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ABSTRACT 

This paper evaluates the use of fuzzy unordered rule induction algorithm (FURIA) with correlation 
based feature selection (CFS) embedded feature subset selection as a tool for misfire detection. 
The vibration data of the automobile engine contains the engine performance data along with 
multitudes of other information. The decoding of engine misfire condition was achieved by 
processing the statistical features of the signals. The quantum of information available at a given 
instant is enormous and hence suitable techniques are adopted to reduce the computational load 
due to excess information. The effect of recursive entropy discretiser as feature size reduction tool 
and CFS based feature subset selection is analysed for performance improvement in the FURIA 
model. The FURIA based model is found to have a consistent high classification accuracy of 
around 88% when designed as a multi class problem and approaches 100% when the system is 
modeled as a two-class problem. From the results obtained the authors conclude that the 
combination of statistical features and FURIA algorithm is suitable for detection of misfire in spark 
ignition engines. 
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1.INTRODUCTION 
 
Growth in global economy has brought along insurmountable environmental challenges threatening 

the very source of existence. A major part of this pollution can be attributed to transportation systems 

using internal combustion (IC) engines. Many countries have made it mandatory to rein in pollution 

due to IC engines using a combination of technology and monitoring systems. The engine diagnostic 

system of the vehicle should be designed to monitor misfire continuously because even with a small 

number of misfiring cycles, engine performance degrades, hydrocarbon emissions increase, and 

drivability will suffer (Lee & Rizzoni, 1995). The cylinder misfire cycle also results in a large quantity of 

unburned fuel being sent through the catalytic converter, which causes a reduction in its service life 

due to high temperature exposures (Klenk, et al., 1993) and also contributes to significant air



 

pollution. The California Air Resources Board (CARB) regulations (California Air Resources Board, 

1991) defines engine misfire as, “lack of combustion in the cylinder due to absence of spark, poor fuel 

metering, poor compression, or any other cause”. Misfire detection in an internal combustion engine is 

very crucial to maintain optimum performance throughout its service life and to reduce emissions. 

The use of Harr and Daubechies wavelets for signal processing by approximation (Yajnik & Mohan.S, 

2009) is a workable idea but the use of signal approximation techniques could lead to loss of 

information, hampering the possibility of growing this model in to a full vehicle monitoring system. The 

use of wavelet based clustering techniques (Palanisamy & Selvan, 2009) for handling high dimension 

data is encouraging. Similarly the use of pattern recognition techniques including wavelets for 

structural health monitoring reported by Navarro and Mejia (Navarro & Mejia, 2010) can be reliably 

extended for detection of misfire. A detailed work is reported by Jinseok (Chang, et al., 2002) using a 

combination of engine block vibration and wavelet transform to detect engine misfire and knock in a 

spark ignition engine. The use of engine block vibration is encouraging since it requires minimum 

instrumentation. The use of wavelets in all the cited work has one common challenge; the 

requirement of increased computational capability to deal with the additional load induced into the 

model due to wavelets. The use of support vector machines (SVM) for pattern recognition when 

compared to neural network, method of least squares or linear discriminant analysis produces less 

misclassification rate hence more suitable for real time applications (Kalyani & Swarup, 2010). Misfire 

detection using SVM reported by (Devasenapati, et al., 2010a) demonstrates good classification 

efficiency but the main concern here is the computational complexity of SVM which could pose a 

serious challenge for implementation in an online model. 

 

Extensive studies have been done using measurement of instantaneous crank angle speed (Tinaut, 

et al., 2007) and diverse other techniques have been developed on similar lines to predict misfire (Lee 

& Rizzoni, 1995). These methods call for a high resolution crank angle encoder and associated 

infrastructure capable of identifying minor changes in angular velocity due to misfire. The application 

of these techniques becomes more challenging due to continuously varying operating conditions 

involving random variation in acceleration coupled with the effect of flywheel, which tries to smoothen 

out minor variations in angular velocity at higher speeds. Fluctuating torque experienced by the 

crankshaft through the drive train poses additional hurdles in decoding the misfire signals. In-cylinder 

pressure monitoring is very reliable and accurate as individual cylinder instantaneous mean effective 

pressure could be calculated in real time. However, the cost of fitting each cylinder with a pressure 

transducer is prohibitively high. This initiated the quest for identifying a low cost model capable of 

competing with the existing solutions.  

