
This article can be cited as  S. B. Ghosn, F. Drouby and H. M. Harmanani, A Parallel Genetic Algorithm for the 
Open-Shop Scheduling Problem Using Deterministic and Random Moves, International Journal of Artificial 
Intelligence, vol. 14, no. 1, pp. 130-144, 2016. 
Copyright©2016 by CESER Publications 
 



A Parallel Genetic Algorithm for the Open-Shop Scheduling
Problem Using Deterministic and Random Moves

Steve Bou Ghosn
Department of Computer Science, Westfield State University,

Westfield, MA 01085
steve j777@yahoo.com

Fouad Drouby and Haidar M. Harmanani
Department of Computer Science and Mathematics

Lebanese American University
Byblos, 1401 2010, Lebanon

fooad2@yahoo.com
haidar@lau.edu.lb

ABSTRACT

This paper investigates the use of parallel genetic algorithms in order to solve the open-shop
scheduling problem. The method is based on a novel implementation of genetic operators that
combines the use of deterministic and random moves. The method is implemented using MPI
on a Beowulf cluster. Comparisons using the Taillard benchmarks give favorable results for this
algorithm.

Keywords: Open-shop scheduling, parallel genetic algorithms.

2000 Mathematics Subject Classification: 49K05, 49K15, 49S05.
ACM Subject Classification: Bio-inspired approaches: Genetic algorithms; Approximation
algorithms analysis: Scheduling algorithms; Problem Solving, Control Methods, and Search:
Scheduling;

1 Introduction

The open-shop scheduling problem consists of a set of n jobs, J = {J1, J2, ..., Jn}, that are to be
processed on a set of m machines, M = {M1,M2, ...,Mm}. Each job consists of m operations,
and each machine can process at most one job at a time. Each operation oi,j must be processed
by machine Mi for pi,j ≥ 0 time units. The objective is to find a schedule for the operations on
the machines that minimizes the makespan, Cmax, that is, the time from the beginning of the
first operation until the end of the last operation (Lawler, Lenstra, Kan and Shmoys, 1993). An
optimal finish time schedule is one that has the least finish time among all schedules. It has
been shown that one can establish the following lower bound for the optimal finish time schedule
(Pinedo, 1995):

L = max

{
max

j

m∑
i=1

pij ,max
i

n∑
j=1

pij

}
(1.1)

where m is the number of machines, and n is the number of jobs.

mailto:steve_j777@yahoo.com
mailto:fooad2@yahoo.com
mailto:haidar@lau.edu.lb


Jobs (Processing Time, Machine)
Job 1 (54, M3) (34, M1) (61, M4) (2, M2)
Job 2 (9, M4) (15, M1) (89, M2) (70, M3)
Job 3 (38, M1) (19, M2) (28, M3) (87, M4)
Job 4 (95, M1) (34, M3) (7, M2) (29, M4)

Table 1: A 4x4 Taillard benchmark instance for the OSSP

The first part in equation 1.1 deals with the maximum completion time among all jobs that are to
be processed while the second part refers to the maximum completion time for the jobs allocated
to a given machine. In other words, the makespan is at least as large as the maximum workload
on each of the m machines, and at least as large as the total amount of processing to be done on
each of the n jobs (Pinedo, 1995). The optimal makespan for the open-shop scheduling problem
can never be less than L, but it is not necessarily equal to L. A schedule is said to be non-
preemptive if for each individual machine there is at most one tuple < i, s(i), f(i) > for each job
i to be scheduled, where s(i) and f(i) are the start time and the finish time of job i, respectively.
A preemptive schedule is a schedule in which no restrictions are placed on the number of tuples
per job per machine. The non-preemptive open-shop scheduling problem has been shown to be
NP-complete (Gonzalez and Sahni, 1976).
We illustrate the OSSP using the 4 × 4 Taillard benchmark shown in Table 1. The benchmark
instance consists of 4 jobs and 4 machines. Figure 1 presents a possible schedule with an optimal
makespan of 193.

