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ABSTRACT

We propose in this paper a qualitative model that allows us to monitor cars in real-time. Our
model uses two distinct and complementary formalisms for capturing the relative positions
of a large set of cars that are moving over time. The algorithm we propose and implement
enables us to answer some high level questions, such as determining if two cars are at a
safe distance from each other or if a collision between them is inevitable. The main aim of
this paper is to elaborate a model where a set of cars can move safely on a highway.
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1 Introduction

Since its inception, qualitative spatial reasoning has found many applications in several im-
portant areas such as geographic information systems (Sweeney, 1999; Goodchild, 2009;
Yang, Kafatos, Wong, Wolf and Yang, 2010; Bonham-Carter, 2014), natural language pro-
cessing (Biddle, Luke, Magowan and White, 2013; Arnold and Tilton, 2015), robot naviga-
tion (Trautman, Jiaxin, Murray and Krause, 2013; Kümmerle, Ruhnke, Steder, Stachniss and
Burgard, 2015), cars automation (Sule, Gupta and Desai, 2015; Weyer, Fink and Adelt, 2015),
and robots and navigation (Fernandez-Gauna, Lopez-Guede, Zulueta, Echegoyen and Grana,
2011; Zato, Villarrubia, Sanchez, Bajo and Corchado, 2013). In this paper we turn our attention
to designing and implementing an algorithm that allows us to compare the relative positions of
cars that evolve over time. The following papers were of help for us when designing and build-
ing our model (Voda, 1998; Preitl, Precup, Fodor and Bede, 2006; Tomescu, Preitl, Precup
and Tar, 2007; Precup, Preitl, Petriu, Tar, Tomescu and Pozna, 2009; Precup, David, Petriu,
Preitl and Radac, 2011; Ginter and Pieper, 2011; Bakefayat and Tabrizi, 2016; Challita, 2009).
We would like to be able to answer simple questions such as: Is car x too close to car y? Is
car x going to hit another car in the future? For that, we use two very well known qualitative
formalisms to design a spatio-temporal model for our problem: Propositional linear temporal



logic (PLTL) and the Region Connection Calculus (RCC). These formalisms are described in
Sections 3 and 4.
Note that other researchers have already combined these formalisms to study objects in the
space (e.g. (Wolter and Zakharyaschev, 2000; Challita, 2012; Challita, 2017)). In this case we
combine PLTL to RCC8, which is a very well known fragment of RCC. Our algorithm captures
the relative positions of cars in a two-dimensional space and allows us to monitor their move-
ments. We assume in our model that all the cars have the same size and that they evolve on
a three-lanes highway. Since a car is not allowed to go backward, at each time step it is free
to move in one of the three basic directions: North, East, and West; or it can simply stand still.
The last action could represent an immobile car due to heavy traffic ahead, a roadblock, or a
breakdown.
The purpose of our work is to elaborate a model where a set of cars can move safely on a
highway (i.e. by avoiding accidents).
This paper is divided as follows. We start by defining our problem in Section 2. Next, we give
an overview of the RCC8 formalism in Section 3 and explain how to interpret its basic relations
in our model. In Section 4, we introduce propositional linear temporal logic (PLTL) and justify
its use to capture the movement of cars over time. In Section 5, we propose two algorithms
that simulate the evolution of a set of cars in a two-dimensional space. Before concluding, we
implement and discuss our models in Section 6.

2 Problem definition

As we already mentioned in the Introduction, we are interested in monitoring a set of cars that
evolve in a two-dimensional plane, where at each time step a car is characterized by its posi-
tion and speed. Starting with a simple model, we add to it more constraints in order to allow
the cars to evolve in a safe environment with zero accidents.
In order to achieve our aim, we should be able to answer simple questions such as: (1) ”Are
cars x and y going to collide?”, (2) ”Are cars x and y very close to each other?”, (3) ”Is it safe
for car x to change lane?”, (4) ”Can car x safely increase its speed?”.
Integrating our model to a real-life automated monitoring system should help us take the ap-
propriate action based on a given situation. For example, we may be able to avoid case 1 (i.e.
having an accident) by reducing the speed of one of the cars or by changing its direction. In
case 2, a warning should be issued to the following car to reduce its speed or change its direc-
tion. Case 3 is easy to deal with as long as the car does not change lane when it increases its
speed, provided that there is no other car at a close distance in front of it.
Note that reasoning with cars in a two-dimensional space is enough since it captures realisti-
cally what happens in a real-life scenario. Our model can be extended naturally to the case of
a three-dimensional space where, for example, we have several layers of bridges with several
cars evolving at different levels. In such case we should consider different sets of cars sepa-
rately, based on the planes they belong to and where we assume that cars that belong to two
different sets (or planes) do not interfere together.
For example, if we have a highway with cars x1, . . . , xn and a bridge above it with cars y1, . . . , ym,



then we should reason with the two different groups of cars (i.e. xi and yj) separately. Such
a case is illustrated in Figure 1 where the cars on the road are represented by discs and the
cars on the bridge (dotted lines) are represented by squares.