 

The idea of using imprecise knowledge for developing a system that could relate to real time 

quantifiable information has been presented by (Johanyák, 2010). The development of fuzzy logic 

controllers for managing chaotic and non-linear systems have been presented by Precup et.al., 

(Precup, et al., 2008) and (Precup, et al., 2010) which demonstrates the capabilities of fuzzy logic 

controllers in control critical applications. The prospect of using fuzzy logic in engines has been 



 

explored by (Liu, et al., 2000) using crank shaft angular velocity as the base and the same authors 

have reported the use of multiple feature fusion techniques (Liu, et al., 2002). The first technique uses 

a crank angle encoder and the second technique uses multiple features from various domains and 

hence both these techniques have cost and computation challenges, prompting to investigate the 

possibility of alternative low cost solutions but have validated the use of fuzzy algorithms for misfire 

detection. 

 

The specific contribution of this work involves the development of a low cost, reconfigurable, 

automated machine learning model capable of working as an expert system for detection of misfire in 

IC engines using a mono axial piezoelectric accelerometer. The model is future proofed for the engine 

with the use of various data pre-processing techniques to avoid performance deviations due to 

deviation in signal pattern, which is expected with advancement in age of the engine. The expert 

system stretches itself to identify the exact cylinder in which the misfire occurs which is very useful in 

identifying the fault location.  

 

The present study proposes a non-intrusive engine block acceleration measurement using a 

piezoelectric accelerometer connected to a computer through a signal conditioner. The acquired 

analog vibration signals are converted to digital signals using an analog to digital converter and the 

discrete data files are stored in the computer for further processing. Feature extraction, feature 

reduction and feature subset selection techniques are employed and the classification results 

obtained are presented in the ensuing discussion.  

 

The section 2 describes the experimental setup, the data acquisition methodology using 

accelerometer and the signal conditioning unit while section 3 describes the experimental procedure 

in detail. The methods involved in data preprocessing like feature extraction, feature reduction and 

feature subset extraction are presented in section 4 and the detailed working of the FURIA and 

various stages of work by the algorithm is presented in section 5. The results and discussion are 

presented in detail under section 6 followed by conclusion in section 7. This study establishes that the 

combination of statistical features and FURIA algorithm is well suited for detection of misfire in spark 

ignition engines. 

 
 

2. EXPERIMENTAL SETUP  
 
The misfire simulator consists of two subsystems namely, IC engine test rig and data acquisition 
system. They are discussed in the following subsections. The model building process is presented in 
Figure 1.  
 

 
2.1 IC Engine test rig 

 



 

The experimental setup of the engine misfire simulator consists of a four stroke vertical four cylinder 
gasoline (petrol) engine. Misfire in the cylinder is simulated by switching off the high voltage electrical 
supply to individual spark plugs. The engine accelerator is manually controlled using a screw and nut 
mechanism that can be locked in any desired position. The engine speed is monitored using an 
optical interference tachometer.  
 
 

2.2 Data acquisition system 
 
Accelerometers have a wide operating range enabling them to detect very small and large vibrations. 
The vibration sensed is a reflection of the internal engine condition. The voltage output of the 
accelerometers is directly proportional to the vibration. A mono axial piezoelectric accelerometer and 
its accessories form the core equipment for vibration measurement and recording. The accelerometer 
is directly mounted on the center of the engine block, in between cylinder two and three, using 
adhesive mounting as shown in Figure 2. The output of the accelerometer is connected to the signal 
conditioning unit that converts the analogue signal into digital form. The digitized vibration signal (in 
time domain) is stored in the computer for further processing. 
 
 

3. EXPERIMENTAL PROCEDURE 
 
The engine is started by electrical cranking at no load and warmed up for 15 minutes. The signal 
conditioner is switched on, the accelerometer is initialized and the data is recorded after the engine 
speed stabilizes at 1500 rpm. A sampling frequency of 24 kHz and sample length of 8192 is 
maintained for all conditions. The highest frequency was found to be 10 kHz. The Nyquist–Shannon 
sampling theorem recommends that the sampling frequency must be at least twice that of the highest 
measured frequency or higher, hence the sampling frequency was chosen to be 24 kHz.  
 
