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ABSTRACT

This paper presents a control design of multi-agent robot dynamic systems that drives
multiple robots to move in a polygon formation while also avoiding collision with each other
and possible obstacles. By placing the equilibrium of the system in a polygon formation
configuration,  the  system succeeds  to  converge  the  robots’  individual  configuration  at
surrounding  of  the  center  point  of  the  polygon  formation.  To  obtain  a  collective  goal
objective, a state of the center point as a target point is defined in which its dynamic is
stable and converges to the goal point. By using a smooth repulsive potential function, the
robots are guaranteed to be safe from collisions with other robots in the formation and with
obstacles.  When a robot  is  at  far  from obstacle  edges,  the multi-agent  robots  form a
polygon formation. The proof of multi-agent robots forming a polygon formation is shown
by using the Lyapunov method. Simulations are carried out to show that the multi-agent
robots develop a polygon formation and avoids collisions with each other  and a static
obstacle. Another advantage of the proposed algorithm is when one robot cannot continue
to follow the group formation,  the multi-robot  system is  able  to  re-coordinate with  the
remaining number of agents.
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1. INTRODUCTION

Cyber-physical  systems and networked control  systems, which are familiarly  called multi-agent or

multi-robot controls, have been receiving considerable interest by researchers. The application of this

system can be found in vehicle technology, such as transporting objects, platooning vehicle for energy

efficiency, etc. Safety is also an important issue in the control design. However, the main objective of

multi-robot motion control is to acquire global behavior, i.e., achieving and maintaining formation, and

then reaching the goal. Hence, a control design that assures collision-free with obstacles is added as

a secondary, but also a mandatory requirement.

Based  on  the  data  communication,  a  centralized  control  of  multi-robot  should  manage  lots

computational data, while a decentralized control is a more relaxing method, which may reduce data

consumption (Tanner et al., 2003), (Rezaee and Abdollahi, 2014). The centralized control usually



operates navigation-based data,  while an onboard sensor is commonly used in the decentralized

control, which may perform faster communication. Based on the advantages of each method, i.e., the

centralized and the decentralized controls, the two methods can be combined. The centralized control

that utilizes navigational feedback governs formation. On the other hand, the benefit  of using the

decentralized control with short range sensors is faster response behavior of the multi-agent robot

system.

Several control design methods to maintain formation and to avoid obstacles for a vehicle robot have

been proposed in the literatures (Gazi and Passino, 2003), (Olfati-Saber, 2006), (Barnes et al., 2007),

(Barnes et al., 2009).  Numerous methods use potential field or barrier function methods in solving

collision avoidance problems. One problem in formation control is when the collision avoidance action

could be executed in a real-time situation. Most approaches implement collision avoidance in the

lower level control by means of the potential field or barrier function method  (Ogren et al., 2001),

(Namerikawa  and  Yoshioka,  2007),  (Widyotriatmo  and  Hong,  2011),  (Burohman et  al.,  2016),

(Widyotriatmo et al., 2017). In (Yasuaki & Yoshiki, 2004) the heuristic method for collision avoidance

of multiple mobile robots is presented. Hierarchical motion planning and control is also a solution for

collision avoidance in multiple mobile robots (Haidegger, et al., 2011), (Purcaru et al.,  2013). The

mobile robot formation control using potential-field-based methods can handle changing environment.

In this paper, the generation of trajectories is operated by a smooth potential field method as a high-

level  control.  The  high-level  control  consists  of  a  smooth  potential  attractive-repulsive,  which

determines  the  interaction  between  agents.  A  smooth  potential  function  repulsive  defining  the

interaction between agent and static obstacle and a quadratic-based attractive control to goal. In the

low level of the control, the trajectory tracking control is implemented to follow the generated and

desired formation configuration. 

Every vehicle or robot has its dynamic behavior and constraint. In the case of wheeled vehicle, the

nonholonomic constraint typically cannot be ignored. Generated trajectory from several algorithms is

non-smooth, which cannot be reached by nonholonomic vehicle related to heading angle constraint.

In this paper, the dynamic of nonholonomic robot and trajectory tracking control proposed in (Oriolo et

al., 2002), (Do, 2007) are considered, and every desired trajectory is generated in real-time in such a

way that a formation is configured smoothly, evading any collision, and reaching the desired goal. 

Recently, the control rigid formation is also of interest rather than just random flocking (de Marina et

al., 2015), (de Marina et al., 2016). The formation does not follow the virtual preliminary determined

position but it is formed by the interaction between robots. Smooth collision avoidance in the formation

makes the problem more complex. In this paper, the formation is built  by placing the equilibrium

system in a circular vicinity. Hence, a polygon formation is achieved. This work operates formation

control surrounding the target, as in (Pei et al., 2016). It requires a stronger attraction from the target.