Plane 1

Plane 2

Figure 1: Cars on the left are represented in two distinct planes on the right.

Indeed, projecting both sets of cars on a single plane may yield some errors: a car yk may be
passing on the bridge exactly above the car xl at the time of the projection. In this case our
conclusion that xl collides with yk would be erroneous.
In our model, we assume that all the cars have the same size. We represent them by 1-unit
discs or squares, as shown in Figure 2. In an unrestricted model, a car is free to move in any of
the four basic directions (i.e. north, east, south, west). Each car is characterized by its position
on a two-dimensional plane and its speed, the latter being bounded by an upper and a lower
value. At each timestep, the speed of a car determines the number of squares it crosses. Two
cars collide together whenever their paths overlap.
It is natural to choose a discrete model for the timesteps. For example, we may assume that the
initial car configuration starts at t0 and that the following states are captured at t1, t2, . . . , ti, . . . , tn.
The time between timesteps ti and ti+1 may correspond to a fraction of a second in a real-life
case.
In this paper, we consider a realistic model where the cars evolve on a three-lanes highway;
which could be naturally extended to the case of a n-lanes highway. Each car is determined
by its speed, its position, and its temporal relations with respect to surrounding cars. At each
timestep, and whenever possible, a car can:

• Move to the left or to the right (to change lane).

• Increase or decrease its speed by at most two units.

We set the speed of a car to be a value between 0 and 3. It determines the number of squares
a car can cross. Note that in order to avoid collisions, the action to be taken by a car affects



Figure 2: Cars represented by discs of diameter 1.

(and is also affected by) its surrounding ones. For example, assume that at time ti a car is on
the middle lane with a speed of 1. If at time ti+1 it moves west and increases its speed by 1,
then it shall move to the left lane and move forward two squares. To achieve this manoeuvre
safely, the car must check that the left squares it is going to use remain free at time ti+1. In
other words, it must make sure that no car that is closely behind it on the left lane is moving fast
and may use those same squares and, similarly, no car ahead of it on the left lane is slowing
down. This is because we make the following assumptions at any time ti:

1. For any two cars x and y:

• If x is in front of y then x moves first.

• If x and y are on the same level, then the leftmost one moves first.

2. A collision occurs between two cars if their paths overlap at some timestep ti.

We are aware of the fact that these two points do not reflect what actually happens in real
life since all the cars move concurrently. But we adopt them given the fact that our model is
discrete rather than continuous.
Since the cars are expected to move over time, we must endow our model with a spatial and
temporal formalisms to track their evolution in a two-dimensional plane. The model we present
not only provide a safe environment for cars, but also allows us to answer a wide variety of
questions such as: (1) Since when car x is behind car y?”, (2) Are cars x and y close to each
other?”, (3) Is it safe for car x to change lane?”

3 Spatial representation of a set of cars

We use the well-known RCC8 formalism to compare the relative positions of cars in a two-
dimensional space. Recall that this formalism is one of the subsets ofRCC, the original Region
Connection Calculus introduced by Randell, Cui and Cohn (Randell, Cui and Cohn, 1992; Cui,



Cohn and Randell, 1993). It was first studied by Bennett (Bennett, 1994) and then analyzed
by Renz and Nebel (Renz and Nebel, 1997), as well as by many other researchers (Li and
Wang, 2006; Challita, 2012; Amaneddine and Challita, 2016).
RCC8 has eight basic relations that are jointly exhaustive and pairwise disjoint. An example of
a spatial representation in the plane of these relations is given in Figure 3.

X Y X Y X Y

DC(X,Y) PO(X,Y) EQ(X,Y)

X Y
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X

Figure 3: Bi-dimensional representation of the relations of RCC8.

