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ABSTRACT

Several machine learning algorithms have been used to assess external quality attributes
of software systems. Given a set of metrics that describe internal software attributes (cohe-
sion, complexity, size, etc.), the purpose is to construct a model that can be used to assess
external quality attributes (stability, reliability, maintainability, etc.) based on the internal
ones. Most of these algorithms result in assessment models that are hard to generalize.
As a result, they show a degradation in their assessment performance when used to esti-
mate quality of new software modules. This paper presents a hybrid heuristic to construct
software quality estimation models that can be used to predict software quality attributes
of new unseen systems prior to re-using them or purchasing them. The technique relies
on two heuristics: simulated annealing and ant colony optimization. It learns from the data
available in a particular domain guidelines and rules to achieve a particular external soft-
ware quality. These guidelines are presented as rule-based logical models. We validate our
technique on two software quality attributes namely stability and fault-proneness - a sub-
attribute of maintainability. We compare our technique to two state-of-the-art algorithms:
Neural Networks (NN) and C4.5 as well as to a previously published Ant Colony Optimiza-
tion algorithm. Results show that our hybrid technique out-performs both C4.5 and ACO
in most of the cases. Compared to NN, our algorithm preserves the white-box nature of
the predictive models hence, giving not only the classification of a particular module but
also guidelines for software engineers to follow in order to reach a particular external qual-
ity attribute. Our algorithm gives promising results and is generic enough to apply to any
software quality attribute.

Keywords: Prediction, C4.5, rule sets, software quality, metric, search-based software
engineering, ant colony optimization, simulated annealing.
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1 Introduction and related work

Software is expensive. Software quality is very important. Software quality attributes are di-
vided into two categories: 1. Internal attributes such as coupling, cohesion, size, etc. and 2.
External quality attributes such as maintainability, stability, re-usability, etc. (Shepperd, 1993).
The former class of attributes can be directly measured by looking at source code and soft-
ware architecture and/or specifications. The latter ones cannot be directly measured. However,
the former category can be used as a good indicator of the latter one (Briand, Devanbu and
Melo, 1997), (Dallal, 2012) and (Dallal and Morasca, 2014). In fact, practitioners are interested
in assessing the external attributes based on the internal ones. Many object-oriented met-
rics that capture internal software quality attributes have been proposed and extensively used
over the past decade (Hendersen-Sellers, 1991), (Coppick and Cheatham, 1992), (Barnes and
Swim, 1993), (Chidamber and Kemerer, 1994), (Li and Henry, 1993b), (Li and Henry, 1993a),
(Lorenz and Kidd, 1994), (Henderson-Sellers, 1996) and (Briand et al., 1997). Prediction
models that establish relationships between internal quality attributes and external quality at-
tributes using such metrics have been widely used in order to assess different external qual-
ity attributes of software systems. A variety of statistical techniques are used for this pur-
pose where statistical relationships are established between measures of interal quality at-
tributes and measures of external ones (Abreu and Melo, 1996) and (Khoshgoftaar, Allen,
Halstead, Trio and Flass, 1998) and (Subramanyam and Krishnan, 2003). However, such
measures are often complex and non-linear (Thwin and Quah, 2005). Regression analysis
techniques have also been used to construct models with high accuracy (Briand, Wüst, Lounis
and Ikonomovski, 1999), (Briand, Wust, Daly and Porter, 2000). Machine learning techniques,
are well suited for learning such relationships. Examples of such techniques are Neural Net-
works (Thwin and Quah, 2005), Support Vector Machines, decision tree models and regression
tree models (Zhou and Leung, 2007). Our work consists of building predictive models in the
form of rule sets where rules are conjunctions of tests on internal quality attributes and clas-
sification labels encode the measure of the external quality attribute to predict. Our interest
in the models that take the form of rules rises from the fact that these are easy to interpret
by practitioners. Moreover, not only do they assess the external quality attribute but they also
provide guidelines for practitioners to achieve it. Such rule-based models are tightly related to
decision tree models. As a matter of fact, they can be derived from them. Decision tree models
have been used as early as 1988 (Selby and Porter, 1990) to predict different software quality
attributes such as re-usability (Mao, Sahraoui and Lounis, 1998) of an object-oriented class,
or indicators of quality attributes such as cost of rework (Basili, Condon, Emam, Hendrick and
Melo, 1997), the average isolation effort (Almeida, Lounis and Melo, 1999), fault-proneness - a
software maintainability sub-characteristic (Briand et al., 1997) and (Arisholm, Briand and Ful-
glerud, 2007), (Arisholm and Briand, 2006), (Lessmann, Baesens, Mues and Pietsch, 2008),
etc. In (Lessmann et al., 2008), similar to us, the authors argue that the comprehensibil-
ity of the resulting classification models is very important as it illustrates the classification
procedure thus giving guidelines on how to improve a certain software quality characteristic
(fault-proneness in their case). Arisholm et al. (Arisholm, Briand and Johannessen, 2010)
compare different modeling techniques and the impact of selecting different types of measures



