
This article can be cited as M. Kaedi, Fractal-based Algorithm: A New Metaheuristic Method for
Continuous Optimization, International Journal of Artificial Intelligence, vol. 15, no. 1, pp. 76-92, 2017.
Copyright©2017 by CESER Publications

Fractal-based Algorithm: A New Metaheuristic Method for

Continuous Optimization

Marjan Kaedi1

1Faculty of Computer Engineering, University of Isfahan, Hezar-Jerib St.,
Isfahan 81746-73441, Iran
Email: kaedi@eng.ui.ac.ir

ABSTRACT

In this paper a population-based metaheuristic algorithm named fractal-based algorithm is
developed to solve continuous optimization problems. In this algorithm, the density of high
quality and promising points in an area is considered as a heuristic which estimates the
degree of promise of that area for finding the optimal solution. Afterward, the promising
areas of state space are iteratively detected and partitioned into self-similar and fractal-
shaped subspaces for being searched more precisely and more extensively. The
proposed algorithm is compared with some metaheuristic algorithms. The results
demonstrate that the algorithm is able to find high quality solutions within appropriate time.

Keywords: Continuous optimization, Heuristic, Promising subspace, Fractal-shaped structure.

Mathematics Subject Classification: 26Bxx, 68Wxx

Computing Classification System: I.2.8, F.1.2

1. INTRODUCTION

Metaheuristic algorithms have been highly popular in recent years, because many of today’s

optimization problems are large, complex and dynamic. Solution of such problems requires methods

which can find acceptable solutions within a reasonable period of time rather than assure the finding

of the optimal solution (Chiong, 2009; Yang, 2010).

Metaheuristic algorithms can be classified into different categories. One criterion for the classification

of such methods is the number of candidate solutions evaluated in each iteration. Based on this

criterion, they are divided into two general categories (Nicoară, 2012): single-solution-based

metaheuristics and population-based metaheuristics.

Single-solution-based metaheuristics focus on a single solution during the search process, and

attempt to improve that solution by introducing minor changes to it in an iterative process (Talbi, 2009;

Spall, 2003; Zäpfel and Braune, 2010). Such searches can be thought of as walking in the problem

state space (Talbi, 2009).

Population-based metaheuristics, on the other hand, work on a set of solutions known as population,

and improve the population in an iterative process (Talbi, 2009; Spall, 2003). Many population-based

metaheuristic algorithms have been developed, including genetic algorithms (Holland, 1975; Back, et

al., 1997), estimation of distribution algorithms (Larranaga and Lozano, 2002; Pelikan, et al., 2006),

scatter search (Glover, 1999; Glover, et al.,2000), ant colony optimization (Dorigo, 1999), particle

swarm optimization (Kennedy and Eberhart, 1995; Kennedy and Eberhart, 2001), differential evolution

(Storn and Price, 1997), honey bee algorithm (Nakrani and Tovey, 2004; Pham, et al., 2005;

Karaboga, 2005), firefly algorithm (Yang, 2010), and cuckoo search algorithm (Yang and Deb, 2009).

Such algorithms have proved to be highly efficient in solving many optimization problems (Ali, et. al.,

2016; Ayan, et al., 2015; Azar, et. al., 2016; Castillo, et al., 2015; Chávez-Conde, et al., 2015; Chul, et

al., 2015; Ghosn, et. al., 2016; Glotić and Zamuda, 2015; Gotmare, et al., 2015; Manikandan, 2014;

Martí, et al., 2015; Qi, et al., 2015; Precup, et al., 2014; Raja, et al., 2015; Ramírez-Ortegón, et. al.,

2013; Wang, et al, 2015). Some of the population-based metaheuristic algorithms have been adopted

for solving the dynamic optimization problems (Kaedi, et al., 2013; Kaedi, et al., 2016), robust

optimization problems (Moraes, et al., 2015), and multi objective optimization problems (Martin, et al.,

2009).

