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ABSTRACT

One treatment for cancer that is widely used is radiation therapy or radiotherapy using
compounds that kill cancer cells.The effectiveness of the radio theraphy is assessed from
the percentage of cancer cell death rate. This research examines 84 compounds where
each compound is composed by 217 features leading to high dimensionality of the data.
Feature selection is carried out based on the mean value of Gini (MDG) and it is able to sort
the most important features used in the classification using Naive Bayes. The Naive Bayes
has a weak performance to classify the raw dataset i.e. using threshold of 10% cancer
cell death rate. A grouping based on mixture distribution found 30% cell death rate as a
new threshold, and it improves the performance of Naive Bayes both in training and testing
dataset evaluated using AUC (Area Under Curve). The optimal classification for testing
dataset is obtained by using either 20% or 25% most important features with AUC close to
60%, where it is about 15% higher than classification using threshold of 10%. Meanwhile,
the AUC of training dataset reached more than 70%.
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1 Introduction

Cancer is a general term for a large group of diseases characterized by the growth of abnor-
mal cells which can then attack parts of body around these abnormal cells and/or spread to
other organs. Cancer can affect almost all parts of the body and have many molecular and
anatomical subtypes, each of which requires a specific treatment strategy. Cancer cells can
be found in malignant tumors that have the characteristics of cells growing indefinitely, have
a sheath, and spread or can infiltrate the surrounding tissue. Handling cancer will be better
if it can be detected early. Hence, prevention efforts are required by increasing public aware-
ness in recognizing the symptoms and risks of cancer in order to determine the appropriate
preventive measures. Various studies related to cancer treatment have been conducted by
researchers in the world, including (Diamantis and Banerji, 2016) who examine Antibody-Drug
Conjugates (ACDs) as a new class that arises from cancer treatment that combines selectivity
from targeted treatment with cytotoxic potency from chemotherapy drugs. (Sharma, Plummer
and Stock, 2016) examined drug combinations and radiotherapy to improve the clinical out-
comes of patients with cancer.

In the past few years, machine learning has become an interesting spotlight in the field of health
and drug discovery, one of which is cancer. Various studies related to the use of machine learn-
ing in the field of health and drug discovery, especially in cases of cancer have been carried out
by researchers in the world, including the research conducted by (Soria, Garibaldi, Biganzoli
and Ellis, 2008) who compared the C4.5 method, multilayer perceptron classifier (MLP), and
Naive Bayes in breast cancer cases where MLP produced the highest accuracy of 94.9% com-
pared to Naive Bayes and C4.5 with accuracy of 93.1% and 87.6%. Comparison of the C4.5
and Naive Bayes methods was also conducted to classify survivability of heart cancer patients
by (Dimitoglou, Adams and Jim, 2012) where C4.5 with an accuracy of 94.44% is better than
Naive Bayes with an accuracy of 92.38%. (Kathija and Nisha, 2016) also conducted a breast
cancer data classification study using SVM and Naive Bayes, and revealed that Naive Bayes
outperforms SVM with accuracy of 97%. In addition, the Naive Bayes method, logistic regres-
sion, and decision tree were also compared by (Mandal, 2017) in the case of breast cancer
cell detection where logistic regression outperforms the others. A study was also conducted by
(Elsayad and Elsalamony, 2013) who compared the performance of several decision tree mod-
els (C & R, CHAID, QUEST, C5.0) and SVM to diagnose breast cancer, the results showed that
SVM had the highest accuracy among others. (Aruna, Rajagopalan and Nandakishore, 2011)
also conducted a study to detect breast cancer using the Naive Bayes method, RBF neural
networks, J48, CART, and SVM-RBF Kernel. In this research, the SVM-RBF produces highest
accuracy than the others. More recent study using ensemble based classification methods
were carried out by (Kuswanto and Werdhana, 2018). All of those researches revealed that the
performance of the method depends on the case, which means that there is no single method
which always outperforms the others.