as predictors. They find that the measures and techniques used are highly dependent on the
evaluation criteria used to assess the prediction models. In our work, we propose an algo-
rithm to build rule-based prediction models. In our algorithm, we combine two meta-heuristics
namely, Ant Colony Optimization (ACO)- a swarm intelligence nature-inspired algorithm- and
Simulated Annealing(SA). Previous work has addressed problems in software engineering us-
ing meta-heuristics. Typically, meta-heuristics such as simulated annealing, genetic algorithms
and genetic programming are used as sampling techniques (Harman, 2007). For example,
Pedrycz et al. (Pedrycz and Succi, 2005) represent classifiers as hypberboxes and use genetic
algorithms to evolve existing models into new ones. Vivanco (Vivanco, 2007) uses a genetic al-
gorithm to improve a classifier accuracy in identifying problematic components. The approach
relies on the selection of metrics that are more likely to improve the performance of predictive
models. In (Azar and Precup, 2007) and (Azar, 2010), the authors use genetic algorithms to
adapt classification models built from one domain data to unseen data in a different domain.
Unlike the current work, the classification models used are initially constructed by a machine
learning technique and then adapted to new data sets. Azar et al. (Azar, Harmanani and
Korkmaz, 2009) and (Azar and Harmanani, 2011) present a hybrid approach that combines
different meta-heuristics such as genetic algorithms, tabu search and simulated annealing to
re-combine existing rule sets into new (more accurate) ones. In these also, the initial rule sets
are built from one data set and adapted to a different one. In (Azar and Harmanani, 2011),
data from different domains including software quality is used and the approach is promising in
all different domains. Grosser et al. (Grosser, Sahraoui and Valtchev, 2002) propose a case-
based reasoning approach for classifying object-oriented classes as stable or not. In (Azar and
Vybihal, 2011), the authors present an ant colony optimization algorithm which adapts a single
prediction model to a new set of data. The results were also promising. In this current work, we
are inspired from (Azar and Vybihal, 2011) and extend the work to different ant colonies work-
ing in parallel on different models. Unlike (Azar and Vybihal, 2011) which adapts already exist-
ing models to new data sets, this work proposes an approach that constructs the model from
scratch and by learning from different models. The underlying algorithm is a combination of Ant
Colony Optimization and Simulated Annealing. Ant Colony Optimization is a population-based
meta-heuristic. Such types of heuristics have shown to be successful in several application
domains. In (Yazdani, Sadeghi-Ivrigh, Yazdani, Sepas-Moghaddam and Meybodi, 2015), the
authors present an algorithm inspired from the behavior of fish to perform global optimization
in continuous and stationary environments. In (David, Precup, Petriu, Rădac and Preitl, 2013),
the authors propose a Gravitational Search Algorithm (GSA) - a nature-inspired optimization
algorithm based on Newtons law of gravity and laws of motion - to design fuzzy control systems
with a reduced parametric sensitivity. Previous work in which a swarm intelligence technique
has been combined with another meta-heuristic includes (Valdez, Melin and Castillo, 2011) in
which the authors present an evolutionary method which combines Particle Swarm Intelligence
(PSO) with genetic algorithms for mathematical function optimization and uses fuzzy logic to
combine the results. The hybrid approach showed better results than individual methods when
tested on a benchmark of mathematical functions. In (Zăvoianu, Bramerdorfer, Lughofer, Sil-
ber, Amrhein and Klement, 2013), the authors apply non-dominated sorting genetic algorithm