Extensive trials were taken and discrete vibration signals were stored in the files. Five cases were 
considered - normal running (without any misfire), engine with any one-cylinder misfire individually 
(i.e. first, second, third or fourth denoted by C1m, C2m, C3m and C4m respectively). All the misfire 
events were simulated at 1500 rpm, the rated speed of the engine electrical generator set. A sample 
plot of misfire and no-misfire recorded at 1500 rpm is presented in Figures 3a and 3b respectively. 
 
 

4. FEATURE EXTRACTION 
 
Statistical Features: Statistical analysis of vibration signals yields different parameters. The statistical 
parameters taken for this study are mean, standard error, median, standard deviation, sample 
variance, kurtosis, skewness, range, minimum, maximum and sum. These features were extracted 
from the vibration signals. The definitions for these features are commonly available and hence not 
presented. 
 
 

4.1 Feature reduction 
 



 

The wealth of information available in the extracted features is abundant and at times overwhelmingly 
large enough to distract the machine learning system leading to inferior performance. Data 
granulation as a means of feature reduction has many advantages since it reduces the content 
volume and makes it easy to handle lot of information without challenging the system resources. But 
the technique to discretise or compress data without loss of valuable information is the key challenge.  
There are many techniques reported in the literature but an algorithms that can suit the given 
condition needs to be validated by using the transformed data for developing the model  and 
comparing it with the performance of the model built without data pre processing to establish 
performance improvements. 
 
The Fayyad and Irani (FI) model (Fayyad, 1993) uses a supervised hierarchical split method where 
multiple ranges are created instead of binary ranges to form a tree. Multi-way splits of the numeric 
attribute at the same node are performed to produce discrete bins. The number of cut points is 
determined using the Minimum Description Length (MDL) principle. Here class information entropy is 
a measure of purity and it measures the amount of information which would be needed to specify the 
class to which an instance belongs (Dougherty, et al., 1995). Information entropy minimization 
heuristic is used to select threshold boundaries by finding a single threshold that minimizes the 
entropy function over all possible thresholds (Michael & Ciesielsk, 2003). This entropy function is then 
recursively applied to both of the partitions induced. Thresholds are placed half way between the two 
delimiting instances. At this point the MDL stopping criterion is applied to determine when to stop 
subdividing discrete intervals, (Fayyad, 1993).   
 

 
4.2 Feature subset selection 

 
Including all the features may improve the classification accuracy but the probability of over fitting the 
model saddled with additional computational load outweighs their consideration.  
 
It is observed from the computations that there are significant differences in some of the feature 
values for different types of faults. Selecting those features is crucial for effective classification and 
doing it manually demands more expertise; however, the effectiveness of the manually selected 
features is not guaranteed. Selecting the most relevant features through suitable algorithm will yield 
better classification results. Here feature subset selection (FSS) is performed using Correlation based 
Feature Selection (CFS). CFS is an algorithm for selecting features that are highly correlated with the 
class but uncorrelated with each other (Hall, 2000). CFS has the ability to identify irrelevant, 
redundant, and noisy features from relevant features as long as their relevance does not strongly 
depend on other features. This method is adapted for building the model since signal corruption due 
to noise is more predominant in IC engines. The effect of using CFS on the developed model is 
studied. 
 
From a list of 11 statistical features presented the CFS has recommended the following features as 
most prominent ones to be used for model building. They are standard error, standard deviation, 
sample variance, skewness, range and minimum. 
 
 
 



 

 
 

5. CLASSIFIER 
 
Fuzzy logic based classifier is used to build this expert system for misfire detection. Fuzzy logic is a 
system of knowledge that provides a simple method to draw definite conclusions from vague, 
ambiguous or imprecise information (Zadeh, 1965). The fuzzy logic mimics the human decision 
making process with its ability to work using approximate data to find precise solutions. Unlike 
classical logic which requires a deep understanding of a system, exact equations, and precise 
numeric values, fuzzy logic incorporates an alternative way of thinking, which allows modeling 
complex systems using a higher level of abstraction originating from user knowledge and experience.  
 