1.1 Related Work

One of the earliest and most significant efforts related to the open-shop scheduling problem was
reported by Gonzalez et al. (Gonzalez and Sahni, 1976) who showed that the problem is NP-
complete by reducing it to the partition problem. The authors proposed a linear-time algorithm with
m = 2, and a polynomial time algorithm to find the optimal schedule for the preemptive open-shop
scheduling problem. Some attempts were made at solving the open-shop scheduling problem
using branch and bound techniques such as Brucker et al. (Brucker, Huring and Wostmann, 1997),
who based their initial efforts on the resolution of a one machine problem with positive and negative
time lags. Their later work aimed at fixing the disjunctions on the critical path using a heuristic
solution. This method worked for most problem instances, but some problems of size 7 were still
not solvable. Gueret et al. (Gueret and Prins, 1998) improved on Brucker’s algorithm by using
intelligent backtracking. Thus, when discarding a node, the algorithm backtracks not just to the
direct parent, but further through the ancestors until locating a relevant section that would avoid
excluding optimal solutions. Other approximate methods were reported. For example, Fang et al.
(H.-L.Fang, Ross and Corne, 1993) proposed a genetic algorithm with an ordinal chromosomal
representation, and adapted the approach to solve the open-shop scheduling problem (H.-L.Fang,
Ross and Corne, 1994). The algorithm used a representation that produced valid schedules when
altered by the genetic operators; thus allowing more accurate solutions in considerably less time.
Khuri et al. (Khuri and Miryala, 1999) presented three different genetic approaches. One of these
approaches is based on a genetic algorithm variation that uses a selfish gene technique. Another
implementation was based on a hybrid GA implementation that proved to be better than the first



193

1

M
2

M
3 3,3

O
1,2

O
1,3 1,1

O

4,44,34,1

3,4

1,4

O O O

O

M
4

9 24

0 9

340 104

70

158

190 34 41 7270 104

158157 192

186

186157

M

O O O

O

O
2,42,3

O
2,1

62

3,1

2,2

3,2

O

O

O
4,2

Figure 1: Optimal schedule for problem in Table 1 with makespan = 193

two proposed approaches. Liaw (Liaw, 1998) proposed an iterative improvement method for the
open shop scheduling problem. The author, later proposed other efficient solution approaches
based on a hybrid GA implementation (Liaw, 2000), a tabu search technique (Liaw, 1999b), and
a simulated annealing algorithm (Liaw, 1999a). Recently, Blum (Blum, 2005) proposed a method
based on a hybrid approach that combines ant colony optimization with beam search. Jiao et al.
(Jiao and Yan, 2011) proposed a novel intelligent algorithm based on simulated annealing in order
to solve the job-shop scheduling problem.

1.2 Genetic Algorithms

Genetic algorithms are approximate techniques to find solutions to complex optimization prob-
lems by mimicking natural evolution, and were used to solve various optimization problems such
as the split delivery vehicle routing problem (SDVRP) (Khmelev and Kochetov, 2015), the opti-
mization of the performance of electrical drives (Zăvoianu, Bramerdorfer, Lughofer, Silber, Am-
rhein and Klement, 2013), and fuzzy-controlled servo systems (Precup, David, Petriu, Preitl and
Rădac, 2013). Genetic algorithms use a group of randomly initialized points, a population, in or-
der to non-deterministically search the problem space. The population is characterized by the
fact that each individual encodes all necessary problem parameters (genes). The population is
modified according to the natural evolution process following a parody of Darwinian principle of
the survival of the fittest. Individuals are selected according to their quality to produce offspring
and to propagate their genetic material into the next generation. Genetic algorithms employ an
iterative process of selection and recombination that are executed in a loop for a fixed number of
iterations where each iteration is called a generation. The selection process is intended to improve
the average quality of the population by giving individuals of higher quality a higher probability of
survival. The quality of an individual is measured by a fitness function. Each offspring undergoes
a sequence of probabilistic transformations either by inversion, crossover, mutation or possibly
other user defined operators. The process exploits new points in the search space by providing
a diversity of the population and avoiding premature convergence to a single local optimum. The
iterative process of selection and combination of “good” individuals should yield even better ones,
until a solution is found or a stopping criterion is met.



