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ABSTRACT 

Big data analytics is a very fast growing research domain which embedded the 

combination of computational (i.e. computer-intensive) and inferential (i.e. statistics-

oriented) thinking. Information is increasingly gathered into big data environment such as 

distinct protein-coding data for identifying various critical diseases and its cure. Data pre-

processing techniques are used to make the data clean, noise free and consistent to 

model in various real life purposes. This paper examines a range of statistics-based data 

pre-processing methods and machine learning algorithms to assess their performances in 

the big data analysis setting. Tuberculosis affected protein’s amino acid sequences data 

from the National Center for Biotechnology Information (NCBI) database is utilized for 

empirical results. Findings reveal that statistics-based pre-processing methods are 

effective to make the big data useable for significant modelling and analysis with novel 

machine learning algorithms such as the hidden Markov chain model, Box-Cox and linear 

transformation, and they also maintain the performance of those algorithms. Although 

there are significant differences observed between predictive outcomes and performances 

of the algorithms, results further demonstrate that the hidden Markov chain model 

produced more accurate, exact and faster analysis with reliable estimates. 
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1. INTRODUCTION 
 

In data science, big data and its analysis strategies are at the growing vital focus of 21 century’s data 

centric world. Given the technological developments, almost all modern science, economic, social and 

business environments are generating and integrating big data from various sources including videos, 

audios, images, posts, search queries, electronic transactions, emails, health records, social 

networking activities, science data, sensors and smart-mobile phones and their applications (Eaton et 

al., 2012). They are stored in databases grow massively and become difficult to capture, form, store, 

manage, share, analyze and visualize via typical database software tools. In 2015, digital world of 

data was expanded to 8 zettabytes and predicted to double every two years (Manyika et al., 2011) 

reaching about 32 zettabytes of data by 2019. In the past, human genome decryption process takes 

approximately 10 years, but now it takes not more than one week (HPCC, 2018). These create a huge 

opportunity to advance medical and patient outcomes. 

 

Big data is characterized by its four main components: variety, velocity, volume and veracity (Gerhardt 

et al., 2012; Rahman, 2018). Variety makes big data really big since it comes from a great variety of 

sources and generally has in three types: structured, semi structured and unstructured. Structured 

data can be easily sorted to analyze but unstructured data is random and difficult to analyze. Whereas, 

semi-structured data does not conform to any fixed fields but contains labels to distinct data elements 

from wider sources (Shing & Shing, 2011). Volume of data now is larger than terabytes and petabytes 

which need advanced storage strategies and analysis techniques (Madden, 2012). Velocity is 

required for big data generation, handling and all processes. For time limited processes, big data 

should be used as it streams into the organization in order to maximize its value (Shing & Shing, 2011; 

Madden, 2012). Veracity is a significant issue in big data due to the varying levels of noise and 

processing errors in raw data. It is difficult to control large data so data security must be provided 

(Chowdhury et al., 2018a). Besides this, after producing and processing of big data, there should be 

the potential to analyze it to reveal new insights to optimize decision making for the organization. 

 

To understand typical real world issues, models can be formulated towards making better-informed 

decisions. However, the data on which the models’ are based could be big and complex with the 

model itself. As a result, the traditional methods show poor performance in handling the highly 

complicated models optimization. Due to the very fast growing domain in computing such as 

intelligent algorithms based powerful calculation, the optimal solution of a complex model can be 

achieved in a short time. For example, an ant colony optimization technique is widely applied in 

continuous optimization problems, which can improve expert and intelligent systems in terms of data 

clustering to training neural networks (Chen et al., 2017). This technique seeks for the optimal solution 

in the pre-specific domains though. Thus, if the initial domains are not estimated correctly, it may not 

generate the optimal solution. Additionally, fuzzy logic is another approach which is closely related to 

the probability modelling in statistics. Fuzzy modelling have gained widespread applications in the 

context of handling complex models and measuring their uncertainty (Narukawa & Torra, 2009; Pozna 

et al., 2010). A survey on fuzzy systems and control is presented in the study by Precup and 



 

Hellendoorn (2011). Recent applications of fuzzy modelling include process control with focus on 

adaptive fuzzy control (Blazic et al., 2009; Precup & Hellendoorn, 2011), on the combination between 

fuzzy control and sliding mode control (Hwang et al., 2009), on kernel-based fuzzy clustering (Graves 

& Pedrycz, 2010) and biomedical applications (Bustince et al., 2010).  

 

In particular, generic two-degree-of-freedom fuzzy controllers have been proposed in Precup et al. 

(2009) to deal with servo systems. However, stability is one of the most important problems in the 

analysis and design of nonlinear control systems (Vrkalovic et al., 2017). A stability analysis method 

for fuzzy control systems dedicated to nonlinear processes has been formulated in Tomescu et al. 