This paper develops a new population-based metaheuristic algorithm to solve continuous optimization

problems. The proposed algorithm, which we call ‘fractal-based algorithm’, partitions the promising

areas of the state space of the continuous optimization problems in an iterative process and on the

basis of self-similar and fractal-shaped structures, and in this way it attempts to seek the optimal

solution.

Later on, in Section 2, the heuristic used in this paper is introduced. Afterwards, in Section 3, the

proposed metaheuristic algorithm named fractal-based algorithm is introduced. In Section 4, the

proposed algorithm is used to solve some continuous benchmark optimization problems and is

compared with other population-based algorithms. Finally, in Section 5, some conclusions are drawn.

2. THE PROPOSED HEURISTIC

If we consider the state space of the continuous optimization problems, the quality of adjacent points

in this space is changing and oscillating in a continuous and gradual way and in the neighbourhood of

an optimal point (local or global optima), as we move toward the optimal point, the quality of the points

in the state space is gradually improved (Figure 1). Therefore, the quality of neighbouring points is not

independent of one another, and usually the presence of a number of high quality points close to one

another can be a sign of presence of other high quality points in that neighbourhood and the strong

probability of the presence of optimal points in that area. Hence, the density of high quality and

promising points in an area in the state space can be considered as a heuristic which can predict the

degree of promise of that area of the state space for finding the optimal solution.

It should be noted that this heuristic, like any other heuristic, does not assure the finding of the optimal

solution; rather, it is merely a method based on conjecture to predict promising areas, and, like other

heuristics, can have exceptions and in some cases may mislead the algorithm in the course of search.

For instance, in cases where there is a flat area in the fitness landscape (Figure 1), the density of

relatively high quality points in a neighbourhood is high, while there is no optimal point (neither local

nor global) in that neighbourhood.

Figure 1. The optima and a flat area in a 2-dimnsional fitness landscape

This paper develops a metaheuristic algorithm for continuous optimization where the heuristic of

density of high quality points in a neighbourhood is used to find the promising areas of the state space.

This algorithm is introduced in Section 3.

3. THE PROPOSED ALGORITHM: FRACTAL-BASED ALGORITHM

Without loss of generality, we assume that the aim of the optimization is to find the minimum of a

continuous function . Certainly, by applying minor changes to the algorithm, one can generalize the

proposed algorithm to find the maximum of a continuous function. As mentioned in Section 2, in this

study, the subspaces of the state space containing larger numbers of random promising points are

regarded as promising areas to find the optimal point. In the proposed algorithm, the following stages

are executed iteratively:

First, the state space is divided into some subspaces with equal sizes. Next, some random points are

generated in the state space uniformly, the value of the target function is calculated for the randomly

generated points, and the promising points (i.e., points with lower values of f) are chosen.

Afterwards, the number of promising points which have fallen into each subspace of the state space is

determined. Based on the heuristic introduced in Section 2, the subspaces containing more promising

points are considered as the promising subspaces, where the chance of finding the optimal solution is

higher. Later on, these subspaces are in turn divided into smaller subspaces and the entire process of

the algorithm is repeated on those subspaces so that they are searched more precisely and more

extensively. The details of the proposed algorithm are as follows:

1. It is assumed that the goal is to find the minimum of a continuous function in an n-dimensional

space where. The problem is defined as follows:

niforUxLwherexxxfMinimize iiin ≤≤≤≤ 1)...,,,(21 (1)

Therefore, the points for which the value of function is smaller are regarded as the more promising

points. At first the entire state space is considered as the promising area.

2. The entire state space is divided into a number of subspaces. For this purpose, the thd dimension

of the state space (nd ≤≤1) is divided into as many as dm equal subintervals until finally a grid

containing nmmm ××× ...21 subsections is built. Thus, we have:

Size of each subinterval in dth dimension
d

dd

m
LU −

=
(2)

3. A uniformly distributed initial population is generated randomly all over the promising area (i.e., all

over the state space). This population is considered as the current population.