1.3 Problem Description

This paper investigates the non-preemptive open shop scheduling problem using a parallel genetic
algorithm motivated by the need to develop efficient and fast solutions. The problem is formally
stated as follows (Garey and Johnson, 1979):

Given a number of machines m ∈ Z+, a set of jobs J , each j ∈ J consisting of m
operations oi,j with 1 ≤ i ≤ m (with oi,j to be executed by machine i), and for each
operation a length li,j ∈ N , find a collection of one-machine schedules fi : J →
N, 1 ≤ i ≤ m, such that fi(j) > fi(j

′) + li,j′ such that for each j ∈ J the intervals
[fi(j), fi(j) + li,j) are all disjoint and the completion time of the schedule is minimized:

max
1≤i≤m,j∈J

fi(j) + li,j

The proposed algorithm exploits parallelism using message passing on a Beowulf cluster. The
algorithm combines the use of random and deterministic moves in order to efficiently explore the
design space.
The remainder of the paper is organized as follows. Section 2 formulates the genetic algorithm
for the open shop scheduling problem, and describes the chromosomal representation, the ini-
tial population, the fitness function, and the genetic operators. The parallel genetic algorithm is
discussed in section 3 while experimental results are presented in section 4. We conclude with
remarks in section 5.

2 OSSP Parallel Genetic Algorithm

The proposed parallel algorithm starts with a number of machines, and a set of jobs and cor-
responding tasks. The algorithm generates, through a sequence of random and deterministic
operations, a set of compact schedules. The algorithm is implemented as cooperating sequential
genetic algorithms, and is based on a single program multiple data (SPMD) model. The algo-
rithm uses message passing in order to allow various processors to operate independently on
isolated sub-populations of the individuals, periodically sharing its “best” individuals. Processors
are connected through an Ethernet network and use the Message Passing Interface (MPI). In what
follows, we describe the parallel genetic algorithm with reference to the benchmark in Table 1.

2.1 Chromosomal Encoding

Genetic algorithms work with a coding of the parameter set and not the parameters themselves.
Therefore, one requirement when employing GAs in order to solve a combinatorial optimization
problem is to find an efficient representation of the solution in the form of a chromosome.
We propose a chromosomal representation that is based on a vector of (m × n) genes, where m
is the number of machines and n the total number of jobs. A gene corresponds to an operation
to be performed on a certain machine while a chromosome corresponds to a schedule. The
values of the genes are a permutation of integer values between 0 and (m × n) − 1. A gene V is
interpreted as the (V mod m) operation of the (V div m) job. This is illustrated in Figure 2 where
the chromosome is interpreted as follows: schedule the third task of the first job, followed by the
first task of the second job, ...



5

Third task of first job

First task of second job

11631081 01571342 12 14 Scratch Area

Figure 2: Sample chromosome encoding and interpretation

Finally, a chromosome includes a temporary storage area, the scratch area, that is used to pass
hints to the genetic operators by including candidate genes to swap as well as a gene’s position at
which the schedule becomes invalid.

2.2 Initial Population

The initial population is important as it affects the quality as well as the time needed to converge
to a final solution. The initial population is created randomly by selecting the values of the genes
to be unique permutations between 0 and (n × m) − 1, where n is the number of jobs and m is
the number of machines. The algorithm ensures that all m × n genes have different values. The
scratch area is initialized to 0.

2.3 Fitness Function

The fitness function measures the fitness of each chromosome in the population. The fitness of an
individual is crucial for the transmission of its gene information to the next generation. The fitness
function is given by the following:

F =
1

Cmax
(2.1)

2.4 Selection and Reproduction

Reproduction is the artificial version of natural selection, a Darwinian survival of the fittest. There
are many approaches to selecting parent chromosomes for reproduction. We have attempted
various techniques, and observed that roulette wheel selection worked well for our algorithm.
The selection algorithm retained the best chromosome as well. It should be noted that repro-
duction occurs locally, within the same sequential process. However, migration among parallel
sub-populations improves the population quality by injecting the best chromosome in the current
sequential population. We describe the parallel population migration in section 2.5.

2.5 Parallel Computational Model

In order to parallelize the open shop scheduling algorithm, the population was partitioned into sub-
populations that evolve independently using a sequential genetic algorithm. Interaction among
sub-populations is allowed through migration. The parallel execution model is a more realistic



P
1

P
1

P
1

P
2

P
2

P
2

P
3

P
3

P
3

P
4

P
4

P
4

Local Barrier

P
n−1

P
n

P
n−1

P
n

P
nP

n−1

Local Barrier Local Barrier

Master Process

Global Barrier

...