(2007). The optimal tuning of fuzzy controllers such as swarm intelligence algorithms (Precup et al., 

2015) can guarantee systematic performance specifications in the conditions of model-based tuning 

(Vrkalovic et al., 2018). A part of the application of these algorithms includes genetic algorithms 

(Perez et al., 2013), ant colony optimization (Castillo et al., 2015), simulated annealing (Vrkalovic et 

al., 2017), and the optimal tuning of linear and fuzzy controllers by means of classical algorithms 

(Precup and Preitl, 2004, 2006; Preitl et al., 2004). The model-free versus model-based tuning 

remains an open issue though, and the proper adaptation of other algorithms can also be taken into 

consideration (Kazakov & Lempert, 2015; Vrkalovic et al., 2018). 

 

Formal concept analysis (Ganter & Wille, 1999) is another way to deal with such an open issue for the 

analysis of complex data. The advances in the theory of fuzzy formal concept analysis and its 

applications are studied by many researchers (Jiang et al., 2003; Phan-Luong, 2008; Medina & 

Ojeda-Aciego, 2010; Medina & Ojeda-Aciego, 2013). For instance, a generalisation of the classical 

dual concept lattices to a multi-adjoint environment in data science is studied by Medina and Ojeda-

Aciego (2013) which allows a new perspective to find information from complex databases with 

incomplete and/or imprecise information. In a recent study by Precup et al. (2015) discusses a 

number of key methods including support vector machine learning to fuzzy modelling for fault 

detection and isolation analysis using some intelligent algorithms based techniques. This review study 

gives special attention to machine learning, data mining, clustering and evolving techniques which are 

widely applied to industrial problems.  

 

In big data systems fuzzy cognitive maps analysis with migration algorithms for adaptation of model 

parameters seem to be very useful (Vascak, 2012), particularly when conventional rule-based 

knowledge discovery methods are insufficient for description of complex dynamic databases. Artificial 

neural networks (ANNs) approaches can also generate reliable generalized solutions for many 

complex models designed for pattern classification, function approximation and regression problems. 

However, there are concerns related to structuring the hidden layers, especially with too many or too 

small parameters generalization situations. Some researchers use pruning-constructive hybrid 

algorithms to overcome the common problem of hidden layer architecture in ANNs (Kamruzzaman & 

Sarker, 2011). A simple and effective pruning algorithm based on the neuroplasticity concepts to find 



 

the optimal solution of hidden layer architecture in multilayered ANNs is highlighted by Wagarachchi & 

Karunananda (2017). 

 

Organizations in any industry have big data can benefit from its careful analysis to gain insights and 

depths to solve real problems (Bakshi, 2012). Big data requires a revolutionary mix of methodologies 

from different domains including statistics and computing that step forward from traditional data 

analysis (Figure 1). The Venn diagram depicts that statistics play a vital role on big data analysis, 

particularly in machine learning and pattern recognition. Algorithms are the code part of big data 

analysis that contributes all four domains of in data science. Therefore, an assessment of various 

algorithms is crucial to know which one could be used in big data analysis, especially for genome or 

proteins sequence data. 

 

 
 

Figure 1. A multi-domain view of big data analysis strategies in data science. 

 

Common analytic problems in data science are depicted in Figure 2. Broadly speaking by whether the 

output is continuous or discrete (classes) and whether it is supervised (includes desired outputs) or 

unsupervised (doesn’t include desired outputs) as optimization, most of the analytic problems are 

categorised into four groups which are classification, regression, clustering and dimension reduction 

(Rahman, 2017a). For instances, the main aim of the classification methods is to accurately allocate 

objects to a discrete set of known classes or groups based on a set of input variables. An example is 

the development of a diagnostic test, which declares a person to be of class ‘diseased’ or ‘healthy’, 

based on a set of clinical variables. The overall aim of the clustering methods is to combine objects 

into groups or classes based on a set of discrete input variables. An example is combining the 

customers into groups based on their responses to a satisfaction survey. One can then inspect these 

groupings and the customer traits that describe the groups and differentiate between them. This can 

be used to manage the existing customers or predict satisfaction of new customers. 
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Figure 2. Common analytic problems in data science by variable class and optimization challenge. 

 

In contrasts, the aim of regression methods is to accurately and precisely estimate or predict the 

response, given a set of input variables. Typically, the regression model is ‘trained’ using a set of 

objects for which the response is known. The analyst might be interested in the estimated values for 

the objects in the training set, predicting responses for new objects, identifying which input variables 

are most important in making good predictions, or inspecting the relationships between these 

variables. Whereas, the aim of dimension reduction is to construct an output variable (or set of 

variables) based on a set of input variables, where this output variable is unknown. The output 

variable(s) should be continuous and the new output variables should maximise the information in the 

data. In big data analytics, dimension reduction tools are commonly available since it can be used to 

create a small set of output variables that can effectively carry most of the information in a very large 

set of input variables without compromising any privacy of the original data. The analyst can then 

inspect these new variables to see which of the original variables are most important in explaining the 

variation in the data. The new variables can also be used as inputs to regression, clustering and 

classification problems. So, it is significant to develop new strategies in big data analytics to protect 

confidentiality of the original data first and then perform robust analysis to achieve insightful 

information to support business decisions. 