4. The value of function f for each point of the current population is calculated.

5. 1P percent of the points of the current population with the lowest values of function f are regarded

as the promising points.

6. The number of promising points in each of the subspaces is determined. This number is an

indication of the degree of promise of that subspace (i.e., the subspace promising rank).

PromisingRanks= Number of promising points in s (3)

7. 2P percent of the most promising subspaces are selected to be searched more precisely and

more extensively.

7.1. More precise search in the promising subspaces: The promising subspaces are in turn divided

into smaller subspaces. For this purpose, the thd dimension (nd ≤≤1) of each subspace is divided

into as many as dm equal intervals so that a grid containing nmmm ××× ...21 subsections is built

within that subspace. In this way, these promising subspaces will be searched more precisely

because the algorithm will focus on the finer parts of them.

7.2. More extensive search in the promising subspaces: A number of random points are generated all

over the state space. They are called the new population. In generating these random points, the

points are not uniformly distributed all over the state space. Rather, more points are generated in the

more promising subspaces so that those subspaces are searched more extensively. For this purpose,

the number of points generated in each subspace is a linear function of the degree of promise of that

subspace. Thus, for subspace s we have:

Number of points generated in s = (PromisingRanks / ∑
∈ subspacesallk

PromisingRankk) × PopulationSize (4)

8. The value of function f is calculated for each point in the new population.

9. The fittest points in the new population and the current population are integrated based on the

truncation selection method (Holland, 1975; Back, et al., 1997) and a population equal in size to the

current population is built to replace the current population.

10. 3P percent of the points in the new population are randomly selected and modified slightly by

adding a Gaussian noise to them (like as mutation operation in genetic algorithm).

11. The termination condition is evaluated and in case the termination condition is not reached, the

process is repeated from stage 5.

12. The best solution generated so far is returned as the output of algorithm.

Therefore, by iterating the algorithm, the promising areas of the state space are divided into smaller

subspaces, and, the more promising subspaces of them are in turn divided into still smaller

subspaces and so on. As a result, some grids similar to what divided the entire state space into

subspaces are formed in the primary promising subspaces and then in the secondary promising

subspaces, etc., so that the promising areas are identified more accurately and are focused upon

during the search process. Consequently, some self-similar and fractal-shaped structures are formed

in the state space, which are expected to direct the algorithm toward the optimal solution (Figure 2).

The flowchart and pseudocode of the proposed algorithm are presented in Figures 3 and 4,

respectively. It should be noted that the values of parameters 1P , 2P , and 3P control the tradeoff

between exploration and exploitation during the search and affect the algorithm convergence.

(b) The search space after the first round of partitioning (a) The search space before the start of algorithm

(d) The search space after the third round of partitioning (c) The search space after the second round of

partitioning
Figure 2. Forming the self-similar and fractal-shaped structures in the state space during the run

of the fractal-based algorithm (promising subspaces are gradually divided into smaller subspaces

so as to be searched more precisely and more extensively).

Figure 3. Flowchart of the fractal-based algorithm.

Algorithm Fractal-based-optimization(eSearchSpac , f)
{Inputs:

StateSpace : the n-dimensional space with boundaries),,...,,,,(2211 nn ULULUL
f : target function;

 Output:
Solution : the best solution found by the algorithm;

Initialize the control parameters: PopSize , 1P , 2P , 3P , dm for nd ≤≤1

0Pop = the initial population; // the points generated with uniform distribution over the state space

0=i ;
PromisingSubspaces= StateSpace ; // assigning whole the search space as the promising area at the beginning

For any dimension ndd ≤≤1:
Partition the dimension d of StateSpace to dm parts;

while (NOT termination condition)

{
=]..1[PopSizeQuality the quality of all the points in iPop ;// the values of function f for points

=]..1[int PopSizesGoodPo the 1P percent of the points with the highest quality;
=]..1[bspacesNumberOfSuCount the number of good points in each subspace;