Figure 3: Parallel Model

simulation of natural evolution in which communities are isolated but occasionally interact through
migration or cross-communities mating (Sadiq and Youssef, 2000).
Parallel migration implies that changes in a population come not only from inheriting portions
of one’s parents’ genes, albeit with occasional random mutations, but also from the introduction
of new species into the population. In nature, this movement between sub-populations is often
a survival response that is responsible for several tasks including the selection and sending of
emigrants in addition to the reception and integration of these immigrants. Note that population
migration introduces communication overhead.
There are two common models for migration (Chipperfield and Fleming, 1996; Wilkinson and Allen,
1996), the island model where individuals are allowed to be sent to any other sub-populations and
the stepping stone model that limits migration only to neighboring sub-populations. Both models
have advantages and disadvantages. The obvious advantage is that, except for the communi-
cation of “best individuals” that occurs only once every k generations, both are embarrassingly
parallel1 in nature. Cohoon (Cohoon, Hedge, Martin and Richards, 1987) observed that when a
substantial number of individuals migrated between isolated sub-populations, new solutions were
found shortly after the migration occurred.
In order to reduce the communication overhead while ensuring a global migration of individuals,
we have adopted a hybrid approach that is based on the following. We allocate the sequential
GA (slaves) to groups where the number of processes within a group is set by the user. Next,
a group of processes share their best chromosomes every GN generation. On the other hand,
every LN generations, the best chromosome is broadcasted to all processes where GN � LN .
This approach gives the genetic algorithm a chance to reconstruct different layouts starting from
the best rather than from the initialized generations. Note that all processes are synchronized
through barriers.

2.6 Deterministic Optimization Operation

Minimizing Cmax is equivalent to minimizing the idle time on each machine. Idle time gaps are due
either to moves that are caused by the genetic operators, or to conflicts since the m-processor

1An embarrassingly parallel computation is an ideal parallel computation that can be divided into completely inde-
pendent tasks that can be executed simultaneously



Mk

M l

�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������

����������
����������
����������
����������

����������
����������
����������
����������

����������
����������
����������
����������

����������
����������
����������
����������

Idle Gap Job i

Job i

Figure 4: An example idle gap due to a scheduling conflict

schedules must be such that no job is processed simultaneously on two or more machines. The
first problem is easily solved by scheduling the operations using an as soon as possible method-
ology, after a genetic operator move. Thus, the operation is inserted in the earliest available time
slot. The second problem requires to locally deconstruct the schedule and reconstruct it again. In
what follows, we describe the ReduceGap operation.

2.6.1 ReduceGap Operation

The ReduceGap operation improves the performance of the genetic algorithm by deterministically
analyzing the schedule and passing hints to the genetic operators. Thus, if there is a ”large”
enough idle time gap in a machine’s schedule, the operation minimizes the gap by recommending
swapping the constraining operations. The ReduceGap operation results with pairs of values that
indicate positions in the data area of the chromosome to be swapped. The ReduceGap operation
communicates the information to the genetic operators via the scratch area as a pair consisting of
an operation to adjust, and a corresponding constraining causal operation.

2.6.2 ReduceGap Measure

In order to guide the optimization process, the ReduceGap operation uses the lower bound L in
equation 1.1. The rational is that if we are striving to find an ”optimum” finish time then L can
give a tight measure. The operation checks the difference, δ, between the finish time for each
machine, and the lower bound L in order to determine whether the idle time on each machine is
acceptable. If a given schedule contains any machine that is exceeding the allowed idle scheduling
time then the idle time gaps for that particular machine are analyzed, and the necessary moves
are recommended in order to minimize one of those idle time gaps.

2.6.3 ReduceGap Algorithm

The ReduceGap operator selects a gap in the machine schedule where δ exceeds the allowed
time. The algorithm uses two approaches based on a probability. The first approach traverses
the specific schedule from right to left and selects the first problematic gap. The second approach
selects randomly a gap in the machine. A problematic gap is gap that overlaps with a specific job
on one machine, and that is followed by the same job but on a different machine (Figure 4). The
position of the operation that is preceded by the gap as well as the position of another random
gene are recorded in the scratch area. Finally, the ReduceGap operator determines the gene’s
position at which the schedule makespan degrades causing the machine to exceed the current
best finish time. This particular piece of information is stored in the last position in the scratch
area.