 

In the public health domain, for example, Tuberculosis (TB) disease destroys human tissue and it is 

considered as a number one disastrous illness for people (Deng et al., 2016). Scientists are trying to 

discover the fruitful vaccines for the TB disease. It is possible to develop right vaccines by finding the 

accurate suspected proteins family working behind TB disease. Simulative and automated machine 

learning systems can help a lot to detect suspected proteins from the genome data. However, the 

large datasets along with high frequency may hamper the overall process of identification (Rahman et 

al., 2018). 

 

The main objectives of this paper are to examine a range of statistical data pre-processing methods 

and machine learning algorithms to determine the best design for model optimisation, and then to 

assess the performances of the design in the big data analysis setting. It uses the Tuberculosis 

affected protein’s amino acid sequences data from the National Center for Biotechnology Information 

(NCBI) database for experiential analysis. 

 

The remainder of the paper is as follows. Section 2 presents a range of statistics-based big data 

preprocessing methods. Section 3 discusses various machine learning algorithms which are based on 



 

statistical thinking. Section 4 provides the empirical results with its relevant discussion. The final 

Section 5 offers the concluding remarks. 

 

 

2. BIG DATA PREPROCESSING METHODS 
 

Preprocessing is basically implemented on any raw big data before using any kinds of classification or 

identification. In many real world cases the raw data are not useable due to noises and must be 

preprocessed. A secured usable data can be achieved via the data preprocessing methods (Figure 3). 

This section presents three statistical techniques (i.e. decimal scaling, min-max and Z-score 

normalization) for preprocessing the raw big data which are also known as data standardization tools. 

 

 

 

 

 

 

 

 

 

 
Figure 3. A flowchart to obtain secured and noise free dataset from the big data systems. 

 

 

2.1. Decimal scaling normalization 
 

Decimal scaling is one kind of preprocessing method that aims to equalize the input data to 

acceptable output. It normalizes the data depending on decimal point of values. In this technique the 

overall computation is performed in terms of decimal values of data. So, the result is multiplying and 

dividing it by (10, )POW k with thk exponent. The decimal scale normalization equation can be 

defined as 

 
10

i
i

j

vv =                       (1) 

where iv  is the scaled values of given input values. 

If a vector V  is the range of the input values and also j is the lowest integer value so that max 

(| |) 1iV <  for all i . Therefore, the decimal scaling normalization depends on movements of decimal 

points on a specific region. 
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2.2. Min-max normalization 

 
The min-max normalization method is a strategy which transfers raw data X  to Y linearly. It is also a 

way of feature scaling where numeric feature values are converted within a specific range mostly 

within 0 and 1. The processed data can be represented in such a way that that the minimum value of 

X is mapped to 0 whereas the maximum value of Y is mapped to 1. For this study, consider min p  

and max p as the minimum and maximum values for detection of annotation for the proteins dataset. 

The interval within which the desired result needs to be detected is [min , max ]p p . Now if any new 

interval converted to [ _ min , _ max ]p pnew new  then the equation for detecting new protein breaks 

can be presented as 

 ( )
min

( _ max _ min )
max min

p
p p

p p

p
New p new new

−
= × −

−
 (2) 

Usually, min-max normalization preserves the basic properties of original data values. If any kind of 

data crosses the limit of the interval of the process [min ,max ]p p  then problem may occur. Therefore, 

the main focus of min-max normalization is gathering all the data within a certain range mostly the 

range is within 0 and 1. 
 

2.3. Z-score normalization 
 
The z-score normalization process is one kind of statistical process to standardize vast amount of 

data depending on the mean value. It is actually a non-dimensional quantity by subtracting mean 

value from a raw data. Consider X  as a random variable then X  is normalized by subtracting its 

desired mean value from the original value and then dividing that by the standard deviation. The z-

score process can be written as 

      
( )

( )
X X

Z
X

μ
σ
−

=     (3) 

where ( )Xμ  and ( )Xσ  is the mean and standard deviation of X , respectively. 

This standardization technique is widely used for data normalization because of its ability to calculate 

the probability of an estimated z-score. This process also helps to compare normal distributions of 

various variables in the dataset. 

 

2.4. Maintaining data security in preprocessing 
 
Any big database contain large amount of private and sensitive data including healthcare, business, 

financial or criminal record. These private and sensitive data cannot be share to everyone 

(Chowdhury et al., 2018b), so privacy protection of data is required in analytics system before 



 

employing machine learning. Data preprocessing could be one of the useful methods for avoiding 

privacy leakage of data in addition to make the data clean, noise free and consistent. A proposed data 

perturbation and normalization technique is illustrated here for privacy protection in big data (Rahman, 

2017b). This method involves with three systematics steps as follows. 