PromisingRank
PopSize

bspacesNumberOfSuCountbspacesNumberOfSu]..1[]..1[=

PromisingSubspaces= the 2P percent of the subspaces with highest promising rank;
For any promising subspaces s

For any dimension ndd ≤≤1:
Partition the dimension d of the promising subspace s to dm parts;

=]..1[' PopSizePopi newly generated points in the subspaces, so that the number of points generated

in each subspace s is linearly proportional to its promising rank, i.e., PromisingRank [s];
=+]..1[1 PopSizePopi the best points of iPop and '

iPop selected using truncation selection method;
Add Gaussian noise to 3P percent of the points randomly selected from 1+iPop ;// mutation

1+= ii ;
}

Solution =the best solution found so far;

Return Solution
}

Figure 4. Pseudocode of the fractal-based algorithm.

4. EVALUATION AND COMPARISON

To evaluate the algorithm developed in this study, the algorithm is applied to find the optima of a

number of continuous benchmark functions. These functions are introduced in Table 1 and depicted in

Figure 5. To find the optimum of any of the continuous functions, at first, the function and the ranges

of function variables are given to the fractal-based algorithm as inputs (the ranges of function

variables indicate the state space boundaries). Then a population of random points is generated

within the state space and afterwards, the entire state space is divided into a number of subspaces.

The algorithm continues with iteratively evaluating the points, partitioning the promising subspaces,

and generating new points within the subspaces. After evaluating 5000 points, the algorithm

terminates and the best point found so far is returned.

The results of the application of the proposed algorithm to the four functions are compared to the

results of particle swarm optimization, differential evolution, and genetic algorithms. The parameters

of the fractal-based algorithm are set according to Table 2 and the parameters of particle swarm

optimization, differential evolution, and genetic algorithms have been configured according to

configurations of former studies (Karaboga and Akay, 2009; Civicioglu and Besdok, 2013). They are

presented in Table 3. In all the algorithms, the population size is equal to 50 and the termination

condition is defined as “reaching the 5000 number of function evaluations”.

Each algorithm has been executed 20 times for each benchmark function and a different initial

population is used at every run. The algorithms are evaluated based on the two criteria: the mean of

the best solutions obtained over 20 runs and the standard deviation of the best solutions obtained

over 20 runs. The results are presented in Tables 4 and 5. As mentioned before, these results have

been obtained by the algorithms after the same number of function evaluations; thus, the obtained

results reflect the speed of algorithms. As it is shown in Table 4, the solutions obtained by fractal-

based algorithm are equal to or better than those of other algorithms after doing the same number of

function evaluations.

In addition, the convergence diagrams of the fractal-based algorithm for the benchmark functions

which obtained by averaging over 20 runs of the algorithm are represents in Figure 6. The distribution

of the candidate solutions during the run of the fractal-based algorithm for the four benchmark

functions is presented in Figures 7, 8, 9, and 10.

To investigate the effect of parameter im (the number of intervals for dividing a subspace dimensions)

on the algorithm performance, the algorithm runs for several values of im (2,1=i). The results

averaged over 50 runs for the four benchmark functions are presented in Table 6. For very large

values of im , in every iteration of algorithm the promising subspaces are divided into a large number

of subspaces; thus, the algorithm extremely focuses on the small subspaces that have a large number

of promising points. Therefore, it is not able to explore the entire state space sufficiently to find the

optimum. On the other hand, for very small values of im , the algorithm is not able to focus on the fine

parts of state space; thus it may merely be able to reach the neighbourhood around the optimum and

only return the best point among the points generated in that neighbourhood. Therefore, it is probable

that the algorithm does not find the global optimum before reaching the termination condition or

convergence. As it is shown in Table 6, the mean of the best solutions obtained over 20 runs are far

from the functions global optima, for very large and very small values of im .