to obtain high quality Pareto-optimal solutions for three different scenarios. The approach was
hybrid as it used artificial neural networks to create the objective functions. To the best of our
knowldge, our work is the first to combine Ant Colony Optimization and Simulated annealing to
construct software quality prediction models. The closest work to ours which combined the two
heuristics is (Rizauddin, 2013) where an algorithm that uses ACO is used to construct clas-
sification rules. Like ours, the algorithm in (Rizauddin, 2013), extracts the rules directly from
the data set. Unlike ours, each ant in the proposed ACO extracts a rule by adding conditions
one by one whereas simulated annealing is used to guide the choice of the condition. The
algorithm was benchmarked on seventeen data sets from the UCI repository none of which
is from the software quality domain. Results from our work show that our new proposed al-
gorithm out-performs rule sets produced by the state-of-the art machine learning algorithms
Neural Networks and C4.5. We also compare it to the algorithm in (Azar and Vybihal, 2011).
The remainder of this paper is organized as follows. In Section 2, we introduce the problem.
In Section 3, we give an overview of ACO and Simulated Annealing and we present our hybrid
algorithm. In Section 5, we explain the set up of the experiments we conducted and we dis-
cuss the results. In Section 6, we summarize the work and highlight some interesting venues
to explore in the future.

2 Problem Formulation

In this work, the unit that we consider is a class in an object-oriented system. We use binary
classification of such classes. A class either possesses a certain software quality attribute
or it does not. We concentrate on two software quality attributes namely, stability and fault-
proneness. However, the same approach can be used on other quality attributes. A class is
considered unstable if at least one of the following cases holds:

• A method ceases to exist in a future version of the class.

• A method is created in a future version of the class (it was not in the previous version).

• The header of a method changes between two different versions of the class.

If none of the above cases holds, the class is said to be stable1.
We define a class to be fault-prone if it contains one or more errors. Most faults in a software
system are found in a few of the system’s components (Moller and Paulish, 1993), (Kaaniche
and Kanoun, 1996) and (Fenton and Neil, 1999). Fault-proneness of a class has a direct
impact on the maintainability and hence, fault-proneness is seen as a sub-characteristic of
maintainability.
The classification models are rule-based models derived from decision trees. Each model is a
set of rules and a default classification label. A rule is a conjunction of tests on internal quality
attributes and a classification label (measuring the external attribute). One example of a rule
is: if NOM ≤ 20 and NOC ≤ 5 and LOC ≤ 1000 then class label = 1 which classifies a class
with number of methods less than or equal to 20 and number of children less than or equal

1We consider syntactic stability of the class only and we ignore the body and the semantic.



Rule1: NOM ≤ 20 ∧NOC ≤ 5 ∧ LOC ≤ 1000→ 0

Rule2: NOM ≤ 20 ∧NOC > 5→ 0

Rule3: DIT ≤ 5 ∧NOC ≤ 5→ 1

Default class: 1

Figure 1: Rule set composed of three rules and a default classification label

to 5 and number of lines of code less than or equal to 1000 as stable (stable=1, unstable=0).
Because the rule set may not cover all instances in a particular data set, it is augmented with
a default classification label which applies to all cases that are not covered by any of the rules.
Figure 2 is an example of a rule set composed of three rules and a default classification label.