Let D  be a data matrix of order r k× , representing the original dataset. The rows of the matrix 

represent objects and the columns of the matrix represent variables. 

1. D must be first transformed by a pre-processing normalization technique (e.g., min-max 

normalization) to get transformed matrix D  with the same order r k× . The min-max 

normalization transformed each element of D  into the specific interval (0.0,1.0). 

2. After step 2, we have obtained a perturbed/scaled new data matrix D , which is very similar to 

D , but not identical. Importantly, D  preserve the properties of D . Thus, D  can work as a 

distorted version of D . 

3. Now D  is further shifted by multiplying it with a shifting factor “ s ”, (i.e. s  = a negative 

number), to increase the security of data. Hence, after applying the shifting factor (-ve number) 

on D , the order and the value of each element of D  was changed, i.e. the bigger number 

become smaller and vice-versa. 

 

 

3. STATISTICAL THINKING IN MACHINE LEARNING ALGORITHMS 
 
Machine learning is a subfield of data science including artificial intelligence that allows the use of 

statistical and computing algorithms to parse data, learn from that data, and make informed decisions 

based on what it has learned to be more accurate in predicting results. Predicted model outcomes in 

machine learning can be obtained using various statistics-based optimization algorithms though 

(Figure 4). These algorithms are illustrated in this section. 

 

 
 
 
 
 

 

 
Figure 4. A framework for achieving predicted model outcomes in machine learning. 

 

A straightforward example of a machine learning algorithm is an on-demand movie streaming service. 

For the service to make a decision about which new movie to recommend to a viewer, machine 

learning algorithms associate the viewer’s preferences with other viewers who have similar drama 
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taste. Whereas, deep learning is a subfield of machine learning that structures algorithms in layers to 

create an “artificial neural network (ANN)” that can learn and make intelligent decisions on its own. A 

deep learning model is designed to continually analyze data with a logic structure similar to how a 

human would draw conclusions (Saez et al., 2016). 
 

3.1. Deep learning 
 
The design of an ANN is inspired by the biological neural network of the human brain. ANN follows 

non-linear processing and transformation of input data towards standard output and each consecutive 

layers process previous layer’s output. The fundamental concept an ANN such as a deep neural 

network (DNN) follows processing the input data through a lot of connected layers which extract data 

from low level to high level components (Tchurikov et al., 2016; Liao et al., 2016). For example, a 

multilayer DNN structure is presented in Figure 5. 

 

 
 

Figure 5. A depiction of multilayer DNN architecture (Eluyode & Akomolafe, 2013). 

 

Consider feature of a particular node as the inputs vector 1 2( , ,..., ) , 1,2,...,i i i imX x x x i D′= =  of the 

corresponding next layer whose parameters are illustrated by the inputs iX  and weights vector 

1 2( , ,..., )i i i imW w w w= , then the non-linear function for the desired output for a specific node in the 

thj hidden layer is given by 

 
1

tanh
m

j i i j
t

X w x b
=

⎛ ⎞⎛ ⎞= × +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
∑ ,      (4) 

where jb  is the bias measure for each node of the thj  hidden layer and tanh is the hyperbolic 

tangent activation function. It is to be noted that the type of activation function used for a model 

depends on the desired output of the model. Some other activation functions commonly used in DNNs 

are: threshold, linear, piece-wise, and logistic-Sigmoid, etc.  

  



 

The vector jX  will be used as input vector of the next hidden layer. For the thk  layer with the bias 

measure kb  for each node, the equation can be written as 

 
1

tanh
m

k j j k
t

X w x b
=

⎛ ⎞⎛ ⎞= × +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
∑     (5) 

where kX  be the input vector of the subsequent hidden layer, and the process carries till the final 

output layer. 

 

For higher performance for each hidden layer multiple nodes are adjusted. All the weights are treated 

as a tensor consists of various combinations of features of a specific layer node. The weight function 

can be defined as 

 ( ) ( ) ( )1ij ij
ij

CW t W t t
W

η ε∂
+ = + +

∂
     (6) 

where η  is the learning rate, C  is the cost function, and ( )tε  is an stochastic error term. 

The cost function is fully depends on the type of the process like supervised or unsupervised learning 

(Figure 2). For example, from the perspective of supervised learning the cost function can be 

implemented as ( )logj jC p I= −∑  where jp  actually indicates the target probability at immediate 

iteration jI . Hence, the deep learning is a different way of processing multidimensional and ordered 

data though the processed input data. 

 

The DNN actually uses an optimisation process of achieving the optimal set of weights for the links 

between nodes by minimising the cost function which will make the model to yield the correct 

expected output corresponding to the given input. A range of techniques including the ant colony 

optimization, backpropagation, genetic algorithm, particle swarm optimization  algorithm can be 

utilised for the optimisation (see, e.g. Deng, 2010; Kamruzzaman & Sarker, 2011; Perez et al., 2013; 

Deng & Dong, 2014; Castillo et al., 2015; Chen et al., 2017; Wagarachchi & Karunananda, 2017). 