To study the effect of parameter 3P (the rate of random modification of solutions) on the convergence

of the fractal-based algorithm, several values of 3P have been examined. The number of iterations

required for algorithm convergence averaged over 20 runs for the four benchmark functions are

presented in Table 7. As it is concluded from these results, assigning low values to parameter 3P

accelerates the algorithm convergence. On the other hand, the high value of parameter 3P leads to

finding better solutions because it prolongs the exploration phase of algorithm before the algorithm

convergence.

Table 1: Benchmark functions used to evaluate the proposed algorithm and their specifications

(Karaboga and Akay, 2009; Maeda and Tsuda, 2015).

Minimum
value

Range Function definition Function
name

3

[-2, 2]

)].361431419()1(1[),(2

2212
2
11

2
2121 xxxxxxxxxxf ++−+−+++=

)]273648123218()32(30[2
2212

2
11

2
21 xxxxxxxx +−++−−+

Goldstein
-Price

-1

[-100, 100]

))()(exp()cos()cos(),(2

2
2

12121 ππ −−−−−= xxxxxxf

Easom

−1.08093

[0,10]

])(cos[)(1exp)(2

11

2

1
ij

n

j
j

n

j
ijj

m

i
i axaxcxf −⎥

⎦

⎤
⎢
⎣

⎡
−−= ∑∑∑

===

π
π

]3,2,5,2,1[],9,4,1,2,5[],7,1,2,5,3[=== cba

Langermann

−186.730908

[-10,10])1)1cos(()1)1cos((),(

5

2
2

5

1
121 ++++−= ∑∑

== ii

xiixiixxf

Shubert

Table 2: Parameters values of fractal-based algorithm.

Parameter Value Description

Population size 50 --------

1P 60 % The percentage of solutions which are selected as

promising points

2P 30 % The percentage of subspaces which are selected as

promising subspaces

3P 5 % The percentage of solutions which are selected randomly

to be modified

1m , 2m 10 The number of intervals for dividing the first and second

dimensions of a subspace

Maximum number of

function evaluations

5000

(a) Goldstein-Price function

(b) Easom function

(c) Langermann function

(d) Shubert function

Figure 5. Graphical representation of four benchmark functions.

Table 3: Parameters valuse of particle swarm optimization, differential evolution, and genetic

algorithms, being inspired by former studies (Karaboga and Akay, 2009; Civicioglu and Besdok,

2013).

Algorithm Parameters Values
Cognitive component 1.8
Social component 1.8
Inertia weight 0.6
Population size 50

Particle swarm optimization

Termination condition Reaching the 5000 number of function evaluations

Differential weight 0.5
Crossover rate 0.9
Population size 50

Differential evolution algorithm

Termination condition Reaching the 5000 number of function evaluations

Crossover method Single point crossover
Crossover rate 0.8
Mutation rate 0.01
Selection method Stochastic uniform sampling
Replacement rate 0.1
Population size 50

Genetic algorithm

Termination condition Reaching the 5000 number of function evaluations

Table 4: The mean of the best solutions obtained over 20 runs of the fractal-based algorithm and

the four algorithms compared.

Fractal-based
algorithm

Genetic algorithmDifferential evolution
algorithm

Particle swarm
optimization

2.9962.9652.9962.988Goldstein-Price
-1-1-1-1Easom
−1.08091−1.08087−1.08091−1.08084Langermann
−186.7297-186.7288-186.7295-186.7283Shubert

Table 5: The standard deviation of best solutions obtained over 20 runs of the fractal-based

algorithm and the four algorithms compared.
Fractal-based
algorithm

Genetic algorithmDifferential evolution
algorithm

Particle swarm
optimization

0.0050.0520.0070.017Goldstein-Price
0000Easom
0.000040.000150.000030.00021Langermann
0.00040.00110.00030.0013Shubert

Table 6: The mean of the best solutions obtained over 20 runs of the fractal-based algorithm for

several values of parameters 1m and 2m . Other parameters were adjusted according to Tables 2

and 3.