The basic relations are EC, DC, PO, EQ, TPP , NTPP , TPP−1, NTPP−1. Their respective
and informal meanings for two spatial regions are: ”externally connected”, ”disconnected”,
”partial overlap”, ”equal”, ”tangential proper part”, ”non-tangential proper part”, ”tangentially
contains” and ”strictly contains”.
The RCC formalism allows us to reason about non-empty spatial regions. Given two spatial
variables x and y, C(x, y) has the following interpretation: the topological closures of x and y
have at least one common point. Given the relation C, one can define other RCC relations.
We next give the basic definitions relevant to our case.

DC(x, y)
def
≡ ¬C(x, y) (3.1)

EQ(x, y)
def
≡ P (x, y) ∧ P (y, x) (3.2)

PO(x, y)
def
≡ O(x, y) ∧ ¬P (x, y) ∧ ¬P (y, x) (3.3)

EC(x, y)
def
≡ ¬O(x, y) ∧ C(x, y) (3.4)

TPP (x, y)
def
≡ PP (x, y) ∧ ∃ z[EC(z, x) ∧ EC(z, y)] (3.5)

NTPP (x, y)
def
≡ PP (x, y) ∧ ¬∃ z[EC(z, x) ∧ EC(z, y)] (3.6)

TPP−1(x, y)
def
≡ TPP (y, x) (3.7)

NTPP−1(x, y)
def
≡ NTPP (y, x) (3.8)

Given a certain number of cars in space, we can compare their respective positions using the
RCC8 model. Obviously, representing cars with points will not work here. Given two cars x



and y, the relations PO(x, y), TPP (x, y), NTPP (x, y) (as well as their inverse relations) have
no meaning since two points cannot overlap with each other or be inside one another.
We explain below how to interpret these relations in our model, assuming that all the cars move
in the same direction.
First, we must represent a car with a specific shape. Without loss of generality, we choose to
represent a car with a one-unit square as shown in Figure 4. The reference point of a car (i.e.
square) is the center of the square.

1

1

Figure 4: Three cars represented as 1-unit squares.

We are now ready to interpret all of the RCC8 relations in our discrete model.

Definition 3.1. Given two cars x and y, we have the following meanings at time ti:

1. EC(x, y): The distance between x and y is exactly two squares. This relation has no
inverse since we assume that all the cars move in the same direction. Note that the
number two corresponds to the fact that a car can increase its speed by at most two units
at each timestep.

2. DC(x, y): The distance between x and y is greater than three.

3. PO(x, y): The paths of x and y overlapped, and thus a collision occurred between both
cars.

4. EQ(x, y): x and y represent the same car.

5. TPP (x, y): x is less than three squares behind y, and is on the same lane of y.

6. NTPP (x, y): x is less than three squares behind y, but is on an different lane than y.

7. TPP−1(x, y): y is less than three squares behind x, and is on the same lane of x.

8. NTPP−1(x, y): y is less than three squares behind x, but is on an different lane than x.

We should avoid collisions in case we wish to implement a safe automated system to monitor
cars.
Figure 5 represents three cars moving randomly in a two-dimensional plane. At time ti they



ti t (i+1)

Figure 5: Three cars moving randomly in a plane.

decided to move one square to the right, two squares forward, and two squares backward,
respectively. The resulting configuration is shown at time ti+1.
In Figure 6, we show the resulting state of two cars moving on a three-lanes plane where the
first car moves two squares forward and the second moves to the left, then one square forward.
We notice that the cars collided together since their paths overlapped, although that at time
ti+1 the cars appear to be behind each other.

ti t (i+1)

Figure 6: Two cars colliding together.

We next give two informal definitions that are related to some of the RCC8 base relations.

Definition 3.2. A car x is at a safe distance from car y if more than three squares separate
the vehicles.
In other words,

S(x, y)⇔ DC(x, y) (3.9)

Our definition is consistent with the fact that the maximum speed of a car is three and that all
the cars have the same dimensions (in this case a 1-unit square). So even if y is standing



still and x is moving at its maximum speed, no collision may occur at time ti+1 in case we had
DC(x, y) at time ti.

Definition 3.3. Two cars are dangerously close to each other if the distance that separates
them is less than or equal to three in any direction.
In other words,

D(x, y)⇔ (EC(x, y) ∨ TPP (x, y) ∨NTPP (x, y) ∨ TPP−1(x, y) ∨NTPP−1(x, y)) (3.10)

This is the case when we have one of the following relations between cars x and y: EC(x, y)

or TPP (x, y).
For example, in Figure 7 cars x and y (and also y and z) are dangerously close to each other,
whereas cars x and z are at a safe distance.

z

y

x

Figure 7: Cars x and y (and also y and z )are dangerously close to each other.