This study uses the backpropagation algorithm which has been described in details in the literature 

(e.g., Rojas, 1996; Deng, 2010; Eluyode & Akomolafe, 2013; Deng & Dong, 2014). A quick description 

of this algorithm is provided here. 

 

An iterative approach is used in backpropagation to find the correct set of weights by minimising the 

cost function i.e. error function. The inputs 1 2, ,..., DX X X are applied to the DNN and the expected 

(target) output is compared with the actual (computed) output 1 2, ,..., Mp p p  to get the error (Figure 4). 

A typical cost function for backpropagation technique is the mean squared error (MSE) function: 

( )
2

1

M

m m
m

MSE e p
=

= −∑ , where e  is the expected output, p  is the actual output, m  indexes output 



 

nodes and M  is the number of output node. The error estimate is then used to adjust the weights 

such that it is minimized. This process is repeated until the error is within a benchmark value. 

However, it is to be noted that the suitable number of nodes in hidden layers is determined 

heuristically, while the number of nodes in output layer depends on the task. Generally speaking, for 

the regression problems, the number of nodes in the output layer could be the number of dependent 

variables in the model. 

 

Now, if mlw  and mbw  denote the output-hidden layer weights and its corresponding bias weights 

respectively, then they can be updated by ( 1) ( ) [ ( )]ml ml m l mlw t w t p w tη α δ+ = + Δ +  and 

( 1) ( ) [ ( )]mb mb m b mbw t w t p w tη α δ+ = + Δ + ; where, η , mΔ , lp , bp , α , mlwδ , mbwδ , and t  

represent the learning rate, the hidden-output layer error measure for node m , the output of hidden 

node l , the hidden-output bias, the momentum rate, the previous weight change, the previous weight 

change for the hidden-output bias, and the iteration index respectively. 

 

The hidden-output error for node m  can be obtained as (1 )( )m m m m mp p e pΔ = × − − . Also, the 

hidden-hidden layers weights, lkw , to be updated by ( 1) ( ) [ ( )]lk lk l k lkw t w t w tη α δ+ = + Δ + , where 

lΔ , kp and lkwδ  denote the error measure of hidden layer node l ,  the output of preceding hidden 

layer node k  and the previous weight change for the hidden-hidden bias node. Then, lΔ  can be 

easily estimated as 
1

(1 )
L

l l l ml m
l

p p w
=

Δ = − Δ∑ . 

 

If kdw  and kbw  denote the input-hidden layer weights and its corresponding input-hidden bias weights 

respectively, then they can be updated by ( 1) ( ) [ ( )]kd kd k d kdw t w t x w tη α δ+ = + Δ +  and 

( 1) ( ) [ ( )]kb kb k b kbw t w t p w tη α δ+ = + Δ + , where, x , d , kdwδ , kbwδ  and kΔ  indicate the DNN 

input, the indexes of the input characteristics, the previous weight change, the previous weight 

change for the input-hidden bias node and the error measure of node k  in the hidden layer following 

the input layer. Hence, the error measure kΔ  for input-hidden node k  can be computed by using 

1
(1 )

K

k k k lk l
k

p p w
=

Δ = − Δ∑ . 

 

Furthermore, the gradient descent can be very slow if the learning rate η  is too small, and can 

oscillate widely if η  is too large. The momentum rate α  is chosen between 0 and 1, 0.9 is a good 

value though. After computing all partial derivatives the DNN weights are updated in the negative 

gradient direction with corrections for the weights where the learning constant defines the step length 

of the correction at each iteration. It is very important to make the corrections to the weights only after 



 

the backpropagated error has been computed for all units in the network (Rojas, 1996; Deng & Dong, 

2014). 
 

3.2. Hidden Markov chain model 
 
The Markov chain model is a liability based approach strictly following the Markov property (Li et al., 

2016; Doerks et al., 2012; Anandakumar & Shanmughavel, 2008), which provides a probable solution 

depending on specific current situation of some dynamic variables. An improved version of Markov 

chain is the Hidden Markov chain model (HMCM). It is a process of probability ordination over 

consequent identification of tasks and one of the most powerful approaches of machine learning for 

statistical prediction to extract information from training and robust data. HMCM is well developed 

statistical process that can also handle vast amount of data robustly along with being computationally 

proficient. By focusing on two consecutive datasets the HMCM can predicts what should be the result 

for that datasets after specific duration. For example, the prediction of annotation of hypothetical 

proteins can be performed by HMCM. 