Fuzzy Logic finds numerous applications in the wake of continuously increasing system complexity 
which challenges the ability of existing techniques to make a precise statement about its behavior. 
The working process of the fuzzy logic analysis and control method can be summarized as follows 
(Sowell, 2008): 
1. Receiving measurement or other assessment of conditions existing in the system  
2. Processing these inputs using fuzzy "If-Then" rules. These rules can be expressed in plain linguistic 

terms. 
3. Averaging and weighting the resulting outputs from all the individual rules into one single output 

decision or signal. The output signal eventually arrived at is a precise appearing, defuzzified, 
"crisp" value.  

The basic principle of fuzzy logic is to map an input space to an output space, and the primary 
mechanism for doing this is a list of ‘if-then’ statements called rules. Rules are the inputs for building a 
fuzzy inference engine. All rules are evaluated in parallel; hence, the order of the rules is unimportant. 
The rules are generated based on a membership function. A membership function is a curve that 
defines how each point in the input space is mapped to a membership value (or degree of 
membership) between 0 and 1 as represented in Figure 4a. A set of ‘if-then’ rules defined using 
Membership Functions (MF) form the knowledge base for the fuzzy inference engine and is used for 
classification. 
 
 

5.1 Working of FURIA 
 
FURIA uses Ripper; an implementation of Cohen's Ripper (JRip) (Cohen, 1995) as the base classifier 
and learns fuzzy rules instead of conventional rules. FURIA proposes to learn a rule set for every 
single class, using a one versus rest decomposition and learns to separate each class from all other 
classes. This implies that no default rule is used and builds unordered rule sets instead of rule lists; 
hence the order in which the classes are presented is irrelevant (Hühn & Hüllermeier, 2009b). The 
FURIA algorithm can be explained by describing FURIAs working in a polychotomous classification 
problem involving m classes. It can be represented as  

L = {Z1 . . . . . . . .Zm}                        (1) 
Where  
L is the set of all classes in the classification problem and  
Z represents the individual class, in short (Z  L). 

 



 

These instances are represented in terms of numerical attributes Ai and Di denotes the corresponding 
domains, where I = 1 to n. Using this formulation any given instance can be represented as an n 
dimensional attribute vector as follows  

x = (x1 . . . . xn)   D                        (2) 

Where 
 D = D1 x . . . . . x Dn 

In the current work the n-dimensional attribute vector is the set of statistical features that are used to 
develop the classification system and each class i.e. misfire in each cylinder is represented by a 
combination of the selected statistical features. The rule building process of FURIA delves extensively 
into RIPPER algorithm where a single rule is represented in the following form  
 
                               (3) 

Where 
rA is a combination of predicate or the features 
rC is the consequent part as a result of rA 

The premise part is a combination of features which is of the form (Ai θ Vi) where θ  {<,=,>=} and           

Vi  Di. The consequent part rC represents the class label assigned in the form class = Z where Z  L. 

This essentially represents a rule of the form if . . . . then . . . . else. The stated rule format 
represented by Equation (3) is said to cover an instance represented by x = (x1 . . . . xn) if the attribute 
values xi satisfy all the predicates in rA. 

The FURIA learns rules using a greedy approach implementing a separate and conquer strategy as 
presents by Fürnkranz (Fürnkranz, 1999). Rules are learnt for the first m-1 classes, starting with the 
smallest rule. The instances covered by the formed rules are removed from the training data once the 
rule is learnt and this format is adapted until no instances from the target class are left. This procedure 
is repeated for all the classes. 
 
 

5.1.1 Rule growing 
 
The process of growing a rule is achieved using a propositional version of the First Order Inductive 
Learner (FOIL) algorithm by Quinlan and Cameron (Quinlan & Cameron, 1993). The rule is initiated 
with an empty conjunction and adds features or selectors until the rule covers no more negative 
instances, i.e., instances not belonging to the target class. The next prospective feature is chosen in 
such a manner that it maximizes FOIL's information gain criterion (IG), which is a measure of 
improvement of the rule in comparison with the default rule for the target class and is given by 
 

                     (4) 

Where, 
Pr and nr represents the number of positive and negative instances covered by the rule under 
growing phase while  
P and n represents the number of positive and negative instances covered by the default rule 

 
Some rules over fitting the training data is observed in this process and is effectively mitigated by rule 
simplification or optimization. The pruning is done after rule learning for all classes are completed and 



 

not at each stage as done in the RIPPER algorithm. For the pruning procedure, the antecedents are 
considered in the order in which they were learned, and pruning actually means finding a position at 
which the list of antecedents can be cut without compromising the classification capability of the rule. 
This also reduces the system complexity and helps in maintaining the minimum description length for 
all the rules. The criterion to find the truncation point in the rule-value metric is as described by Hühn 
and Hüllermeier (Huhn & Hullermeier, 2009a). 
 