No matter how x and z move, they will not hit each other at the next timestep. On the other
hand, if y does not move while z moves to the left and, after several steps it moves three
squares forward, then y and z will collide together.

4 Temporal reasoning applied to cars

In this section we introduce a well-known formalism that allows us to capture qualitative infor-
mation about cars.
Propositional linear temporal logic (PLTL) enables us to make statements such as: ”from now
on, it will always be true that”, ”some time in the past, event A occured”, or ”event A will occur
until B occurs”. It was designed by philosophers to study the way that time is used in natural
language arguments. It also interested logicians, from Aristotle to Prior (Prior, 1957). A fun-
damental contribution to the theory was made by Kamp (Kamp, 1968) when he introduced the
operators Until and Since. Pnueli (Pnueli, 1977) brought it to computer science and used it in
concurrent systems. We next give a brief overview of PLTL.
The language of PLTL is defined with means of :

- A set of propositional variables Prop = {p, q, r, . . .}.

- Logical constants: ¬, ∨, ∧,→,↔, True (>), False (⊥).



- Temporal operators: ©, �, F, G, P, H, U , S.

- Rules:

1. All propositional variables are formulas.

2. If φ and ψ are formulas, then ¬φ, φ∨ψ, φ∧ψ, φ→ ψ, φ↔ ψ,©φ, �φ, Fφ, Gφ, Pφ,
Hφ, φ U ψ, φ S ψ are also formulas.

3. Each formula is obtained by applying clauses (1) and (2) a finite number of times.

Intuitively, the respective meanings of the temporal operators©φ, �φ, Fφ, Gφ, Pφ, Hφ, φU ψ,
φ S ψ are: ”φ is true next time”, ”φ was true at the previous time”, ”φ is sometime true in the
future”, ”φ will always be true”, ”φ was sometime true in the past”, ”φ was always true”, ” φ is
true until ψ is true”, and ”φ is true since ψ was true”.

A model M is a couple M = (S, V ), where S = {i0, i1, . . . , in,
. . .} is a set of dates or instants, and V : Prop −→ 2S (i.e. V is a mapping from Prop to
the set of subsets of S). V (p) contains all the instants for which the propositional variable p is
true.
Given a model M and a date i in S, we say that M satisfies a formula at instant i if:

M, i |= > and M, i 6|= ⊥ (4.1)

M, i |= p iff i ∈ V (p), with p ∈ Prop (4.2)

M, i |= ¬φ iff M, i 6|= φ (4.3)

M, i |= φ ∨ ψ iff M, i |= φ or M, i |= ψ (4.4)

M, i |= φ ∧ ψ iff M, i |= φ and M, i |= ψ (4.5)

M, i |=©φ iff M, i+ 1 |= φ (4.6)

M, i |= Fφ iff ∃ j, j ≥ i such that M, j |= φ (4.7)

M, i |= Gφ iff ∀ j, j ≥ i we have M, j |= φ (4.8)

M, i |= φ U ψ iff ∃ k, k ≥ i such that M, k |= ψ and ∀ j, i ≤ j < k we have M, j |= φ (4.9)

Definition 4.1.

• A formula φ is satisfied in a model M (or M satisfies φ) if M, 0 |= φ holds.

• A formula φ is satisfied if there is a model that satisfies it.

• A formula φ is valid if it is satisfied in any model.

In our case, the model we consider is a set of cars that move on a grid. We assumed that a car
can move between zero and three squares. The possible moves in the general case are: up,
down, left, right; whereas all the cars follow the same direction on a three-lanes plane. Both
cases are simplified versions of a real-case scenario. They are meant to help us understand



the requirements to avoid car accidents.

Our model allows us to reason about any random configuration of cars and uses propositional
linear temporal logic to study their relationships. For example, if φ = TPP (x, y) and we have
Fφ, then this means that sometime in the future x and y will get dangerously close to each
other. Moreover, and on a three-lanes plane, we know that x will be behind y . An example of
such a situation is shown in Figure 8 at time ti+j .

ti t (i+1) ... t(i+j)

Figure 8: Cars x and y getting dangerously close to each other at time ti+j .