 

Consider the proteins sequence as 1 2, ,..., nP p p p=  and the overall model is ( ), ,X Yθ π=  with 

the variables X  and Y  and the tasks probabilities π . Then for every fixed state sequence 

1 2... TI i i i= , the probability of the proteins sequence given the model ( )|f P θ  can be defined as 

 ( ) ( ) ( ) ( ) ( )
1 21 2| , ... ...

k Ti i i k i Tf P I b p b p b p b pθ = × × × × ×     (7) 

where T  is the state sequence length for I  and ( )
ki kb p is the probability of thk state value in P . 

 

The probability of same state sequence I  can be expressed as 

 ( ) ( )1 1 2 2 3 ( 1) ( 1)
| ... ...

k k T Ti i i i i i i i if I a a a aθ π
− −

=     (8) 

where 
1i

π is the probability of task at the initial state 1i  and 
( 1)k ki ia

−
is the probability of the state moving 

from ( 1)ki −  to ki .  

 

Now probability of P  and I  is the product of (7) and (8) which can be presented as 

 ( ) ( ) ( ), | | , | .f P I f P I f Iθ θ θ= ×      (9) 

Hence, the overall probability for information extraction can be written as, 

 ( ) ( ) ( ) ( ) ( )
1 1 1 2 2 ( 1) ( 1)1 2, | ... ...

k k k T T Ti i i i i i i i k i i i T
i

f P I b p a b p a b p a b pθ π
− −

∀

= ∑ .  (10) 

 

At the initial task for 1T =  the probability is approximately 1π  which is defined by ( )
1 1ib p . Similar 

way when the state is shifting from ( 1)Ti −  to Ti  then the state transition probability occurs 
( 1)T Ti ia

−
 and 



 

generates Tp  with probability ( )
Ti Tb p . Therefore, an apparent location of a specified task (i.e. 

probability of getting annotation of hypothetical proteins for tuberculosis in this research) can be 

identified successfully by HMCM. 

 

While as discussed in the introduction section a number of optimization processes can be doable (e.g. 

Phan-Luong, 2008; Medina & Ojeda-Aciego, 2013; Precup et al., 2015; Chen et al., 2017), to optimize 

the model parameters this study relays on the maximum likelihood statistical process to maximize 

( ), |f P I θ . It is considered as non-convex, non-linear optimization problem with constraints on π , 

X  and Y . This optimization can also be design as maximizing the log likelihood, i.e. log ( ), |f P I θ . 

The EM (i.e. Expectation-Maximization) algorithm is the best technique to resolve this optimisation 

problem. Although a detailed demonstration of the method is provided in an early study by Dempster 

et al. (1977), a brief outline is as follows. 

 

For the hidden Markov chain model, the EM method can be designed with the state sequences 

function ( )( ), kI θ θ  which is to maximize over the parameter θ  at each iteration. The function 

( )( ), kI θ θ  can be written as the following sum of three separable elements: 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )
1 2 3, , , ,k k k kI I I Iθ θ θ θ θ θ θ θ= + +

 

                 
1

1
( ) ( ) ( )

1 1 1 1 1 1
log log log ( )

N N N T N T
k k k

r r rst rs rt r t
r r s t r t

a b pϕ π ϕ ϕ
−

= = = = = =

= + +∑ ∑ ∑ ∑ ∑ ∑ , 

where 
1

( )k
rϕ , ( )k

rstϕ  and ( )k
rtϕ are some unknown probabilistic measures which can be estimated by 

using the forward-backward iterative calculation process (Rahman, 2008a; Rahman et al. 2010) with 

the lattice structure of the HMCM (Rabiner, 1989; Phan-Luong, 2008; Medina & Ojeda-Aciego, 2010). 

 

Now each element can be maximised individually. The maximising solution for the element  

( )( )
1 , kI θ θ  is 
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. However, the 

maximising solution for the element ( )( )
3 , kI θ θ  depends on the outputs of the model. When the 

outputs are discrete, the solution is fairly straightforward as 
( )

1
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1
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ϕ δ

ϕ
=

=

−
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∑
, where z  

represents a possible output and δ  represents a difference measure indicator. However, when the 

outputs of the model are continuous, the solution needs to be estimated by using analytic process 

which to be subject to any special forms of the output distribution. For instance, the maximising 

solution for the parameters of multivariate Normal distribution output is obtatined for 
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, where Q  is the normalising component (see, e.g. Rahman, 2008b; 

Rahman & Upadhyay, 2015; Rahman & Harding, 2016)), 
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Although the EM algorithm is widely used to achieve convergence to a local maximum, the HMCM 

objective function may have multimodality issue in many situations. In such a case, the optimization 

problem would be much more challenging though (Granat, 2003). 
 

3.3. Box-Cox transformation 
 

In many cases the normality assumptions do not exists, and an appropriate transformation of these 

types of data can make it useable for estimation. Box Cox transformation (Box & Cox, 1964) 

algorithms can be used for such a sophisticated task. The overall transformation process of Box Cox 

is illustrated as below. 