20, 21 =mm15, 21 =mm10, 21 =mm5, 21 =mm2, 21 =mm
2.9842.9922.9962.996 2.981 Goldstein-Price
-1-1-1-1 -0.989 Easom
−1.08087−1.08091−1.08091−1.08092−1.08086Langermann
−186.7295−186.7297−186.7297−186.7294 −186.7283 Shubert

Table 7: The mean of the best solutions obtained over 20 runs of the fractal-based algorithm for

several values of parameter 3P . Other parameters were adjusted according to Tables 2 and 3.

73 =P 53 =P 33 =P 23 =P

Number of
iterations

Best
solution

Number of
iterations

Best
solution

Number of
iterations

Best
solution

Number of
iterations

Best
solution

67.5 2.996 65.3 2.996 63.1 2.988 49.8 2.986 Goldstein-
Price

77.4 −1 75.7 −1 68.5 −1 65.4 -0.993 Easom
39.6 −1.08092 37.3 −1.08091 35.2 −1.08085 31.6 −1.08083 Langermann
68.1 186.7297 67.9 −186.729764.6 186.7295 63.4 −186.7293 Shubert

(a) Convergence diagram for Goldstein-Price function (b) Convergence diagram for Easom function

(c) Convergence diagram for Langermann function (d) Convergence diagram for Shubert function

Figure 6. Algorithm convergence diagrams for the four benchmark functions.

Figure 7. Distribution of candidate solutions during the run of the fractal-based algorithm for the

Goldstein-Price function.

Figure 8. Distribution of candidate solutions during the run of the fractal-based algorithm for the

Easom function.

Figure 9. Distribution of candidate solutions during the run of the fractal-based algorithm for the

Langermann function.

Figure 10. Distribution of candidate solutions during the run of the fractal-based algorithm for the

Shubert function.

5. CONCLUSION

This paper developed a population-based metaheuristic algorithm for the continuous optimization

problem, where, by iterative partitioning of the state space based on fractal-shaped structures, the

promising areas of the state space are estimated so that those areas are more precisely and more

extensively searched. The proposed algorithm was compared to particle swarm optimization,

differential evolution, and genetic algorithms and the results of the evaluations demonstrated that the

proposed algorithm can find the solution to the benchmark problems with higher precision within

appropriate time. The main advantage of the fractal-based algorithm is that during the search process

it hierarchically partitions the state space into small blocks and it pays less attention to the less

promising blocks and focuses on the promising blocks. It this way, the algorithm conducts a fast and

targeted search towards the problem solution.

It is recommended that future studies further improve the heuristic proposed in this paper to detect the

promising areas. For this purpose, it is suggested that besides the number of good points in an area,

the future studies pay attention to criteria such as the mean and standard deviation of the high quality

points existing in each area so that the promising areas are estimated more precisely. In addition, in

the future studies the proposed algorithm can be extended to be applied in dynamic optimization

problems and its performance can be compared to former population-based algorithms proposed for

dynamic optimization (Kaedi, et al., 2013; Kaedi, et al., 2016). Furthermore, more research should be

conducted on choosing suitable values for the control parameters of the proposed algorithm.

REFERENCES

Ali, M. Z., Awad, N. H., Duwairi, R. M., 2016, Multi-objective differential evolution algorithm with a new
improved mutation strategy, International Journal of Artificial Intelligence, 14(2), 23-41.

Ayan, K., Kılıç, U., Baraklı, B., 2015, Chaotic artificial bee colony algorithm based solution of security
and transient stability constrained optimal power flow, International Journal of Electrical Power &
Energy Systems, 64, 136–147.

Azar, D., Fayad, K., Daoud, C., 2016, A combined ant colony optimization and simulated annealing
algorithm to assess stability and fault-proneness of classes based on internal software quality
attributes, International Journal of Artificial Intelligence, 14(2), 137-156.

Bäck, T., Fogel, D., Michalewicz, Z., 1997, Handbook of Evolutionary Computation, IOP Publishing
Ltd. and Oxford University Press, Bristol, UK.