We next discuss our models and provide algorithms for solving our problem.

5 Algorithms

In this section we describe two algorithms to monitor a finite set of cars. We shall use the eight
basic relations we defined in Section 3. Our objective here is to capture the relationship of the
cars at any given point in time. As stated in the Introduction, we study the evolution of a set S
of cars in a two-dimensional plane first, then on a three-lanes highway. In the latter case, the
cars are placed on a 2n × 3 grid. The position of a car is determined by its row and column,
where the rows are numbered from 0 to 2n − 1 and the columns are numbered from 0 to 2. A
simple example is given in Figure 9.

0 1 2

4
5

3
2
1
0

Figure 9: A car at position (0, 1) and another one at position (2, 2).



5.1 Basic case

In this scenario, the cars move independently of each other on a n by n grid of fixed size.
For practical reasons, we use an array Ati to represent the position of the cars on the grid.
Every car Xi ∈ S has specific coordinates at time ti. Atk(xi, xj) = 1 means there is a car
at coordinates (xi, xj); and Atk(xi, xj) = 0 means the slot is empty. At each iteration, a car
randomly selects one of the following actions: move to the left, to the right, up, down, or remain
still. The default action is to stay on the same lane in case an action cannot take place. For
example, if a car is on column 0 at time ti and the random choice is to move to the left, then
the car remains in its current position at ti+1.
Next, a random number a is assigned to a car, where a is an integer between −2 and 2. The
value corresponds to a decrease or an increase of speed. Note that at anytime the speed
must always be between 0 and 3, which corresponds to the of squares a car can cross in one
timestep. All the cars which paths overlap (i.e. collide together) are removed at the end of
each iteration. The iterations stop when at least 10% of the cars have collided together. We
next give a high-level algorithm for this case.

Algorithm 1 Zero-constraints algorithm
Randomly distribute n2/4 different cars on a n× n grid
while there is still more than 90% of the cars on the grid do

for i = n− 1 to 0 do
for j = 0 to n− 1 do

Randomly assign a move to car Xi: left, right, up, down, or no move.
Assign a random number a, where a ∈ {−2,−1, 0, 1, 2} and such that the new speed
si+1 = si + a satisfies the following: 0 ≤ si+1 ≤ +3

Remove the cars which paths have overlapped (i.e. PO(Xi, Xj))
end for

end for
end while

Running time analysis
Let T1(n) be the running time of Algorithm 1. It is easy to see that it requires Θ(n2) to initialize
the problem, plus a quadratic time for the two nested loop. Therefore we have:

T1(n) = Θ(n2 + kn2) = Θ(kn2)

where k is equal to the number of iterations required to reach the 90% threshold of the remain-
ing cars.

5.2 Simulation on a three-lanes highway

In this case we use a 2n× 3 grid for the cars. Initially, n2/4 cars are distributed over the first n
rows. Since the maximum speed of a car is three, the topmost ones require at least m = n/3

timesteps to reach the upper limit of the grid. As we did in the previous subsection, we use an
array Ati to represent the position of the cars on the grid. At each iteration, a car Xi randomly



selects one of the following actions: move to the left, to the right, or remain on the same lane.
Before determining a random value a (corresponding to the increase/decrease in speed), we
build and solve a constraint satisfaction problem (CSP) that involves Xi = (xi, xj) with all the
cars that are at levels j, j + 1, j + 2. This would help us specify an adequate value for a in
order to avoid a collision with an adjacent car. In case all the values of a lead to a collision
we backtrack by assigning another direction for Xi.An example is given in Figure 10, and the
corresponding CSP is represented in Figure 11.

x t

z
y

Figure 10: Three cars moving on a three lanes highway.
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z t
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EC
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TPP
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iNTPP
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Figure 11: The CSP of the previous figure, where iNTPP and iTPP are the inverses of the
relations NTPP and TPP.

When processing the car x, a quick analysis of the CSP shows that the following two cases
lead to a collision:

1. x keeps the same direction and has a new speed of at least 2.

2. x moves to the right and has a speed of 3.

Example 1 Assume the below random choices :

• The previous speed of x was 1,

• a = +1,

• The direction is the same.



The new speed of car x becomes 2, so a collision with y is expected. We backtrack once, tak-
ing into account the information derived from the CSP. A possible solution is to make x move
to the right in order to avoid an accident.

Example 2 Assume the below random choices :

• The previous speed of x was 3,

• a = 0,

• The direction is the same.