Algorithm 1 Master Process
1: function MASTER PROCESS(JOBS, MACHINES)
2: Get the jobs, machines, and tasks
3: Get population size (N ) and number of generations (Ng)
4: Get the number of parallel slave processes to be spawned
5: Spawn all slaves
6: Broadcast N , Ng, jobs, machines, and tasks
7: end function

Algorithm 2 Slave Process
1: function PARALLEL GENETIC OSSP()
2: Get the jobs, machines, and tasks from the master
3: Get population size (N ) and number of generations (Ng)
4: Get the operator’s probabilities from the master
5: Evaluate the fitness of chromosomes using equation 2.1
6: for (i = 0; i < NumberOfGenerations; i++) do
7: ReduceGap()
8: Randomly select a chromosome from current pop for mating
9: Apply mutation with probability Pm

10: Select either a deterministic move or a random move subject to probability Pd

11: Select two chromosomes from current pop for mating
12: Apply crossover with probability Pxover

13: Select either a deterministic move or a random move subject to probability Pd

14: Evaluate the cost and the fitness using equation 2.1
15: Repeat the above forming a new population, new pop.
16: Perform local selection
17: if (i == LN ) then
18: local migration() . Broadcast the best chromosomes to neighboring processes
19: else if (i == GN ) then
20: global migration() . Broadcast the best chromosome
21: end if
22: end for
23: end function

2.7 Genetic Operators

In order to explore the design space, we use two genetic operators, mutation, and crossover.
The genetic operators are applied randomly as well as deterministically. It was observed that
following a purely deterministic approach constrains the solution, and may result with a premature
convergence to a local optima. Using a random approach slows down the convergence time, and
the algorithm would require a substantial amount of time in order to converge to a good solution.
Therefore, it is very important to find a balance between both approaches in order to obtain the
best results. The genetic operators are applied iteratively with their corresponding probabilities as
shown in Algorithm 2.

2.7.1 Mutation

The mutation operator selects two positions in a chromosome for possible swap. The positions
are selected either randomly or deterministically, based on a probability. In the first case, the
algorithm selects two random genes between 0 and (m× n)− 1, and swaps their positions. In the
second case, the mutation operator uses the information stored in the scratch area, and that was
determined by the ReduceGap operator. The information consists of an operation that it affects the
makespan of the schedule, and another operation that causes the first operation to be scheduled



Parameter Value
Crossover 25%
Mutation 75%
Determinism 60%
Population Size 400
Number of Generation 1000

Table 2: Parameter Settings

as such. For each of these pairs the mutator chooses randomly one of the hinted operations, and
moves it to another random position in a similar way to the random approach.

2.7.2 Crossover

We have implemented two different variations for the crossover operation. The first performs a
uniform crossover while ensuring the solution feasibility. The second approach uses the informa-
tion stored in the last gene of the scratch area. We use a parameter that can be tuned in order to
determine how often to use each approach. The operator creates two new offspring chromosomes
by swapping all the genes of the parents subject to the following steps:

1. Extract the value of the current gene in chromosome one.

2. If the value is not found in the new chromosome, then insert the value in the next available
empty gene. Otherwise, repeat step 1 and select the next gene until a value that is not
present in the new chromosome is found.

3. Repeat the same procedure for chromosome two.

4. Repeat the above procedure until the new offspring have all value permutations between 0
and (n×m)− 1.

The second approach performs crossover using the position that was determined by the Reduce-
Gap operator, and that was stored in the last gene of the scratch area. This information basically
indicates the position at which the schedule loses a potential quality solution. To illustrate why
this information is important, consider the case where a crossover point is randomly chosen such
that it is less than or equal to the position where the schedule loses its quality solution. Apply-
ing crossover at that section would result with a low quality schedule. However, if we select a
crosspoint that is before the critical position and we cross it over with the section from the second
chromosome, we could be generating a potential good candidate solution. In this implementation
we can also randomly decide from which of the two chromosomes to take the cross point, and
which one to use as the start of the new chromosome.