Castillo, O., Neyoy, H., Soria, J., Melin, P., Valdez, F., 2015, A new approach for dynamic fuzzy logic
parameter tuning in ant colony optimization and its application in fuzzy control of a mobile robot,
Applied Soft Computing, 28, 150–159.

Chávez-Conde, E., Valdez, S. I., Hernández, E., 2015, Concurrent Structure-Control Design of
Parallel Robots Using an Estimation of Distribution Algorithm, Multibody Mechatronic Systems, The
Series of Mechanisms and Machine Science, 25, 315-325.

Chiong, R., 2009, Nature-Inspired Algorithms for Optimisation, Studies in Computational Intelligence,
Springer, Heidelberg, 193, 1-50.

Civicioglu, P., Besdok, E., 2013, A conceptual comparison of the Cuckoo-search, particle swarm
optimization, differential evolution and artificial bee colony algorithms, Artificial Intelligence Review,
39(4), 315-346.

Dorigo, M., 1992, Optimization, Learning and Natural Algorithms, PhD thesis, DEI, Politecnico di
Milano, Italy.

Ghosn, S. B., Drouby, F., Harmanani, H. M., 2016, A parallel genetic algorithm for the open-shop
scheduling problem using deterministic and random moves, International Journal of Artificial
Intelligence, 14(1), 130-144.

Glotić, A., Zamuda, A., 2015, Short-term combined economic and emission hydrothermal optimization
by surrogate differential evolution, Applied Energy, 141, 42-56.

Glover, F., 1999, Scatter Search and Path Relinking, in: D. Corne, M. Dorigo, F.Glover, (eds.), New
Methods in Optimization, McGraw-Hill, Maidenhead, UK, England, 291-316.

Glover, F., Laguna, M., Martí, R., 2000, Fundamentals of Scatter Search and Path Relinking, Control
and Cybernetics, 29(3), 653-684.

Gotmare, A., Patidar, R., George, N. V., 2015, Nonlinear system identification using a cuckoo search
optimized adaptive Hammerstein model, Expert Systems with Applications, 42(5), 2538-2546.

Holland, J., 1975, Adaptation in Natural and Artificial Systems, Ann Arbor, MI: The University of
Michigan Press.

Jung, H. C., Kim, J. S., Heo, H., 2015, Prediction of building energy consumption using an improved
real coded genetic algorithm based least squares support vector machine approach, Energy and
Buildings, 90, 76-84.

Kaedi, M., Ghasem-Aghaee, N., Ahn C. W., 2016, Biasing the transition of Bayesian optimization
algorithm between Markov chain states in dynamic environments, Information Sciences, 334-335, 44-
64.

Kaedi, M., Ghasem-Aghaee, N., Ahn C. W., 2013, Holographic memory-based Bayesian optimization
algorithm (HM-BOA) in dynamic environments, Science China Information Sciences, 56 (9), 1-17.

Karaboga, D., 2005, An idea based on honey bee swarm for numerical optimization, Technical Report,
tr06, Engineering Faculty, Computer Engineering Department, Erciyes University, Kayseri, Turkey.

Karaboga, D., Akay, B., 2009, A comparative study of artificial bee colony algorithm, Applied
Mathematics and Computation, 214(1), 108-132.

Kennedy, J., Eberhart, R., 1995, Particle swarm optimization, Proceedings of IEEE International
Conference on Neural Networks, Piscataway, NJ, 1942-1948.

Kennedy, J., Eberhart, R., 2001, Swarm Intelligence, Morgan Kaufmann Publisher Inc., San Francisco,
USA.

Larranaga, P., Lozano, J. A., 2002, Estimation of Distribution Algorithms: A New Tool for Evolutionary
Computation, Kluwer Academic Publishers, Boston, MA.

Maeda, M., Tsuda, S., 2015, Reduction of artificial bee colony algorithm for global optimization,
Neurocomputing, 148, 70–74.