Radiation therapy or commonly known as radiotherapy is one of the treatments for cancer. This
therapy is still used even though it has adverse side effects, namely normal cell death and nor-



mal tissue around P53-induced cancer cells (Morita, Ariyasu, Wang, Asamaru, Onoda, Sawa,
Tanaka, Takahashi, Togami, Nenoi, Inaba and Aoki, 2014). P53 is a tumor suppressor gene
that acts to stop tumor development. This is done by activating several proteins that trigger the
death of damaged cells so that the cells do not replicate uncontrollably. It is the background
of study carried out by (Ariyasu, Sawa, Hanaya, Hoshi, Wang and Aoki, 2014) who conducted
the study by developing 84 compounds which were then tested on normal cells and cells af-
fected by gamma radiation. The first experiment was carried out by administering compounds
to normal cells which was able to measure the toxicity of these compounds. While the second
experiment was carried out by giving compounds to cells that had been exposed to gamma
radiation (10 Gy) to measure radiation protection. Cell death rates were used as indicators in
both trials. If the cell death rate in the first trial is low and in the second experiment is high, then
the compound can be used as a radioprotector. Data obtained from these studies were then
used for further research conducted by (Matsumoto, Aoki and Ohwada, 2016) who compared
several machine learning methods i.e. random forest (RF), support vector machines (SVM),
extreme gradient boosting (XGB), and K-nearest neighbor (KNN) to optimize radiation protec-
tion and toxicity. The study revealed that all of these methods has relatively low accuracy to
predict radiation protection compounds with about 60% accuracy rate. The machine learning
approach was applied to the most important features selected by the Gini Index.Dealing with
the issue of low classification accuracy as shown in (Matsumoto et al., 2016), one of the poten-
tial reasons is the threshold used to group the class response. The study used 10% cell death
rate as the threshold to characterize a low and high radiation protection, determined by treating
the radioprotection as a bivariate case with the level of toxicity. This threshold does not provide
a significant and clear boundary between the group leading to a low classification accuracy.
Consequently, the compounds with cell death rate around 10% will be easily misclassified.

Our preliminary study found that the data has an indication of cluster, which is not neces-
sarily to be exactly two clusters. If there are indications that some groups emerge from the
data, the distribution can be a mixture (Dempster, Laird and Rubin, 1977). This research pro-
poses a new idea of classifying the radio protection where the new threshold is identified by
a data driven approach i.e. mixture distribution approach. The mixture distribution will found
the optimum number of cluster, and hence the definition of low and high radiation protection
will be changed following the newly defined threshold, which is statistically justified. The mix-
ture distribution provides a justification on the significant different of the class response group,
and hence it eliminates the confusion of membership category for any observation induced
by unclear boundary. Moreover, (Jung Kim, 2015) found that mixture distribution for threshold
classification is an optimal procedure for a classification involving a nonlinear classification rule
due to its complex distribution.

The classification of the new class of the response category is carried out by Naive Bayes. The
Naive Bayes classifier is used because this method only requires a small amount of training
data to determine the estimated parameters needed in the classification process (Pattekari
and Parveen, 2012). Moreover, the performance of Naive Bayes has not been investigated in



(Matsumoto et al., 2016). Nevertheless, several researches showed that Naive Bayes is one of
the good classification methods in term of the accuracy. In this paper, simple optimization rule
is used to optimize the Naive Bayes Classifier. Meanwhile,the parameters of Gaussian Mixture
Model is optimized by using Expectation-Maximisation (EM) algorithm (see (McLachlan and
Krishnan, 2008); (Dempster et al., 1977)). In fact, there have been many optimization algo-
rithms developed in the literature. (Pozna, Precup, Tar, Skrjanc and Preitl, 2010) proposed
heuristic modelling algorithm expressed in terms of homogenous combinations of the classi-
cal system dynamics and the Bayesian degree of truth employed in modelling, which increase
the transparency and alleviated the computational time. (Vascax, 2012) proposed Fuzzy cog-
nitive maps to overcome the limitation on conventional rulebased systems on describing of
complex dynamic systems requiring nontrivial decision procedures. (Saadat, Moallem and
Koofigar, 2017) did a comprehensive simulation study on the performance of Echo States Net-
work (ESN) combined with different optimization algorithms and found that ESN combined with
Heuristic algorithm outperform the other methods such as Recursive Least Square and Particle
Sworm Optimization. (Vrkalovic, Lunca and Borlea, 2018) used Gey Wolf Optimizer Algorithm
on the Takagi-Sugeno fuzzy controllers are designed.

In this paper, the compounds to optimize radiation protection will be classified based on can-
cer cell death rates which has the characteristic of high dimensional data. Basically, the Naive
Bayes is not designed for high dimensional data, and hence, feature selection is carried out
prior to applying the classification method. The features are selected by Mean Decreasing Gini
(MDG) to determine the importance of each feature (feature importance), as part of Random
Fores (RF) approach. This index has been proven by (Calle and Urrea, 2010) to be a more
accurate and stable method for calculating the importance feature. Several different percent-
ages of the most importance features will also be examined. Based on the results of these
classifications, the compounds that have high radiation protection can be recommended for
use as a good radioprotector.