3 Parallel Algorithm

The parallel algorithm was implemented using the C language, and is shown in Figure 3, based on
a SPMD master-slave model. The master algorithm (Algorithm 1) reads the jobs and the machines



Figure 5: Schedule for an instance of problem 20× 20 with a makespan of 1292

as well as the problem parameters. This includes the migration parameters as well as the number
of slaves to be spawned. The master organizes the slave processes into groups and distributes
the subproblems among the slaves which do the actual computational work. The master is also
responsible for performing some analysis before the final results are produced.
The slave algorithm (Algorithm 2) receives the number of jobs, the number of machines, and the
corresponding tasks from the master. Furthermore, the master sends to the slaves the genetic
algorithm parameters such as the operators probabilities, the population size, and the number of
generations. Every slave generates its own local initial population and executes its own sequential
genetic algorithm. The GA operations are applied iteratively, and every operator has a probability
associated with it. At the end of each generation, the slave program computes the fitness value
for each chromosome, finds the best chromosome.
Every LN iterations, local population stabilizes. The algorithm introduces a new competition chro-
mosome from neighboring processes (processes that are running on the same machine). Every
GN iterations, all slaves broadcast their best chromosome to all other slaves. In both cases, the
best chromosome migration simulates a change in the environment and helps the sub-population
elements to rapidly evolve to adapt to this new change.

4 Experimental Results

4.1 Parameter Tuning

In order to apply the parallel genetic algorithm, several parameters have to be adjusted. Most
important are the control parameters such as crossover rate, mutation rate, population size N ,
and the number of generations Ng. We have performed experiments on a set of problems with
a crossover and a mutation rates that varied between 0.1 and 1. The population size was varied
between 100 and 5000 while the number of generations was varied between 50 and 5000. It was
determined experimentally that for the problems at hand, a population size of 400 and number of



 190

 195

 200

 205

 210

 215

 0  5  10  15  20  25  30  35  40  45

M
ak

es
pa

n

Generation

(a) 4×4-1 Taillard Benchmark

 950

 1000

 1050

 1100

 1150

 1200

 1250

 1300

 0  100  200  300  400  500

M
ak

es
pa

n

Generation

(b) 15×15-1 Taillard Benchmark

Figure 6: Number of generations vs. makespan for the 4×4-1 (Figure 1), and for the 15×15-1
Taillard Benchmark

generation of 1000 was sufficient to achieve good solutions. Furthermore, it was observed that a
crossover probability, Pxover, of 0.25 and a mutation probability, Pm, of 0.75 performed quite well.
Within the mutation itself, it is also important to regulate the amount of deterministic moves. It was
determined empirically that the best value for this parameter is a probability of 0.6.

4.2 Benchmark Results

The proposed method was implemented using C and MPI on an five-nodes Beowulf cluster, and
was evaluated using the Taillard benchmarks (Taillard, 1994). The GUI tool was implemented
using Java and includes a mechanism to trace through the schedule. The Taillard benchmarks
consist of a set of problem instances that are easy to generate; however, their size is large and
correspond to industrial problems. For the open shop, Taillard proposes problems where the
number of machines and jobs is the same (m×m), and uses 6 different sizes (4, 5, 7, 10, 15, 20)
where each problem has 10 instances.
Tables 3 and 4 show the results obtained after running each of the Taillard Benchmark instances
using the determined parameters (Table 2). The GA was executed 30 times for each instance. We

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

 1  2  3  4  5  6  7  8  9  10

S
p

ee
d

u
p

, 
S

(p
)