Different with (Pei et al., 2016), this work considers dynamic target. The advantage of operating this

scheme is that, in the case when one or more member(s) is broken or cannot continue the traveling

due to lack of energy sources, the formation can stand still within the number of remaining robots. In

the same sense, if the formation is added by new members, the polygon formation achieved in the



one larger polygon. The high- and low-level controllers are implemented together with the formation

control. It is assumed that the communication topology of the multi robots is fixed and established.

The switching communication topologies for cooperative control can be found in (Wang, et al., 2017). 

The remainder of this paper is organized as follows. In Section 2, the graph theory, bump function,

and the multi-agent system problem are formed. Section 3 elucidates the proposed control design.

Simulation results are discussed in Section 4. The conclusion is drawn in Section 5.

2. PRELIMINARY AND PROBLEM STATEMENT

2.1. Graph Theory

The graph  theory  is  the  most  suitable  approach  in  multi-agent  systems.  It  is  able  to  define  the

relationship between agents in a group. The network topology model can be written as a graph G =

(𝒱,ℰ), which consists of a vertex set 𝒱=  and an edge set ℰ= 𝒱×𝒱 . If the set of

edge and  are not differentiated, the graph is called as undirectional graph; otherwise, it

is called as directional graph. Let the neighbor set of vertex i be . The number of member of 

is  denoted  as  deg( .  A  unidirectional  graph,  provided  in  this  research,  with  N  vertex  has  an

adjacency matrix of with the element as follows:

  (0)

The element of a matrix of degree is defined as:

(0)

Then, the element of the Laplacian matrix ,  of a graph G is defined as:

(0)

The properties of the Laplacian matrix are as follows:

-  is symmetric and positive semi-definite.

- In order to make the graph connected, at most one eigenvalue can be zero, i.e. and

 for 

- The  second  smallest  eigenvalue  indicates  the  connectivity  of  the  graph.  Moreover,

, where denotes the null space and . 

Related to velocity matching in this paper, L satisfies the sum of square as follows:

 (0)

The global minimum value of (4) is acquired when .



2.2.  and Bump Function

This work considers a smooth potential function. To obtain potential function in the derivative of norm

vector, it is used norm-like function called as , defined as:

(0)

with , and its gradient  is defined as:

 (0)

Bump function  is defined to conduct smooth cut-off function which is defined as:

   (

0)

where  is a positive constant between 0 and 1.

2.3. Problem Statement of Flocking of Multi-agent Systems

Consider  the second order dynamic system of  every agent  i in  the multi-agent system,  which is

determined as follows:

 where (0)

 denotes position variable,  denotes velocity, and  denotes control signal of the i-th agent.

In (Olfati-Saber, 2006), this system consists of three protocols, which are as follow:

(0)

The first term  is the flocking configuration protocol determining interaction between agents, the

second term   is the obstacle avoidance protocol, and the last term   is the group trajectory

attraction protocol. This control signal acts to send a group of robots to configure a flocking behavior

and to avoid collision with any static obstacles in the environment, as well as move to reach the target

point.  Vectors  ,  ,  and   denote the

collective position vector, the velocity vector, and the input signal vector, respectively.

The objective of this paper is to solve the problem in designing the controller of multi-agent dynamic

systems, which converge to the equilibrium point. The equilibrium point for every agent robot is set to

be every joint of a polygon. Furthermore, a safety requirement is not to be ignored. This work applies

an obstacle avoidance method to avoid the multi-agent robots colliding with the other robot(s) in the

group or with the static obstacle(s). 



2.4. The Trajectory Dynamics

Overall, group members are guided by a center point, which is also acting as a temporary target point.

The dynamic of the trajectory of this center point is denoted in (10). In the polygon formation, the state

is  as a couple position and a velocity vector of  formation center.  The dynamics are as

follows:

(0)

where   denotes  position  and  velocity  of  a  goal  point  and   is  the positive

constant. The dynamic system (10) is exponentially stable and converges to the goal point state. The

center point dynamic (10) has not considered any obstacles in the environment. 

3. CONTROL DESIGN

3.1. Control Design of Polygon Formation

The equilibrium point of a dynamic system could be shifted to a desired point. The equilibrium point in

this case is shifted to a formation configuration, as the following details. In this analysis of formation

realization, the obstacle avoidance control signal has not been considered or the formation could be

conducted as if the arena is free from any static obstacles. By not taking into account the obstacle

avoidance control signal, the control signal becomes:

(0)

The first term of (11) is defined as:
 

(0)

where  is defined as:

   (0)

where  are arbitrary positive constants, and  denotes the desired distance between

agents. If the actual distance between two agents is larger than , they will attract each other, and if

the actual distance is smaller than , they will push each other. This protocol is a gradient-based

control  of  a  potential  function.   denotes  the  relationship  range  cutoff  of  each  robot  sensing

capability.   denotes  the  bump  function  in  (7).   denotes  the  unit  vector  of  interaction

between agents.