The structure of the paper is as follows. The next section provides a brief description about the
supporting theories including the feature selection using Mean decreasing Gini, Naive Bayes
classifier and Gaussian Mixture Model. The optimization procedure as well as the algorithm
are described. Section 3 describes the research methodology e.g. the data and steps of the
analysis. In section 4, we perform the results of the analysis. It begin with the discussion of
the feature selection and is continued with the classification using Naive Bayes applied to raw
dataset. Furthermore, we discuss the results of grouping the response class using mixture
distribution as well as Naive Bayes performance applied to the newly grouped data. Section 5
concludes the paper.

2 Supporting Theories and Algorithms

This section briefly describes the theory and algorithm of Mean Decreasing Gini used for fea-
ture selection, the Naive Bayes Algorithm as well as the Gaussian Mixture Model and its esti-



mation procedure.

2.1 Feature Selection Using Mean Decreasing Gini

Feature selection is a way to reduce the dimension of the variable (or feature), especially in
the case of high dimensional data. One of the ways to select features is by calculating the
feature importance. Mean Decreasing Gini (MDG) is a measure used to calculate the feature
importance level resulted from a Random Forest method. The detail about Random Forest
algorithm is omitted in this paper. Readers interested to learn more about random forest are
referred to (Breiman, 2001) and (Shi and Horvath, 2006), or (Liaw and Wiener, 2002) for the
implementation of Random Forest in R software. (Calle and Urrea, 2010) found that the MDG
is better than Mean Decreasing Accuracy (MDA) and Gini Index to measure the importance
measure because MDG is more stable and yield on more robust result. The Mean Decrease
Gini (MDG) is the average total decrease of node impurity for a certain feature, weighted by
the proportion of samples reaching that node in each individual decision tree in the random
forest. The MDG measures of how important a feature is for estimating the value of the target
feature across all of the trees that make up the forest. The more importance the feature, the
higher the MDG. The formula (2.1) below is used to calculate the MDG:

MDGp =
1

s

s∑
t=1

[d(p, t)I(p, t)] (2.1)

where d(p, t) is the decreasing level on Gini Index of feature xp on t-th node, I(p, t) has value
1 if it splits the t-th node and 0 if the others, s is the number of node in the tree, and xp is the
p-th feature.

In Random Forest algorithm depends on two tuning parameters i.e. the number of trees (ntree)
and the number of preselected directions for splitting (mtry). The MDG for each feature is
calculated using those two parameters which yield on the highest accuracy. (Scornet, 2018)
provides a comprehensive study about tuning parameters in random forest. In summary, the
algorithm of random forest can be described as follow:

Algorithm 1: Random Forest

Input: A training set Dn := (x1, y1), ..., (xn, yn), features F, and number of trees (ntree).
function RANDOMFOREST (Dn, F )

S← ∅
for i ∈ 1, ...,ntree do
Di ← mtry bootstrap sample from Dn

si ← RANDOMIZEDTREELEARN(Di, F )
S ← S ∪ si

end for
return S

end function



function RANDOMIZEDTREELEARN(C,F)
At each node:
f ← very small subset of F
Split on best feature in f

return The learned tree
end function

2.2 Naive Bayes Classifier

Naive Bayes classifier is one of the most popular classification methods and listed as among
best ten algorithms in data mining according to (Wu, 1983). Given a set of variables, X =

{x1, x2, ...xp}, the Naive Bayes classification is based on simple probability on Bayes Theorem
assuming independence among variables (features) as follow:

P (C|x1, x2, ..., xp) =
p(C)p(x1, x2, ..., xp|C)

p(x1, x2, ..., xp)
(2.2)

where C represents the set of categorical level, p(Cj |x1, x2, ..., xp) is the posterior probability
of class membership i.e. the probability that X belongs to Cj . The algorithm of Naive Bayes
can be described as follows:

1. Let the training sets of samples is denoted by T and there are j classes for each label C
such that C = {C1, C2, ..., Cj}. X = {x1, x2, ..., xp} represents an p dimensional vector of
sample for the corresponding p measured values of features, A1, A2, ..., Ap respectively.