Benchmark

Figure 7: Speedup for the 20× 20− 1 benchmark



Instance Opt. (LB) Ours Difference (%) Average
4 x 4 - 1 193 193 0 193
4 x 4 - 2 236 236 0 236
4 x 4 - 3 271 271 0 271
4 x 4 - 4 250 250 0 250
4 x 4 - 5 295 295 0 295
4 x 4 - 6 189 189 0 189
4 x 4 - 7 201 201 0 201
4 x 4 - 8 217 217 0 217
4 x 4 - 9 261 261 0 261
4 x 4 - 10 217 217 0 217
5 x 5 - 1 300 300 0 300
5 x 5 - 2 262 262 0 262
5 x 5 - 3 323 323 0 323
5 x 5 - 4 310 310 0 310
5 x 5 - 5 326 326 0 326
5 x 5 - 6 312 312 0 312
5 x 5 - 7 303 303 0 303
5 x 5 - 8 300 300 0 300
5 x 5 - 9 353 353 0 353
5 x 5 - 10 326 326 0 326
7 x 7 - 1 435 447 2.75 452
7 x 7 - 2 443 456 2.93 468
7 x 7 - 3 468 470 0.42 496
7 x 7 - 4 463 468 1.08 482
7 x 7 - 5 416 419 0.72 435
7 x 7 - 6 451 461 2.21 475
7 x 7 - 7 422 430 1.89 455
7 x 7 - 8 424 426 0.47 441
7 x 7 - 9 458 465 1.52 477
7 x 7 - 10 398 408 2.51 420

Table 3: Taillard Benchmark Results

present the best solution found, and the average of all solutions found through the 30 runs. We
show the solution for an instance of the 20 × 20 benchmark in Figure 5 using our GUI interface.
Figure 7 illustrates the speedup factor for all 20×20 instances, and varied in this case between 2.28
and 2.89 using five processors. It should be noted that the setup time as well as the communication
time were considered when computing the speedup factor. Figures 6a and 6b depict the makespan
of the best chromosome in a population of 400. It is clear how quickly our method converges to
a good solution before it saturates. Furthermore, the sudden improvement in solution quality is
noticeable and this is due to migration.

5 Conclusion

This paper presented a parallel genetic algorithm to solve the open-shop scheduling problem. The
method is based on an interesting implementation of genetic operators that combines the use of
deterministic and random moves. The method was implemented using MPI on a Beowulf cluster.
Favorable results using the Taillard benchmarks were reported.



Instance Opt. (LB) Ours Difference (%) Average
10 x 10 - 1 637 673 5.65 686
10 x 10 - 2 588 601 2.21 619
10 x 10 - 3 598 610 2.00 632
10 x 10 - 4 577 586 1.55 605
10 x 10 - 5 640 659 2.96 668
10 x 10 - 6 538 556 3.34 577
10 x 10 - 7 616 632 2.59 639
10 x 10 - 8 595 610 2.52 625
10 x 10 - 9 595 615 3.36 635
10 x 10 - 10 596 617 3.52 633
15 x 15 - 1 937 972 3.73 1159
15 x 15 - 2 918 992 8.06 1197
15 x 15 - 3 871 914 4.93 1131
15 x 15 - 4 934 945 0.96 1167
15 x 15 - 5 946 1023 8.13 1192
15 x 15 - 6 933 986 5.68 1165
15 x 15 - 7 891 957 7.41 1143
15 x 15 - 8 893 938 5.03 1136
15 x 15 - 9 899 978 8.79 1119
15 x 15 - 10 902 962 6.65 1157
20 x 20 - 1 1155 1244 7.70 1268
20 x 20 - 2 1241 1344 8.29 1379
20 x 20 - 3 1257 1315 4.61 1347
20 x 20 - 4 1248 1330 6.57 1392
20 x 20 - 5 1256 1342 6.84 1352
20 x 20 - 6 1204 1292 7.30 1301
20 x 20 - 7 1294 1384 6.95 1404
20 x 20 - 8 1169 1292 10.52 1316
20 x 20 - 9 1289 1326 2.87 1383
20 x 20 - 10 1241 1317 6.12 1345

Table 4: Taillard Benchmark Results (Continued)



References

Blum, C. 2005. Beam-aco-hybridizing ant colony optimization with beam search: an application to
open shop scheduling, Computers and Operations Research 32(6): 1565–1591.

Brucker, P., Huring, J. and Wostmann, B. 1997. A branch and bound algorithm for the open-shop
problem, Discrete Applied Mathematics 76: 43–59.

Chipperfield, A. and Fleming, P. 1996. Parallel and Distributed Computing Handbook, McGraw
Hill, chapter Parallel Genetic Algorithms, pp. 1118–1193.

Cohoon, J., Hedge, S., Martin, M. and Richards, D. 1987. Punctuated equilibria: A parallel genetic
algorithm, Proceedings of the Second International Conference on Genetic Algorithm.

Garey, M. and Johnson, D. 1979. Computers and Intractability: A Guide to the Theory of NP-
Completeness, W. H. Freeman.