The second term of the control signal in (11) is the goal attraction control. It is a gradient-

based control of a quadratic potential function defined as:

(0)



where  are positive constants. 

The aggregate Lyapunov function candidate, which is also called as the potential field function of this

system, is defined as follows:

(0)

where  denote  positive  constants,  and  is  defined  as

 which denotes the potential function attractive repulsive, where  is

defined as:

(0)

The illustration of this function  trend is observed in Figure 1(a) and its gradient is in Figure

1(b). The function has minimum global with  domain at . The values of

positive constants determine the gradient of the curve in Figure 1, i.e., how strong the curve increases

or decreases. The values of positive constants also determine the maximum value of working force.

The boundedness of this smooth working force makes this control signal more realistic compared with

a function in the form 1/z or log(z).

  

(a)

  

(b)
Figure 1. Potential function (a) and its gradient (b)

The second term of the aggregate potential function in (15) is the quadratic Lyapunov function, which

is defined as follows:

(0)

The third term of (15) denotes the kinetics energy of a particle with  as the velocity. 

3.2. Collective Dynamic

In  analyzing  a  system,  it  is  necessary  to  define  the  system in  one  representation  system.  In  a

collective form, the dynamic of the overall group system is:



(0)

where  and . Meanwhile,  is the attractive

control to attract all agents to the center point, denoted as:

. (0)

Vector  denotes as  and notation  defines the Kronecker product. 

3.3. Stability Analysis of Formation Control

This section analyzes how the polygon or also well called as circle formation is built by the

control design. Consider the Lyapunov function in (15), the time derivation along the solution

of dynamic system (10) is determined in the following equation:

,
(0)

where ,  denotes the average of all agent velocity.

The second term of inequality (20) is assumed to be positive definite. This assumption means that the

absolute velocity for every agent is larger than the multiply of average and the velocity of the goal

point (Olfati-Saber, 2006). Furthermore, if it is assumed that the polygon formation is in regard to the

target  point  ,  the  value  of   is  assumed  zero.  Hence,  the  energy  function   is  a

decreasing function along the solution of the dynamic of multi-agent system.

Assumption 1: There are chosen positive constants  such that the equilibrium of

(18) is not convergent to the condition . 

Assumption 2: There is a space where it is collision-free or . 

Theorem 3.1. Suppose that assumptions 1 and 2 are hold, the multi-agent system (18) operates

control  signal  (12),  based on the fact  that  the Lyapunov function (15) decreases,  the equilibrium

system is asymptotically stable in regard to the target point , and at the same time, the position

state of each agent converge to polygon configuration if . 

Proof: 

Based on the Lyapunov stability theorem and LaSalle’s invariant principle, the equilibrium system is

asymptotically  stable  and  converges  to  the  largest  invariant  set  of  the  dynamic  system,  i.e.,

. The velocity matching is achieved from the first term by property of graph Laplacian

equality to sum of  square.  The second term determines the velocity of each agent match to the

velocity  of  trajectory  dynamic  agent  .  Moreover,  the  system converges  to  unique  equilibrium



,  which,  in  the  other  word,  converges  to  the  extrema  of   i.e.

.  Configuration  of  formation  is  formed when the  system is  in  the

equilibrium point, as the following equation:

. (0)

Equation (21) geometrically indicates that  the position of  each agent is balanced surrounding the

target point . According to Theorem 3.2 in (Pei et al., 2016), the sufficient condition to the dynamic

target pursuit is given by

(22)

where  denotes the distance of to , and denotes the distance between two agents, i.e.,

 to . The cancelation of repulsive and attractive forces among agents result in the value of 

close to  . Then, the inequality (22) states that the polygon formation is realized if the number of

agents is more than or equals to 4. □

3.3. The Case of Obstacle Avoidance 

In this paper, we consider the smooth potential field method to obtain the obstacle avoidance scheme.

We use the smooth potential because its implementation is realistic. There is an additional term in

control scheme, which is:

.   (23)

The function  in (23) is defined as:

 (24)

where  could be a function of state  , according to Lemma 3 in (Olfati-Saber, 2006), the

notation  can be written as . The function  satisfies the following characteristics:

1)  increasing at a maximum certain value when  ; 

2) as  ;

3) if .

One example of functions that satisfies the requirement is as follows:

        

(25)



The control action based on the smooth repulsive potential function in (25) is determined as:

(26)

where  is defined as:

(27)

Figure 2 shows the repulsive potential function and its gradient.