2.1 Performance Measures

We evaluate the performance of a classification system S using the traditional measure of
accuracy shown in Equation 2.1. This is extracted from the contingency matrix shown in
Figure 2 where nij is the number of cases in the data set which have classification label i
but have been classified with label j. In all our experiments, we assume equal penalty for
misclassified cases.

Accuracy(S) =

∑k
i=1 nii∑k

i=1

∑k
j=1 nij

(2.1)

Predicted Label
c1 c2 . . . ck

real label

c1 n11 n12 . . . n1k

c2 n21 n22 . . . n2k

...
...

...
. . .

...
ck nk1 nk2 . . . nkk

Figure 2: Contingency matrix. nij is the number of cases with real label ci and predicted label
cj .

3 Overview of ACO and Simulated Annealing

In this section, we give an overview of Ant Colony Optimization and Simulated annealing and
then we explain how we combined them in one hybrid heuristic.

3.1 ACO

Ant Colony Optimization (ACO) has been sucessfully used for solving hard combinatorial prob-
lems. It is a meta-heuristic technique originally introduced by Dorigo (Dorigo and Caro, 1999)
and (Dorigo and Stutzle, 2004) and inspired from the behavior of ants in search for food. Ants



communicate through the environment by depositing pheromone on the route they follow in
their search for food. The more a path is explored, the more pheromone it receives which
attracts other ants. The two main phases of the ACO algorithm are the construction of the
solution and the update of the deposited pheromone. Several ants explore the search space
in parallel. The choice that the ant makes between several moves is based on the intensity of
the pheromone found on the trail and a heuristic function which encodes information about the
desirability of the move. At each iteration, pheromone evaporates to push ants to explore new
search sub-spaces and thus avoid the convergence of all ants to the same search neighbor-
hood. Figure 3 shows the pseudocode of ACO.

Generic ACO
{

Initialize pheromone constant ti
Repeat for all ants i:
build solution()

Repeat for all ants i:
update pheromone()

Repeat for all pheromones i:
evaporate ti = (1− r).ti

}

Figure 3: Generic ACO Pseudocode

3.2 Simulated Annealing

Simulated Annealing(SA) is another meta-heuristic technique first introduced in (Metropolis,
Rosenbluth, Rosenbluth, Teller and Teller, 1953). It simulates the process of making strong
glass whereby the element is heated quickly to very high temperatures and then cooled down
slowly. When the glass is heated to a very high temperature, it becomes liquid and the atoms
move relatively freely. Subsequently, the temperature of the glass is lowered slowly and, at
each temperature, the atoms can move just enough to begin adopting the most stable orien-
tation. This slow cooling is known as annealing and results in crystallization. In simulated
annealing, the goal is to optimize a solution. At each iteration of the algorithm, a solution is
changed and compared to the previous one. Based on an objective function, the algorithm ei-
ther accepts the new solution or rejects it. In early iterations, changes happen more frequently
then they start reducing as further iterations proceed. SA allows the solution to degrade at
times in order to escape local optima. Figure 4 shows the pseudocode of SA.

4 Proposed Annealing-ACO

The algorithm has two main stages: the exploration stage and the intensification stage.
Exploration Stage: The algorithm starts by constructing rule sets from scratch at random. For
this, metrics are picked randomly from the list of available ones and combined with values and
operators which are also picked at random. Such rule sets are represented as matrices in the
heuristic. Given rule set R of r rules with c being the maximum number of conditions in a rule,



Simulated Annealing
{

Given: An initial solution S0, an initial temperature T0, a fraction K, 0 ≤ K ≤ 1

Set initial set of solutions X = {S0}
Repeat for a certain number of iterations:

Set T = T0;
Repeat for each temperature Ti:

Repeat for n iterations:
Select randomly a solution Si from the set X
S′i=Perturb (Si)
Calculate :
∆E = evaluation (S′i) - evaluation (Si)
if (∆E > 0)

accept S′i
else:

generate random number r, 0 ≤ r ≤ 1

if (r < e
−∆E

T )
accept S′i

else
reject S′i

Ti+1 = K ∗ Ti
Return best solution in X

}

Figure 4: Simulated Annealing Pseudocode

NOM <= 20 DIT < 3 NOC <= 4 1

NOC > 5 0

1

Figure 5: Matrix representing a rule set which consists of two rules and a default classification
label.