Gonzalez, T. and Sahni, S. 1976. Open shop scheduling to minimize finish time, Journal of the
Association for Computing Machinery 23(4): 665–679.

Gueret, C. and Prins, C. 1998. Classical and new heuristics for the open-shop problem: a compu-
tational evaluation, European Journal of Operational Research 107: 306–314.

H.-L.Fang, Ross, P. and Corne, D. 1993. A promising genetic algorithm approach to job shop
scheduling, rescheduling and open-shop scheduling problems, Proceedings of the Fifth Inter-
national Conference in Genetic Algorithms, pp. 375–382.

H.-L.Fang, Ross, P. and Corne, D. 1994. A promising hybrid GA/heuristic approach for open-
shop scheduling problems, ECAI Proceedings of the 11th European Conference on Artificial
Intelligence, Amsterdam, The Netherlands, John Wiley & Sons, Ltd, pp. 590–594.

Jiao, B. and Yan, S. 2011. A cooperative co–evolutionary quantum particle swarm optimizer based
on simulated annealing for job shop scheduling problem, International Journal of Artificial
Intelligence 7(11): 232–247.

Khmelev, A. and Kochetov, Y. 2015. A hybrid local search for the split delivery vehicle routing
problem, International Journal of Artificial Intelligence 13(1): 147–164.

Khuri, S. and Miryala, S. 1999. Genetic algorithms for solving open shop scheduling problems,
Proceedings of the 9th Portuguese Conference on Artificial Intelligence, EPIA ’99 Évora, Por-
tugal, September 21–24., Springer, pp. 357–368.

Lawler, E. L., Lenstra, J., Kan, A. R. and Shmoys, D. 1993. Sequencing and scheduling: Algo-
rithms and complexity, Handbooks in Operations Research and Management Science: Lo-
gistics of Production and Recovery 4: 445–522.

Liaw, C.-F. 1998. An iterative improvement approach for the nonpreemptive open shop scheduling
problem, European Journal of Operational Research 111: 509–517.

Liaw, C.-F. 1999a. Applying simulated annealing to the open shop scheduling problem, IIE Trans-
actions 31(5): 457–465.

Liaw, C.-F. 1999b. A tabu search algorithm for the open shop scheduling problem, Computers and
Operations Research 26(2): 109–126.



Liaw, C.-F. 2000. A hybrid genetic algorithm for the open shop scheduling problem, European
Journal of Operational Research 124: 28–42.

Pinedo, M. 1995. Scheduling: Theory, Algorithms, and Systems, Prentice Hall.

Precup, R.-E., David, R.-C., Petriu, E., Preitl, S. and Rădac, M.-B. 2013. Fuzzy logic–based
adaptive gravitational search algorithm for optimal tuning of fuzzy controlled servo systems,
IET Control Theory & Applications 7(1): 99–107.

Sadiq, S. and Youssef, H. 2000. Iterative Computer Algorithms with Applications in Engineering:
Solving Combinatorial Optimization Problems, Wiley-IEEE Computer Society Press.

Taillard, E. 1994. Benchmarks for basic scheduling problems, European Journal of Operational
Research 64: 278–285.

Wilkinson, B. and Allen, M. 1996. Parallel Programming: Techniques and Applications using
Networked Workstations and Parallel Computers, Prentice Hall.

Zăvoianu, A.-C., Bramerdorfer, G., Lughofer, E., Silber, S., Amrhein, W. and Klement, E. P. 2013.
Hybridization of multi-objective evolutionary algorithms and artificial neural networks for opti-
mizing the performance of electrical drives, Engineering Applications of Artificial Intelligence
26(8): 1781–1794.


	paper.pdf
	Introduction
	Related Work
	Genetic Algorithms
	Problem Description

	OSSP Parallel Genetic Algorithm
	Chromosomal Encoding
	Initial Population
	Fitness Function
	Selection and Reproduction
	Parallel Computational Model
	Deterministic Optimization Operation
	ReduceGap Operation
	ReduceGap Measure
	ReduceGap Algorithm

	Genetic Operators
	Mutation
	Crossover


	Parallel Algorithm
	Experimental Results
	Parameter Tuning
	Benchmark Results

	Conclusion