  

 

 

(a) (b)

          Figure 2. (a) Repulsive potential function and (b) the gradient of repulsive potential function

Theorem 3.2. Suppose that there are chosen positive constants  such

that the  , where  , or where an agent collides with static obstacle

and  is the initial condition of the system. Then, by operating control signal (9) with

(12), (14), and (26), the system satisfies the following properties:

1) Every robot in formation is driven to the vicinity of obstacle’s influence-free;

2) Every robot is guaranteed not to collide with a static obstacle;

3) The polygon formation is destructed when obstacles appear, and restore in when it is obstacles-

free.

Proof:

The  total  energy  function  of  the  multi-agent  robots  with  an  obstacle  in  the  environment  is

determined as:

. (28)

According  to  the  Theorem  6  in  (Olfati-Saber,  2006),  the  energy  of  the  system  monotonically

decreases. Hence, due to the energy increases as the robots going near the obstacle boundary, the

trajectory of the robots is driven until converge to the origin, i.e. the vicinity of obstacle influence, the

first part is proven. 



The second part of this theorem is proved by contradiction. Suppose that if an agent is collided at time

t, it has . If an agent collides, then

.

    (29)

However,  we  have   as  a  decreasing  energy  function,  hence

 which contradicts the beginning statement.

The third part of the theorem is proved by the fact that the largest invariant set, which becomes the

sink of the convergence is not in (20), then the polygon formation is destructed. After it is free from

obstacle effect, the second term of energy function is cancelled, i.e.,  , then system is in the

free obstacle condition and the equilibrium related to the center point is re-coordinated in the circular

vicinity. □

3. SIMULATION RESULTS

3.1. Simulation Setting

To verify that our algorithm works for some multi-agent robots, we operate this algorithm in a group of

nonholonomic robots. The heading constraint of nonholonomic robots is solved by trajectory tracking

algorithm via dynamic feedback linearization in (Oriolo et al., 2002). In the simulation, we consider

four scenarios: hexagonal formation in free space, enlarge the size of the polygon formation with 15

members, hexagon formation with static obstacle in space, and polygon formation reforming when

one robot cannot continue traveling.

The constant parameters implemented in this simulation are as follow:  , ,  ,

,  ,  ,  .  Meanwhile,  the  constant  gain

parameters for trajectory dynamic are chosen as: , . 

3.2. Polygon Formation in Free-obstacle Environment

In the first simulation, six robots move in hexagon formation. The initial condition is randomly placed

near point   with the initial velocity  for every robot i.

The  group  in  formation  stops  when they  surrounding  goal  point  at  .  We can

change this goal point anywhere. The first scenario of the simulation result is depicted in Figure 3 . In

30 seconds,  the robot team forms the hexagonal  shape. The quickness of  the group to make a

polygon formation depends on the value of  and . 



 

          Figure 3. Simulation of hexagon formation in an obstacle-free environment

Furthermore, the simulation provides a larger number of groups with 15 members in Figure 4 to show

that the algorithm works for any number of robots. The size of the formation, i.e., the number of group

members, is related to the constant gain election. We have to choose the constant gain properly to

obtain the best performance. 

 

          Figure 4. Simulation of polygon formation of 15 robots moving in free-obstacle area

Another advantage of using this stabilization formation algorithm is when one member of the group

lack of energy, hence it cannot continue to travel with other robots. The simulation results in Figure 5

show that the pentagon formation is immediately reformed automatically from the hexagon formation,

which is missing their formation member. 

 

          Figure 5. Simulation of case when one agent cannot continue the traveling

 



3.3. Robot Formation with a Static Obstacle in the Environment

For  the case  of  robot  formation  with  a  static  obstacle  in  the  environment,  the  simulation  of  the

hexagon formation shows the destructed formation due to the existence of a static obstacle in the way

(Figure 6). After passing through the obstacle, the group of robots reforms the polygon formation. We

place the static circular obstacle with the center at  . The parameters for repulsive force are

, , and .

 

          Figure 6. Simulation of 6 robots with a static obstacle.

5. CONCLUSION

The paper proposed a controller to obtain a polygon formation for second-order multi-agent robots.

The formation of the multi-agent robots was achieved by placing the equilibrium to the force balance

of polygon geometry. The simulation scenarios of 6 robots making a hexagon formation, 15 robots

making a polygon formation,  6 robots with one robot failure making a pentagon formation,  and 6

robots with a static obstacle showed that the proposed algorithm can work for any number of robots

and  for  a  case  where  a  static  obstacle  occurred  in  the  environment.  Furthermore,  this  work

considered the obstacle avoidance such that the formation of robot avoiding collision with a static

obstacle in the environment.
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