2. Given the sample X, the highest conditional posterior probability is used as a classifier
to predict the class. X is predicted to belong to the class Cj if and only if

P (Cj |X) > P (Ci|X) for 1 ≤ j ≤ p, i 6= j

the goal is to find the class that maximizes P (Cj |X). By using the Bayes theorem in
((2.2)), the class Cj for which P (Cj |X) is maximized is called the maximum posteriori
hypothesis.

3. The maximization is applied to P (X|Cj)P (Cj) as P (X) is the same for all classes. If
P (Cj) is unknown, then it is assumed that the classes are equal such that P (C1) =

P (C2) = ... = P (Cj), and therefore P (X|Cj) is maximized. Meanwhile, if P (Cj) is
known, then P (X|Cj)P (Cj) is maximized. The P (Cj) = freq(Cj , T )/|T | can be used to
estimate the class of prior probability.

4. Computing P (X|Cj) will be very computationally intensive in case of high dimension of
the data sets (i.e. containing of many features). To deal with this, the Naive Bayes ap-
plies naive assumption of the class conditional independence during the computation of
P (X|Cj)P (Cj). This assumption leads to the values of the features that are conditionally
independent of one another, given the class label of the sample such that

P (X|Cj) ≈ Πp
k=1P (xk|Cj)



The probabilities P (x1|Cj), P (x2|Cj), ..., P (xp|Cj) can easily be estimated from the train-
ing set. Recall that here xk refers to the value of feature Ak for sample X, and the
following rules are applied:

• In case that Ak is categorical, then P (xk|Cj) is the number of samples of class
Cj in T (denoted as freq(Cj , T )) having the value xk for feature Ak, divided by
freq(Cj , T ).

• In case that Ak is numerical, it is assumed that the values have a Gaussian distri-
bution as follow

P (xk|Cj) = g(xk, µCj , σCj )

The µCj and σCj are the mean and standard deviation of values of attribute Ak for
training sample of class Cj .

5. Two parameters that need to be optimized are P (X|Cj) and P (Cj). Therefore, for pre-
dicting the class label of X, P (X|Cj)P (Cj) is evaluated for each class Cj . The class label
of X is predicted to be Cj if and only if the class is the one that maximizes P (X|Cj)P (Cj)

such that

C ← arg max
Cj

P (Cj)ΠkP (X|Cj) (2.3)

The algorithm above is the most simple method assuming that the class probabilities and
conditional probabilities are known variable. Therefore, simple rule by choosing the maximum
posterior probability can be applied. In case those two parameters are treated as unknown
variable, several optimization techniques can be applied such as Combination of the Gradient
and Newton (CGN) methods. More detail about CGN can be found in (Taheri and Mammadov,
2013).

2.3 Gaussian Mixture Model

The Gaussian Mixture Model (GMM) can be seen as a soft K-means clustering (Hastie, Tib-
shirani and Friedman, 2008). The GMM with two mixtures is given as an illustration. The
Gaussian Mixture Model (GMM) is written as

pYi(yi) =
∑
ci

(πcN(yi;µc, σ
2))1(ci=c)

= qN(yi;µ1, σ
2) + (1− q)N(yi;µ2, σ

2)

(2.4)

where q is the mixing proportion or mixture weight satisfying
∑

c qc = 1. Each Gaussian density
has a mean µc and standard deviation σ. The log-likelihood of the parameters derived from its
joint density of all observations is

ln pY n
1

(yn1 ) =
n∑
i=1

ln(π1N(yi;µ1, σ
2) + π2N(yi;µ2, σ

2)) (2.5)



In this case, we have four parameters to be optimized i.e. θ = {π, µ1, µ2, σ}. The parame-
ter estimation is done by maximizing the log-likelihood log pY (y, θ). After some mathematical
manipulations such as marginalisation over C as well as using Jensens’s equality, we obtain

log pY (y, θ) ≥ Eqc
[
log

pY,C(y, C, θ)

qC(C)

]
(2.6)

The M-step in EM algorithm maximizes ((2.6)) with respect toθ yields on:

θ̂ ← arg max
θ
Eqc[logpY,C(y, C; θ)] (2.7)

Meanwhile, the E-step maximizes (xx) with respect to qc so that

Q̂C(.)← pC|Y (.|y; θ) (2.8)

In summary, the algorithm can be written as follows:

Algorithm 2: Expectation-Maximization for Gaussian Mixture Model

Inputs: Given Observation y with pY,C(y, c; θ) and pC|Y (c|y; θ) as the joint distribution and
conditional distribution respectively, and initial values θ(0)

function EM(pY,C(y, c; θ), pC|Y (c|y; θ), θ(0))
for iteration t ∈ 1, 2, ...do
qtC ← pC|Y (c|y; θ(t−1)) (E-step)
θ(t)← arg maxθ EqtC [pY , C(y, C; θ)] (M-step)
if θ(t) ≈ θ(t−1) then

return θ(t).

