-5 

A 

SS=62.7092 
mV/dec 
 

SS= 62.7 mV/dec 0.014 ---- 
SS=77.562.7 
mV/dec 

gm =3.1474 X 10-5 
S 
 

gm =2.9406 X 10-5 
S 

 
6.57 
 

gm =10 X 10-5 S ---- 

VEA=3.433 V 
 

VEA=3.444 V 
 

0.31 
 

VEA=1V ---- 

TGF= 24.123 V-1 

 TGF= 24.247 V-1 0.514 ---- ---- 

---- IOFF= 1.84 X 10-12 A ---- 
IOFF= 0.5 X 10-12 

A 
IOFF= 1 X 10-9 

A 

---- gd =5.4 X 10-12 S ---- gd =10 X 10-8 S ---- 

 

5. CONCLUSION 
This research work provides a comprehensive analysis of geometry parameters variations for 

designing a FinFET device. The device with larger dimensions have higher ION and gm and have 

lesser Leakage current, ION/IOFF and SS because of limited control of gate over channel. Therefore, it 

is summarized that for high drive current taller fin height is suitable whereas for reduced SCEs narrow 

fin width is preferred.  The impact of fluctuations of HFin/Lg and WFin/Lg shows that for better 

performance in terms of intrinsic gain, early voltage, TGF and output conductance the device 

dimensions should be reduced. Population based evolutionary algorithms GA and WOA have 

effectively maximized the performance of device by giving optimized performance metrics for 

particular fin height and fin width. The optimized dimensions created by algorithms are utilized for 

designing a device in TCAD and its process parameters are evaluated and compared to check the 

validation of the simulator. With this, it is concluded that the valuable results obtained from designing 

of multigate underlap SOI FinFET device could satisfy the need of low power standby applications. 

Further, for future scope the techniques like spacer engineering; work function variation; channel 

material variation etc. can be applied to proposed device for getting better performance of device and 

their application in memory circuits. 
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