 

Consider an input vector as ( )1 2, ,..., nX x x x=  on which the algorithm will be embedded. 

Transformation of the input vector by Box-Cox method (Bakshi, 2012) can be defined as 
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( )( )1 1 , 0
, 0log

i

i

x if
i ifxx

δδδ δ
δ

− − ≠
=

⎧= ⎨
⎩  (11) 

for an unknown optimal parameter δ , x Dδ β ε= + , where, xδ is the  δ -transformed data, D  is the 

design data matrix, β  is the parameters vector and ε  is the random error term that needs to be 

adjusted under the basic normality assumptions ( )2, nx N D Iδ β σ� . Equation (11) performs 

acceptably when the input vectors are 0ix >  for 1,2,...,i n= . For further accuracy the overall 

process requires adjustment in the estimation process. 

 

The basic aim in the Box-Cox transformation model is to find an optimal estimation on the 

transformation parameter δ , and there are a range of approaches employed by researchers which go 

from standard statistical methods (Box & Cox, 1982; Chen et al., 2002; Zeng & Lin, 2007) to fuzzy 

logics (Liu et al., 2005; Rajasekaran & Pai, 2011). This paper uses an iteration based optimisation 

process which includes two main steps. First obtain the Profile log-likelihood function 
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log 1 log

2

n

i
i

RSSnPLL x
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δ δ
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= − + −⎜ ⎟
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∑  for each possible δ values, where of ( )RSS δ  

is the residual sum of squares when using ( )
ix δ in the model. Then calculate the maximum likelihood 

estimate (MLE), δ̂ , of δ  that is the maximizer of ( )PLL δ . 

 

Also one can easily find an approximate value of δ by using alternative technique as follows. 

Consider [ , ]a aδ ∈ − +  for the ordered values 0 1 2 2 1 2n na aδ δ δ δ δ−− = < < < < < = +L , where 

0i
i a
n

δ δ ⎛ ⎞= + ⎜ ⎟
⎝ ⎠

, a  is some constant, and n  is a very large number. For instance, as 100=n  and 

1=a , then 0 1 199 2001, 0.99,..., 0.99, 1δ δ δ δ= − = − = = . Now estimate all values of the residual sum 

of squares when using ( )
ix δ in the model i.e. 0 1 199 200( ), ( ),..., ( ), ( )RSS RSS RSS RSSδ δ δ δ . The value 

iδ  corresponding to the smallest ( )iRSS δ  is the suitable approximate estimate δ̂  to be used. Hence, 

( ) ( );i jRSS RSS ijδ δ≤ ∀ and j i≠ . 

 

3.4. Linear transformation 
 

In statistical perspective the linear transformation is a mapping based system by which the inputted 

datasets are added or multiplied to reorganize them in a specific manner to manipulate. Linear 

transformation takes input as a vector and multiply or add the inputted vector with another vector 

thereafter analyze it. The basic aim is to transfer the high dimensional linear subspaces data onto 

lower dimensional subspaces matrices. Consider A  and B  as two matrix spaces where a  and b  

are vectors. Then the following properties can be pursued in the linear transformation method: 

 ( ) ( ) ( )f a b f a f b+ = +   (12) 

 

Now if ϕ  is any scalar then 

 ( ) ( )f a f aϕ ϕ=      (13) 

 

Therefore, the combination of (12) and (13) creates a new property which is also followed by linear 

transformation for any large number of sequence of anything. For this work the sequence is proteins 

sequence. If we consider proteins sequences as 1 2, ,..., nP p p p=  with scalars as 1 2, ,..., nϕ ϕ ϕ ϕ= , 

then the linear transformation property can be expressed as 

 1 1 2 2 1 1 2 2( ... ) ( ) ( ) ... ( )n n n nf p p p f p f p f pϕ ϕ ϕ ϕ ϕ ϕ+ + + = + + +   (14) 

 



 

There are wide applications of linear transformation in bioinformatics as well as big data analysis. For 

our work it is implemented for predicting multiple possibilities regarding annotation of suspected 

proteins responsible for Tuberculosis. 

 

A linear transformation algorithm in the supervised learning setting is demonstrated in Goldberger et 

al. (2004). A comparative analysis of kernel-based fuzzy methods is presented in Graves & Pedrycz 

(2010). The connections between metric learning and kernel learning specially that arise when 

studying metric learning as a linear transformation learning problem are studied by Jain et al. (2012). 

While each of these algorithms was shown to yield improved classification performance over the 

baseline metrics, their constraints do not generalize outside of their particular problem domains, 

especially when it needs to satisfy arbitrary linear constraints on the Mahalanobis distance matrix. 

Nevertheless, the iterative technique based simplex algorithm generates a sequence of feasible 

iterates kp for the original problem, where each iterate typically has the same number of nonzero 

(strictly positive) components as there are rows in A . This iterate is then used to generate dual 

variables λ (i.e. the Lagrange multipliers) and u  (i.e. the slack variable) such that the optimality 

conditions ,Ap b=  k kA u cλ′ + =  and ( ) 0k kp u′ =  are satisfied (Gallier, 2013). 