Again, a collision with y is expected. We backtrack once, taking into account the information
derived from the CSP. We notice that changing the direction of x still leads to a collision. In this
case we must choose a > 0 to avoid an accident.
We next give a high-level algorithm for this second case.

Algorithm 2 Three-lanes highway
Randomly distribute n2/4 different cars on a 2n× 3 grid, using just the first n rows
numberOfCollisions = 0

maxRow = The row of a topmost car on the grid
Let k be an integer less than m
for l = 1 to k do

for i = maxRow to 0 do
for j = 0 to 2 do

Randomly assign a move to car Xi: left, right, up, or no move
Build and solve a CSP that involves Xi = (xi, xj) with all the cars at levels j, j+1, j+2

if The set of possible values for a is not empty then
Randomly select one of these values to be the speed variation for Xi

else
Select another appropriate direction for Xi (i.e. left, right, up, or no move)
Build and solve the corresponding CSP
if The set of possible values for a is empty then

Remove the cars which paths have overlapped and increment
numberOfCollisions

else
Update the position and speed of car Xi, and if necessary maxRow

end if
end if

end for
end for

end for

Running time analysis
Let T2(n) be the running time of Algorithm 2. Building and processing a CSP is done at most



Iteration ti Number of cars Time to compute ti Dangerously close cars
0 2.500 2.1 1987
10 2443 1.9 1768
20 2412 1.77 1646
30 2378 1.71 1545
40 2322 1.62 1456
50 2301 1.58 1347

100 2269 4.54 1315
150 2254 3.51 1295
158 2247 2.49 1283

Table 1: Iterations with an initial set of cars equal to 10.000

twice during an iteration. We use a constant amount of space with respect to the size of the
problem. Indeed, we may backtrack at most once and the number of nodes of the CSP is at
most nine. Therefore the overall running time of this algorithm is:

T2(n) = Θ(3kn) = Θ(kn)

We implement our algorithms in the following section.

6 Simulation and results

We implemented both algorithms in Python and ran the code on a desktop machine with 8 GB
RAM and a AMD 4.2 Ghz quad-core processor. We tracked the number of remaining cars,
the time to reach the ith iteration (in milliseconds), and the overall number of cars that are
dangerously close to each other ; in other words, all the couples of cars that are related by one
of the relations: {TPP, TPP−1, NTPP,NTPP−1}.

6.1 Implementation of Algorithm 1

We considered a small grid of dimensions 100 by 100 and another large one of dimensions
10.000 by 10.000. Tables 1 and 2 summarize the results obtained for these two different
sets of cars. The iterations stopped after reaching the 90% threshold of the number of initial
cars. Figures 12 and 13 represent the relationships between the initial number of cars and the
number of iterations to reach the abovementioned threshold.
The number of cars that are involved in an accident at step ti can be deduced by computing
ti − ti+1. The running time of this algorithm becomes more important for a large set of cars.
Indeed, this is because we need to make O(n2) comparisons at each time step to determine
the relationships between all the cars.

6.2 Implementation of Algorithm 2

We consider here a more realistic example consisting of a set of 10.000 cars moving on a
three-lanes highway. Prior to processing a car Xi from the set, we build a CSP on the fly, by



Figure 12: Initial set of 2500 cars decreasing over time

Iteration ti Number of cars Time to compute ti Dangerously close cars
0 25.000.000 3215 22.230.430

100 24.734.454 3104 21.435.569
200 24.104.184 3078 20.455.346
300 23.899.345 2987 19.345.495
400 23.744.531 2912 18.947.431
500 23.434.567 2897 18.564.432
600 23.109.345 2765 18.234.958
700 22.760.249 2701 17.834.235
800 22.541.343 2654 17.567.458
816 22.483.345 543 17.345.395

Table 2: Iterations with an initial set of cars equal to 25.000.000

taking into account only the adjacent cars to Xi. More precisely, we do not include in our CSP
the cars that are in the relation DC (since the space separating two cars is greater than the
maximum speed a car can have). This is more space efficient than building another 2n×3 grid
and use it to store the CSPs of the cars. Table 3 provides us with the number of remaining cars
for different timesteps, where m = n/10

The graph in Figure 14 represents the number of cars that did not collide with any other ones.
We notice that our model did not forbid accidents from happening, but that the number of
collisions is very low. This is due to our modified algorithm that involves solving a constraint
satisfaction problem when processing a car. Note also that as time passes, the size of the grid
expands (i.e. the cars are moving forward); which leaves more room for the remaining cars to
manoeuver and avoid collisions. After a while, the number of accidents tends towards zero.
One may refer to Figure 10 in order to understand why some collisions are unavoidable in our
model. Assume in this case that y is just in front of x and that z is to the right of y. Moreover,
let the current speed of x be equal to three. No matter which choices we select for x (e.g.