Manikandan, S., Ramar, K., Iruthayarajan, M. W., Srinivasagan, K. G., 2014, Multilevel thresholding
for segmentation of medical brain images using real coded genetic algorithm, Measurement, 47, 558-
568.

Martí, R., Corberán, A., Peiró, J., 2015, Scatter search for an uncapacitated p-hub median problem,
Computers & Operations Research, 58, 53-66.

Martin, D., Caballero, B., Haber, R., 2009, Optimal tuning of a networked linear controller using a
multi-objective genetic algorithm and its application to one complex electromechanical process,
International Journal of Innovative Computing, Information and Control, 5(10), 3405-3414.

Moraes, A. O. S., Mitre, J. F., Lage, P. L. C., Secchi, A. R., 2015, A robust parallel algorithm of the
particle swarm optimization method for large dimensional engineering problems, Applied
Mathematical Modelling, 39(14), 4223-4241

Nakrani, S. Tovey, C., 2004, On honey bees and dynamic server allocation in Internet hosting centers,
Adaptive Behavior, 12(3-4), 223-240.

Nicoară, E. S., 2012, Population-based metaheuristics: A comparative analysis, International Journal
of Science and Engineering Investigations, 1(8), 84-88.

Pelikan, M., Sastry, K., Cantu-Paz, E., 2006, Scalable Optimization via Probabilistic Modeling: From
Algorithms to Applications, The series of Studies in Computational Intelligence, Springer-Verlag,
Berlin, Heidelberg.

Pham, D. T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim S., Zaidi, M., 2005, The bees algorithm,
Technical Note, Manufacturing Engineering Center, Cardiff University, UK.

Precup, R.-E., David, R.-C., Petriu, E. M., Preitl, S., Radac, M.-B., 2014, Novel adaptive charged
system search algorithm for optimal tuning of fuzzy controllers, Expert Systems with Applications,
41(4), 1168-1175.

Qi, H., Niu, C. Y., Gong, S., Ren, Y. T., Ruan, L. M., 2015, Application of the hybrid particle swarm
optimization algorithms for simultaneous estimation of multi-parameters in a transient conduction-
radiation problem, International Journal of Heat and Mass Transfer, 83, 428-440.

Raja, S. B., Srinivas Pramod, C. V., Krishna, K. V., Ragunathan, A., Vinesh, S., 2015, Optimization of
electrical discharge machining parameters on hardened die steel using Firefly Algorithm, Engineering
with Computers, 31(1), 1-9.

Ramírez-Ortegón M. A., Märgner V., Cuevas E., Rojas R., 2013, An optimization for binarization
methods by removing binary artifacts, Pattern Recognition Letters, 34(11), 1299-1306.

Spall, J. C., 2003, Introduction to Stochastic Search and Optimization: Estimation, Simulation, and
Control, John Wiley and Sons, Hoboken, NJ.

Storn, R., Price, K., 1997, Differential evolution – a simple and efficient heuristic for global
optimization over continuous spaces, Journal of Global Optimization, 11(4), 341-359.

Talbi, E., 2009, Metaheuristics from Design to Implementation, John Wiley and Sons, Hoboken, NJ.

Wang, Sh., Wang, L., Liu, M., Xu, Y., 2015, An order-based estimation of distribution algorithm for
stochastic hybrid flow-shop scheduling problem, International Journal of Computer Integrated
Manufacturing, 28(3), 307-320.

Yang, X. S., 2010, Nature Inspired Metaheuristic Algorithms, Second Edition, Luniver Press, UK.

Yang, X. S., Deb, S., 2009, Cuckoo search via Lévy flights, World Congress on Nature & Biologically
Inspired Computing (NaBIC 2009), Coimbatore, India, 210-214.

Zäpfel, G., Braune, R., 2010, Metaheuristic Search Concepts: A Tutorial with Applications to
Production and Logistics, Springer-Verlag, Berlin, Heidelberg.