R is represented as a N ×M array where N = 1 + r and M = 1 + c. Each row in the array
stores one rule in R (one condition in each cell). The last column stores the classification label
of a rule. The last row in the array is left empty except for the last column which stores the
default classification label of the rule set. Figure 5 illustrates this representation. Traditionally
in ACO, ants march on a graph where nodes encode sub-solutions and edges operations
that help in the construction of the solution. In our ACO, ants march on the constructed two-
dimensional matrix that describes a rule set. Ants perform what we call an S −march i.e. they
move from one cell on the matrix vertically to the adjacent one until they hit a border at which
point they move to the node horizontally adjacent, etc.2 An ant starts at a random corner in
the matrix and walks in a vertical march. At each cell, an ant applies simulated annealing to
change the underlying condition. The change consists of modifying with a certain probability
the metric, the operator or the value of the condition. In the latter case, the value is changed
to one picked randomly from the set of cutpoints of the attribute3. During the early iterations

2Ants might divert from their S-march according to pheromone. This will be described later on.
3To compute the cutpoint of an attribute, the data is sorted by the attribute and the average of two values where



of SA, modifications are accepted with a high probability even if they result in a deteriorated
objective function (f ) value. This probability decreases gradually at subsequent iterations.
Such a scheme allows the ants to explore different regions of the search space at early stages
prior to converging to promising ones. During its search process, an ant releases pheromone
with intensity proportional to the quality of the underlying metric. The quality of a metric is
computed based on Equation 4.1. The objective function includes the measurement we aim
to optimize (accuracy) as well as the Youden’s J index which measures the average accuracy
per class label (Equation 4.2). Both measures (accurach and J index) are computed based
on the training data. The reason we include the latter measure is to avoid the algorithm from
converging to the majority classifier which has a very high accuracy on imbalanced data sets
but low J index. A metric is considered good if it results in a higher f value. If the modification
is accepted by the underlying simulated annealing process, the ant deposits pheromone on
the underlying cell. The metrics with the highest pheromone values are chosen with a higher
probability. At each iteration, pheromone evaporates.

f = α.accuracy + β.Jindex (4.1)

Jindex =
1

k

k∑
i=1

nii∑k
j=1 nij

(4.2)

Intensification Stage: At this stage, the algorithm seeks further specific improvements by modi-
fying the operators and values of conditions only. The modifications happen through Simulated
Annealing. The same objective function (f ) is used. Algorithm 6 shows the pseudocode of
our instantiated SA-ACO. It is possible that redundant conditions appear within rules as ants
are constructing solutions. In this case, one of the two conditions is removed keeping the more
general one4. In case of redundancy in rules, only one is kept.

5 Experimental Results and Discussion

5.1 Data Sets

We have constructed our own data sets by extracting metrics from publicly available software
systems5 and we also used other ready-made data sets that are available in public repositories.
In total, we used six data sets, four of which describe stability of classes in an object-oriented
framework and the other two describe fault-proneness as a sub-attribute of class maintain-
ability. Table 1 summarizes the data sets and tables 2, 3, 4 and 5 , summarize the met-
rics describing the data sets6. Detailed description of these metrics can be found in (Barnes
and Swim, 1993), (Chidamber and Kemerer, 1994), (Henderson-Sellers, 1996), (Coppick and
Cheatham, 1992).

the classification flips is recorded as a cutpoint
4NOM > 5 and NOM > 9 are two redundant conditions. NOM > 5 is removed.
5Data sets can be obtained by emailing the primary author at danielle.azar@lau.edu.lb.
6CM1 and JM1 can be found online at promise.site.uottawa.ca/SERepository/datasets-page.html while the re-

maining data sets were built in-house.