The algorithm above stops when the value of the Log-likelihood reached its convergence. With
respect to the number of mixture, the optimum mixture distribution is the one with highest Log-
likelihood value. The guarantee that the EM algorithm will monotonically converge to local
optima has been proven by (Dempster et al., 1977) and (Wu, 1983). (Naim and Gildea, 2012)
showed that the setting of initial values θ(0) only influences the convergence speed.

3 Research Methodology

3.1 Data

The data analyzed in this paper is secondary data produced by (Ariyasu et al., 2014), and
hereafter we called the data as raw dataset. The data contains some compounds that are
related to the suppressor gene P53. In these data, there are 84 cancer drug compounds
compiled by 217 predictors (hereafter denoted as features). The experiment was carried out by
giving compounds to cells that had been exposed to gamma radiation (10 Gy). this experiment
was able to measure radiation protection. If the cancer cell death rate in the experiment is high,
then the compound can be used as a radioprotector. Table 1 below listed the response class
as well as sample of features names.



Table 1: Variable

Variable Variable Name
Y Class target

Y(0) = Low protection radiation (cancer cell death rate 10%)
Y(1) = Low protection radiation (cancer cell death rate >10%)

X1 pKa
X2 ALogP 98
X3 ALogP MR
. .
. .
. .

X217 Zagreb

3.2 Steps of Analysis

The analysis on this research is conducted by the following steps:

• Carry out feature selection by calculating the feature importance using Mean Decreasing
Gini (MDG) with the following percentages : 5%, 10%, 15%, 20%, 25%, 30%, 35% and
100% of the total number of features.

• Perform classification of compounds based on two classes of radiation protection (raw
dataset) using Naive Bayes. In this step, the data is divided into 10 parts (k=10), and
then calculate the probability for every j-th feature, where j = 1,2,..., p. The probability
is calculated using normal distribution. Based on this, the posterior probablity for every
category of the compound is calculated to label the class. Furthermore, calculate the
classification accuracy, sensitivity and AUC.

• Group the class response (cancer cell death rate) based on mixture identification. The
number of mixture will be set as c=2,3 and 4. Furthermore, calculate the log-likelihood
for each number of mixture. The posterior probability will also be calculated to assign the
data into the new class. The same steps as described in the previous step are applied to
each K.

• Compare the performance of the Naive Bayes to classify the cancer death rate using raw
class and mixture based class.

All analysis above are carried out by using packages in R language programming. The dataset
as well as the program codes to generate outputs in this analysis is available from the author
upon request.



4 Results and Discussions

4.1 Feature Selection

This research applies Mean Decreased Gini (MDG) to select the feature due to high dimen-
sionality of the dataset. The MDG measures the feature importance based on Gini Impurity
Index used in splits calculation within the training set. The important features will be selected
based on the 5%, 10%, 15%, 20%, 25%, 30%, 35% and 100% of the total features. The 5%
to 35% represent the case where the data is no more in high dimensionality, while 100% is ex-
amined to see the performance of the method in a high dimensional case. The MDG is derived
from the random forest approach. It uses two parameters i.e. mtry (number of variable that
is randomly drawn as candidate in every split) and ntree (number of tree), where the values
are predetermined by considering the computational burden. A research by (Oshiro, Perez
and Baranauskas, 2012) studied about the number of tree and concluded that larger number
of trees does not always improve the performance of the forest. Moreover, (Scornet, 2018)
showed that mtry size and ntree play similar roles in random forest performance, where both
increase linearly with the computational time. In this study, the candidate of parameters used
to calculate MDG from random forest are 1, 2 to 20 (for mtry) and 100, 200 to 1000 (for ntree).
The optimum mtry and ntree is the one with highest accuracy. Figure 1 below depicts the
accuracy obtained from the combination of both tuning parameters.