Figure 13: Initial set of 25.000.000 cars decreasing over time

Iteration ti Number of cars Time to compute ti Dangerously close cars
0 10000 43 9549

100 9968 31 9123
200 9949 28 8652
300 9938 27 8209
400 9931 21 7120
500 9927 24 5234
600 9925 21 4785
700 9924 28 3128
800 9924 25 2876
900 9923 23 2548

1000 9923 19 2482

Table 3: Union-Find used with 1.000.000 cars

changing direction and/or decreasing its speed by two units) it will collide with y or z. This is
due to what is known by the horizon problem in artificial intelligence, and reflects what may
happen in a real case scenario where a driver is unable to practically avoid an accident. Hence
the importance of enforcing a safe distance between cars on a highway, which value depends
on the maximum speed of the cars.

7 Conclusion and future work

We proposed in this paper two algorithms that simulate the behavior of a set of cars in a
two-dimensional space. We based our study on two spatial and temporal formalisms, namely
RCC8 and PLTL. We started by generating a random number of cars that we distributed on
a n × n grid, then considered the behavior of a set of cars on a three-lanes highway. Our
approach allowed us to answer questions such as: Is car x at a safe distance from car y? or



Figure 14: As time passes, the number of collisions tends to zero.

Is car x going to have an accident in the future? We implemented and tested the algorithms
for several inputs. We used in the second one a constraint satisfaction problem that captures
the relative positions of cars at a given timestep. This helped us make adequate choices at
a given timestep, which reduced drastically the number of collisions. In the future, we intend
to implement a model where cars may have different sizes and also enforce a safe distance
between them. The value for that distance shall depend on the maximum speed a car can have,
and should be computed in such a way to reach the zero-accidents target we fixed earlier in
this paper.

References

Amaneddine, N. and Challita, K. 2016. Polynomial realization of ord-horn constraints, Interna-
tional Journal of Artificial Intelligence pp. 60–69.

Arnold, T. and Tilton, L. 2015. Natural language processing, Humanities Data in R pp. 131–
155.

Bakefayat, A. S. and Tabrizi, M. M. 2016. Lyapunov stabilization of the nonlinear control sys-
tems via the neural networks, Applied Soft Computing 42: 459–471.

Bennett, B. 1994. Spatial reasoning with propositional logics, In Proceedings of the Fourth In-
ternational Conference on Principles on Knowledge Representation and Reasoning (KR-
94) pp. 165–176.

Biddle, E., Luke, J., Magowan, J. and White, G. 2013. Natural language processing, Google
patents .

Bonham-Carter, G. 2014. Geographic information systems for geoscientists: modelling with
gis, Elsevier .



Challita, K. 2009. Reasoning with lines in the euclidean space, In Proceedings of the 21st
International Joint Conference on Artificial Intelligence (IJCAI 2009) pp. 462–467.

Challita, K. 2012. A semi-dynamical approach for solving qualitative spatial constraint satisfac-
tion problems, Theoretical Computer Science pp. 29–38.

Challita, K. 2017. Infinite rcc8 networks, International Journal of Artificial Intelligence
14(1): 147–162.

Cui, Z., Cohn, A. and Randell, D. 1993. Qualitative and topological relationships in spatial
databases, Advances in Spatial Databases, Lecture Notes in Computer Sciences pp. 293–
315.

Fernandez-Gauna, B., Lopez-Guede, J., Zulueta, E., Echegoyen, Z. and Grana, M. 2011.
Basic results and experiments on robotic multi-agent system for hose deployment and
transportation, International Journal of Artificial Intelligence 6(S 11): 183–202.

Ginter, V. and Pieper, J. 2011. Robust gain scheduled control of a hydrokinetic turbine, IEEE
Transactions on Control Systems Technology 19(4): 805 – 817.

Goodchild, M. 2009. Geographic information system, Encyclopedia of Database Systems,
Springer pp. 1231–1236.

Kamp, H. 1968. Tense logic and the theory of order, Thèse de l’université de Californie, Los
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