Instantiated ACO
{

Initialize number of iterations constant total itr
Initialize pheromone constant p
Initialize temperature constant t
Initialize cooling rate constant c
Initialize evaporation rate constant e
Initialize ant seek radius constant s
Initialize pheromone intensity pi
Repeat until done:

if(current itr < total itr/2)
stage = 1

else if(current itr < 3 ∗ total itr/4)
stage = 2

if(stage = 1)
s = 0

else if(stage = 2)
s = x

Repeat for all ants j:
build solution(s, stage)
if (stage 6= 1 && improvement)
p = p+ pi//release pheromone

p = p ∗ (1− e)//evaporate pheromone
t = t ∗ (1− c) //update temperature

}

build solution(seek radius, stage)
{

if(stage = 1)
r = random()

if (r < 0.1)
add rule();

if(r < 0.3)
remove rule();

if(r < 0.55)
add condition();

if(r < 0.8)
remove condition();

else
revive best ruleset();

(S′, attribPerturb) = perturb cell(matrix, row, col)

f ′ = evaluate objective function(S′)

r = random()

δ = f ′ − f
if(δ > 0)
acceptance = 1.0

else
acceptance = e−δ/t

if(r < acceptance)
R = R’
f = f’

if(attribPerturb)
update pheromone(attribute) // release pheromone on attribute at [row][col]

if(f ′ > fBest)
R∗ = R′

fBest = f ′

march(seek radius)
}

perturb cell(Matrix m,int row,int col)
{

attribPerturbation = false
if(cell encodes class(m,row,col))
modify class(m,row,col)

else // cell encodes condition
r random()
if(stage == 1&&r < 0.1)
modify attribute(m,row,col)
a = true

else if(r < 0.5)
modify operator(m,row,col)

else
modify value(m,row,col)

return (m,attribPerturb)

}

march(seek radius)
{

found=getLargestPheromone(seek radius);
if(found)
go to cell

else
smarch() //go to adjacent cell

}

Figure 6: Pseudocode of instantiated SA-ACO.



Table 1: Data sets

Dataset Size Metrics Classes Software Quality
(%1-%0) Attribute

Geotools 1027 12 991-36 stability
(96.5%-3.5%)

Weka 2851 12 1878-973 stability
(66%-34%)

STAB1 2920 19 2481-439 stability
(85%-15%)

STAB2 690 22 455-235 stability
(66%-34%)

JM1 7253 21 2013-5240 fault-proneness
(28%-72%)

CM1 332 21 21-311 fault-proneness
(6%-94%)

5.2 Experimental Setup and Results

We performed our experiments on an iCore 7 CPU with 8 GB memory running Windows 7 Pro
64-bit. Table 7 summarizes the time each experiment took (30 runs).
To validate our approach, we use 10-fold cross-validation whereby each data set is divided into
ten folds of roughly equal size. Each run consists of 10 iterations. At each iteration, the union
of 9 folds is taken as the training set to compute the objective function as well as the quality
of the metrics and the remaining fold is kept as a testing set. This is repeated 10 times, each
time a different fold is kept as a testing set. At the end of each run, we average over the 10
iterations. Since the algorithm involves several parameters, we ran it with different parameter
values. We report the results obtained with the best ones(Table 6). In particular, the number
of iterations was chosen after we saw that there was no improvement beyond this chosen point
or that the improvement was very minimal compared to the run time.
Because SA-ACO includes a stochastic element, we ran each experiment 30 times and we
averaged over the thirty runs. To validate our technique, we compare it to Neural Networks
(NN), C4.5, and the ACO published in (Azar and Vybihal, 2011). In Table 8, we show the
results we obtained on each data set and in Table 9, we summarize the performance of all
algorithms over all the data sets.
Looking at the data sets individually (Table 8), we can see that on Geotools, SA-ACO reaches
an accuracy above 96% on both the testing and the training data - results very close to those
obtained with NN. SA-ACO out-performs C4.5 by about 18% on both the training and the
testing data and ACO by 12%. On Weka, SA-ACO reaches a testing accuracy close to that
of NN and out-performs C4.5 and ACO by around 14% and 9% respectively on the training
set and 12% and 7% on the testing set. On STAB1, SA-ACO outperforms NN by 12% on the
testing data and C4.5 and ACO by 13% and 5% respectively on the training data and 12% and