 

 

Figure 1: Tuning parameters

Figure 1 reveals that the optimal accuracy is about 58% reached under mtry 3 and ntree 100.
Using these parameters, the MDG can be calculated to see the importance of each variable.
The accuracy tends to decrease by increasing the mtry. The results of MDG calculation for the
20 most important features are listed in Table 2. We see that the 91th feature (Jurs FNSA 1)



Table 2: Mean Decreasing Gini of 20 most important features

Variable Feature Name MDG
X91 Jur FNSA 1 0.582
X48 Molecular SASA 0.573

X120 Minimized Energy 0.509
X6 ES sum aaN 0.487

X87 Dipole Z 0.479
X141 SAscore 0.473
X134 Shadow YZ 0.460
X45 Molecular Fractional Polar Surface Area 0.459
X73 Kappa 1 AM 0.455
X40 QED Unweighted 0.449
X70 JX 0.436
X43 Sascore Fragments 0.434
X11 Jurs TASA 0.426

X119 Energy 0.422
X107 Jurs RPCS 0.415

X5 ES sum aaCH 0.414
X114 Jurs WNSA 3 0.408
X57 CHI V 0 0.396
X69 IC 0.393
X67 AIC Mean 0.393

is the most important feature, and 48th feature (Molecular SASA) is ranked as the 2nd most
important feature. Meanwhile, 207th and 209th features are the least important features (the
output is omitted here). In this case, both features will only be involved in the classification with
100% features. Classification with 5% top features will use only 11 most importance features.

4.2 Classification Using Naive Bayes on the Raw Dataset

The first step of the classification is to examine the training dataset. Furthermore, the model in
training set will be used to classify the testing data into two classes i.e. low and high radiation
protection. Both training and testing dataset are divided into 10-fold cross validation, meaning
that the total accuracy, sensitivity and specificity as well as AUC of every fold are averaged.
Classification with Naive Bayes produces the probability of a compound in every class, and
then the highest probability is selected between both classes to classify the compound. The
performance of Naive Bayes classifier can be seen in Table 3.

From the table, we see that the performance of Naive Bayes on training dataset is higher than
testing dataset. In fact, the proportion of class response is relatively balance i.e. 0.46 for class
1 and 0.54 for class 0. In this case, the total accuracy can be used to assess the classification
performance. The AUC is performed to make it comparable with the mixture based group in



Table 3: Performance of Naive Bayes classifier applied to raw dataset

% feature Data Total Accuracy AUC
5% Training 0.613 0.594

Testing 0.572 0.549
10% Training 0.610 0.559

Testing 0.553 0.537
15% Training 0.632 0.623

Testing 0.489 0.477
20% Training 0.619 0.610

Testing 0.514 0.499
25% Training 0.617 0.606

Testing 0.525 0.512
30% Training 0.618 0.607

Testing 0.536 0.522
35% Training 0.639 0.630

Testing 0.560 0.551
100% Training 0.598 0.579

Testing 0.489 0.472

case the class proportion is imbalance. Increasing the percentage of the features does not
improve the performance. Nevertheless, the Naive Bayes is robust against number of feature
shown by the slight changes of the total accuracy and AUC among the number of feature
settings. In summary, the performance of Naive Bayes classifier applied to testing dataset can
be seen in Figure 2.
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Figure 2: Performance of Naive Bayes Classifier on testing dataset

Based on the chart in Figure 2, we see that using 5% most importance features will lead to
the highest total accuracy and AUC i.e. 0.572 and 0.549 respectively. These values indicate a
low predictability as only 57.2% of the compounds can be correctly classified by Naive Bayes
classifier. However, the sensitivity values is high indicating that the Naive Bayes has good
ability to correctly classify the compound into class 1. The next subsection examines the
performance of Naive Bayes applied to the class response grouped by mixture distribution. It
is expected that the there will be an improvement in those performance criterias.

4.3 Grouping the Response Class Using Mixture Distribution

The classification using Naive Bayes applied to the raw dataset resulted on relatively low ac-
curacy, in line with the results of classification conducted by (Matsumoto et al., 2016). This
part takes a look on the data carefully and carries out the data driven exploration using normal
mixture distribution. Figure 3 below presents the distribution of the data estimated with three
different number of mixtures (2,3, and 4).
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Figure 3: Distribution Plot (a) K = 2 (b) K = 3 (c) K = 4.