 

If the remaining constraint 0ku ≥ is also satisfied, then the optimal solution is to be achieved and the 

algorithm terminates. Otherwise, one of the negative components of the slack variable ku  needs to 

be chosen to get a large value of the corresponding component of .p  When this occurs, the algorithm 

stops and implies to the new iterate 1kp + . Each iteration of the simplex method is relatively 

inexpensive. It maintains a factorization of the submatrix of A  that corresponds to B , and updates 

this factorization at each step to account for the fact that one column of B has changed. Typically, the 

optimisation with the linear transformation model is quick and accurate, and the simplex methodology 

converges in a number of iterates that is about two to three times the number of columns in A  

(Methling et al., 2017). 

 

 

4. EMPIRICAL RESULTS AND DISCUSSION 
 

This section provides the results and discussion of the data pre-processing techniques and statistics 

based optimisation algorithms in machine learning. The focus is here though to assess the 

performances of these statistical approaches in a big data analysis setting. The study uses 

tuberculosis affected protein’s amino acid sequences data from the National Center for Biotechnology 

Information (NCBI) databases for the empirical analyses. Further details about the data are available 

in Rahman et al. (2018). Data analytics programming codes and relevant datasets to be available on 

author’s webpage at https://researchoutput.csu.edu.au/en/persons/azrahmancsueduau. 
 



 

4.1. Comparison of data preprocessing techniques 
 

Figure 6 presents the preprocessing results of the data using the decimal scaling, min-max and Z-

score normalizations techniques. Findings reveal that the Z-score method normalizes datasets better 

than other two techniques. As the data size increases, the Z-score method performs the best followed 

by the decimal scaling. In particular when the data size is about 180,000kb, the Z-score method was 

able to clean the data well that have provided 187 proteins information after normalization. This figure 

is around 3.5 times and 1.2 times higher than the number of proteins provided by min-max and 

decimal scaling normalizations.  

 

 
 

Figure 6. Outcomes of data preprocessing by three methods. 
 

4.2. Performance of machine learning algorithms 
 

Table 1 presents the results from HMCM versus the Box-Cox transformation (BCT) and linear 

transformation (LT) algorithms for the prediction of number of proteins in different size of datasets. 

Findings reveal that HMCM algorithm is preferable due to its significantly high level of accuracy and 

ability to predict exact number of proteins responsible for TB in increasing size of the data from 20 to 

180 million sequences. Specifically, according to the first input data (twenty million) the performance 

of HMCM model for detecting responsible proteins for TB is 55.56% better than the performance of 

other two models, and while the data size increases to 180 million base pairs, the performance of 

HMCM model is even better (i.e. 55.83%) than Box-Cox transformation. 

 



 

Table 1. Prediction results from HMCM, Box-Cox and linear transformations. 

 

Data (in x*10^4 kb) HMCM BCT LT
2 7 2 2
4 13 7 7
6 24 11 12
8 36 15 16

10 53 19 21
12 75 27 31
14 105 34 50
16 137 43 70
18 187 53 95

 

A further analysis has revealed that the positive predictive power of HMCM algorithm is about 95.45% 

with a likelihood ration estimate of 9.68. These findings also confirm that HMCM has a very high 

predictive accuracy and utility for detecting proteins responsible for TB. 
 

 

5. CONCLUSIONS 
 

Data science including big data and its analysis strategies are significant for this data centric era. Big 

data is essentially a part of everyday living and business, but how effectively we can process the raw 

data and then analyze it to reveal new insights to optimize decision making is an important question? 

Statistical thinking plays a vital role in data preprocessing to make the data clean, noise free and 

consistent, and then to analysis or model in various real life purposes. This research has examined a 

variety of statistics-based data preprocessing techniques with machine learning optimisation 

algorithms and evaluated their performances utilizing the NCBI’s big dataset. It has been found that 

among the three data preprocessing methods discussed, the Z-score normalization method has 

outperformed than the min-max and decimal scaling methods with the increasing data size. 

  

Findings have also demonstrated that statistical machine learning algorithms such as the hidden 

Markov chain model (HMCM), Box-Cox transformation and linear transformation are important 

methodologies in data science. These algorithms are useable for significant modelling and analysis of 

big data, for example – detection of responsible proteins for TB disease. Comparison of these 

methodologies has revealed a clear difference in statistical concepts, its predictive outcomes and 

performances measures. Empirical results have demonstrated that HMCM algorithm is the best one to 

use for big data analysis in terms of the accuracy, predictive ability and utility, especially when the 

data size really big. A future research should explore further why this model is the best by comparing 

and integrating it with many other advanced statistical concepts such as high dimensional data 

analysis techniques with applications to other areas. 
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