Table 2: STAB1 Metrics
Name Description
LCOM lack of cohesion methods
COH cohesion
COM cohesion metric
COMI cohesion metric inverse

OCMAIC other class method attribute import coupling
OCMAEC other class method attribute export coupling

CUB number of classes used by a class
NOC number of children
NOP number of parents
DIT depth of inheritance

MDS message domain size
CHM class hierarchy metric
NOM number of methods
WMC weighted methods per class

WMCLOC LOC weighted methods per class
MCC McCabe’s complexity weighted method per class

DEPCC operation access metric
NPPM number of public and protected method in a class
Stress amount of work on the class

4% respectively on the testing data. On STAB2, SA-ACO reaches an accuracy around 4% less
than that of NN but out-performs C4.5 and ACO by around 12% and 9% respectively on the
training data and 8% and 5% on the testing data. On CM1, our algorithm reaches results as
good as those of NN and out-performs C4.5 by more than 26% on the training data and by
10% ACO. On the testing set, it outperforms C4.5 by more than 24% and ACO by about 8%.
On JM1, SA-ACO reaches a training accuracy that is 1% less than that of NN and a testing
accuracy that is 2% less. However, it out-performs C4.5 and ACO but only slightly on both the
training and testing sets.
In general, we can see from Table 9 that SA-ACO reaches results very close to NN and
out-performs C4.5 and ACO by around 14% and 8% respectively on both the training and
testing data. The small standard deviation of our algorithm proves its stability. A pair-wise
statistical test comparing SA-ACO to each of the algorithms, shows that, except for JM1, the
results obtained with SA-ACO are significantly better than C4.5 and ACO (two sample t-test,
p ≤ 0.05). On JM1, the difference in performance is not significant.



Table 3: JM1 and CM1 Metrics
Name Description

loc McCabe’s line count of code
v(g) McCabe ”cyclomatic complexity”
ev(g) McCabe ”essential complexity”
iv(g) McCabe ”design complexity”

n Halstead total operators + operands
v Halstead ”volume”
l Halstead ”program length”
d Halstead ”difficulty”
i Halstead ”intelligence”
e Halstead ”effort”
b Halstead
t Halstead’s time estimator

lOCode Halstead’s line count
lOComment Halstead’s count of lines of comments

lOBlank Halstead’s count of blank lines
lOCodeAndComment Halstead’s count of lines of comments and code

uniq Op unique operators
uniq Opnd unique operands

total Op total operators
total Opnd total operands

branchCount of the flow graph
defects false,true - class has/has not one or more reported defects



Table 4: STAB2 Metrics
Name Description
LCOM lack of cohesion methods
COH cohesion
COM cohesion metric
COMI cohesion metric inverse

OCMAIC other class method attribute import coupling
OCMAEC other class method attribute export coupling

CUB number of classes used by a class
CUBF number of classes used by a member function
NOC number of children
NOP number of parents
NON number of nested classes

NOCONT number of containing classes
DIT depth of inheritance

MDS message domain size
CHM class hierarchy metric
NOM number of methods
WMC weighted methods per class

WMCLOC LOC weighted methods per class
MCC McCabe’s complexity weighted method per class

DEPCC operation access metric
NPPM number of public and protected method in a class
NPA number of public attributes



Table 5: Geotools and Weka Metrics

Name Description
Lines Number of lines

Statements Number of computational statements (including if, while, etc.)
%Branches Percentage of statements that cause a break

in the sequential execution of statements (such as if, for, etc.)
Method calls The total number of statements found inside methods

divided by the number of methods found in the file).
%Comments Percentage of lines with comments

Classes number of classes and interfaces
Methods/Class average number of methods per class (total method count

divided by the total class count)
Avg Stmts/Method average number of statements per method (The total number of

statements inside methods divided by the number of methods).
Max Complexity maximum complexity of the class (The complexity value of

the most complex method in a source file.)
Max Depth maximum depth in inheritance tree (The maximum nested block

depth found. At the start of each source file the block level
is zero. Depths up to 9 are recorded and all statements at deeper
levels are counted as depth 9.)