Table 4: Performance of Naive Bayes classifier applied to raw dataset

K Group 1 Group 2 Group 3 Group 4
2 66 18
3 2 33 49
4 10 45 27 2

From the figure, we notice that using threshold 10% does not provide clear separation of the
group. The log-likelihood values for those three different number of mixtures are -344.26. -
341.81 and -340.44 respectively. Although 4 mixtures has the highest log-likelihood, these
values are not significantly different and hence, the analysis will be preformed for all mixtures.
The number of feature in each class is summarized in Table 4.

We see that there is a serious imbalance proportion of the class response for all thee mixtures.
This research does not apply any specific treatment dealing with this imbalance issue. How-
ever. the assessment on the performance can be based on AUC which takes into account the
imbalance issue. The summary of the category can be seen from the boxplots in Figure 4.
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Figure 4: Boxplot of cancer cell death rate (a) K = 2 (b) K = 3 (c) K = 4.

The boxplots showed that using K=2, the group (class) one has average cell death rate 7.42%
obtained from the compound with cell death rate under 30%, while group two has average cell
death rate 35.28% representing the compound with cell death rate above 30%. With K=3, the
first group represents a condition where the cell death rate between -25% to -20%, group two
has cell death rate between -10% to 15%, while group three for cell death rate above 20%.
The 4 mixtures grouped the cell death rate of -25% to -20% as group one and so forth. We see
from the figure that the groups formed by mixture distribution have no overlap observation. On
mixture with 3 and 4 groups, there are compounds with only negative cell death rate. It means
that using the features during radiotheraphy will harm the patients as they tends to grow the
new cancer cell. The compounds with negative cell death rate are listed in Table 5.

4.4 Classification Using Naive Bayes on Mixture Based Grouped Data

Table 6 shows the performance of Naive Bayes applied to the newly defined class of cancer
cell death rate. Due to the imbalancing issue of the response category, the assessment will be



Table 5: Compounds with negative cell death rate

Variable Compounds
-25% ST-1
-20% AS-3
-10% KH-23, MH-9
-5% AS-4, KT-1, MH-14, SAr-5, UM-8, YM-14, YN-4, YN-6

focused on AUC values as listed in Table 6.

Table 6: Performance of Naive Bayes classifier applied to raw dataset

% feature Data 2 Classes 3 Classes 4 Classes
5% Training 0.642 0.536 0.381

Testing 0.483 0.356 0.439
10% Training 0.643 0.458 0.381

Testing 0.517 0.356 0.462
15% Training 0.601 0.429 0.378

Testing 0.567 0.367 0.458
20% Training 0.612 0.487 0.369

Testing 0.592 0.300 0.439
25% Training 0.591 0.458 0.394

Testing 0.592 0.333 0.371
30% Training 0.591 0.444 0.386

Testing 0.567 0.333 0.371
35% Training 0.696 0.444 0.386

Testing 0.567 0.356 0.394
100% Training 0.745 0.437 0.403

Testing 0.525 0.333 0.508

Based on the values in the table, we see that setting the class into three and four would not
improve the classification performance as the AUC for all cases are under 50% and far below
the AUC performed in Table 3. Meanwhile, the results of classification using two classes
improves the classification performance. If we compare the AUC in the last column of Table 3
(corresponding to two class responses with threshold of 10% cell death rate) with the values in
the third column of Table 6 (corresponding to the threshold of 30% cell death rate), we observe
that there is an improvement in some cases as shown in Figure 5 below.
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Figure 5: AUC of raw data and re-grouped data (a) training dataset (b) testing dataset

The figures show that in most cases, the classification using the re-grouped data increases the
accuracy both in training and testing set. For the training dataset, there is a significant improve-
ment when the classification is done using all features, where the AUC reaches about 75%.
Meanwhile, for the testing dataset, a significant improvement happen when the classification is
done using 20% or 25% of the important features, reaching about 60% accuracy.

5 Conclusion

This research proposed a new group of class response for the cancer cell death rate obtained
from the mixture distribution, where the new classes are defined as below and above 30% cell
death. The classification using Naive bayes indicated that two classes yield on optimal result,
while three and four classes have very low predictability. There is a significant improvement
both in training and testing phase after regrouping the class response into two classes with
threshold of 30%, assessed with AUC. This research showed that the class response threshold
is an important factor that may influence the performance of the classicifation. In order to
optimizing the predictability of the cancer death rate, this research suggested to use 20% or
30% of the important features. The Jurs NFSA and Molecular SASA are two most important
features to predict the cancer cell death rate. The Naive Bayes is relatively robust against the
number of features.
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