Avg Depth Average block depth: The average nested block depth weighted
by depth.

Avg Complexity Average complexity for each method
It is computed as a simple arithmetic average of all complexity values
measured for a source file.

Table 6: Parameters

ACO
#of #of Pheromone Pheromone Pheromone α β

ants iterations intensity seek radius evaporation rate
8 1000 1 1 0.7 0.5 0.5

SA
Initial Cooling Iterations

Temperature Rate
1000 10a 1000



Table 7: Run time on each data set

Dataset Time(min)
Geotools 22
Weka 90
STAB1 100
STAB2 20
CM1 15
JM1 240

Table 8: Average accuracy per data set

Training Testing
Dataset Algorithm Accuracy(%)(stdv) Accuracy(%)(stdv)

Geotools
NN 96.91(0.05) 95.91(0.38)

C4.5 78.59 (4.26) 78.59(4.76)
ACO 84.27 (3.36) 84.23(3.38)

SA-ACO 96.83(0.13) 96.37(0.41)

Weka
NN 68.84 (0.72) 66.33 (2.52)

C4.5 53.89(4.11) 53.88(4.27)
ACO 58.80 (2.22) 58.62 (2.19)

SA-ACO 67.70(0.73) 66.05(1.25)

STAB1
NN 90.12(1.07) 73.46(14.23)

C4.5 73.56(14.17) 73.46(14.23)
ACO 81.42 (0.44) 81.40 (0.58)

SA-ACO 86.40(0.82) 85.64(1.07)

STAB2
NN 79.00 (2.16) 74.20 (2.66)

C4.5 62.42(7.81) 62.29(8.48)
ACO 65.66 (2.61) 65.41 (2.42)

SA-ACO 74.65(1.47) 70.65(4.02)

CM1
NN 94.71 (0.33) 92.83 (1.35)

C4.5 68.21(40.52) 68.22(40.57)
ACO 84.90 (4.51) 84.72 (4.65)

SA-ACO 94.92(0.45) 92.38(2.07)

JM1
NN 75.63 (0.31) 76.00 (2.28)

C4.5 73.64(1.26) 73.64(1.47)
ACO 73.47 (0.75) 73.39 (0.79)

SA-ACO 74.62(0.32) 74.10(0.61)



Table 9: Average accuracy over all data sets

Training Testing
Accuracy(%)(stdv) Accuracy(%)(stdv)

NN 84.20(0.77) 82.40(1.99)
C4.5 68.37(12.02) 68.35(12.30)
ACO 74.75(2.32) 74.63(2.34)

SA-ACO 82.52(0.65) 80.87(1.58)



6 Conclusion and Future Work

This paper proposes a hybrid algorithm that combines ACO, a swarm intelligence algorithm,
and simulated annealing to search for a good software quality estimation model. Tested on
data that describes stability of classes in an object-oriented paradigm and fault-proneness,
our algorithm performs significantly better than C4.5 and ACO published in (Azar and Vybihal,
2011). Compared to NN, SA-ACO reaches an accuracy that is similar in most of the cases
but it has the advantage of preserving the white-box nature of the prediction models. This is
important for experts in the field as they can learn guidelines to attain the desired software
quality characteristic at the design and implementation stage of the system. The approach is
also generic enough to accommodate any software quality attribute. The classification problem
that we tackle is binary. The algorithm can easily evolve to accommodate multi-classification
label problems.
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