 

5.1.2 Rule fuzzification 
 
The fuzzification of the rule is achieved by replacing the intervals with fuzzy intervals. The fuzzy 
intervals in turn represent fuzzy sets which are formed using trapezoidal membership function as 
shown in Figure 4b. The process of rule fuzzification as presented by Huhn (Hühn & Hüllermeier, 
2009b) describes that “A selector constraining a numerical attribute Ai (with domain Di = R) in a 
RIPPER rule can be expressed in the form (Ai  I ), where I  is contained in R, is an interval: I = (−∞, v] 

if the rule contains a selector (Ai ≤ v), I = [u,∞) if it contains a selector (Ai ≥ u), and I = [u, v] if it 
contains both”. A fuzzy interval is specified by four parameters and will be written as 

 I F = (Фs,L, Фc,L, Фc,U, Фs,U)                    (5) 
 

                  (6) 

 
FURIA uses a trapezoidal membership function as shown in Figure 4b where IF represents the class 
interval, Фs,L and Фs,U represent the lower and upper support levels for the interval while Фc,L and Фc,U 
represent the lower and upper bounds for the core set. FURIA replaces the crisp boundaries with 
trapezoidal functions according to the class information available at the training phase, also called 
rule building phase. The function is not constrained by requirements for symmetry or being in a closed 
interval which is depicted in Figure 4a and 4b respectively. Figure 4a is open ended whereas 4b is 
closed and not symmetric. FURIA is less complex in the sense that the membership function for each 
class is generated by the algorithm and the inference is presented in the form of rules which can be 
decoded directly; similar to that of any rule based classifier.  

 
Figure 4a Membership function with open interval in upper bound 
 
Figure 4b Non-symmetric trapezoidal membership function 
 
Taking the intervals Ii of the original rules as the cores [Фi

c,L, Фi
c,U ] of the sought fuzzy Intervals  the 

problem is to find optimal bounds for the respective supports, i.e., to determine Фi
s,L, Фi

s,U 



 

The process of fuzzification of a single antecedent represented by (Ai  Ii) it is imperative to consider 

only the relevant training data   which means the system should ignore those instances that are 

excluded by any other antecedent     

        (7) 

For an elaborate description of the algorithm it is recommended to refer the work by Huhn (Hühn & 
Hüllermeier, 2009b). Since the rules are based on fuzzy sets a post de-fuzzification of the result is not 
necessary in this system. The rules directly deliver the class value as output. 
 
 

5.1.3 FURIA rules and inference 
 

1. (kur in [-inf, -inf, 0.183662, 1.102526]) => state=good (CF = 0.99) 
2. (min in [-inf, -inf, -0.77791, -0.770133]) and (se in [0.001914, 0.001916, inf, inf]) and (skew in [-

inf, -inf, 3.627241, 3.663284]) => state=c1m (CF = 0.99) 
3. (min in [-inf, -inf, -0.715099, -0.705441]) and (se in [0.001952, 0.001955, inf, inf]) and (kur in [-

inf, -inf, 46.674071, 47.360043]) => state=c1m (CF = 0.92) 
4. (min in [-inf, -inf, -0.688596, -0.664114]) and (kur in [-inf, -inf, 39.67244, 39.696621]) and (se in 

[0.001835, 0.001857, inf, inf]) and (skew in [-inf, -inf, 2.965135, 2.978808]) and (kur in 
[25.983998, 27.09646, inf, inf]) => state=c1m (CF = 0.98) 

5. (min in [-inf, -inf, -0.688596, -0.68826]) and (se in [0.001917, 0.001925, inf, inf]) and (kur in [-
inf, -inf, 43.618984, 43.701093]) and (skew in [-inf, -inf, 3.39066, 3.39729]) => state=c1m (CF 
= 0.98) 

6. (se in [0.001718, 0.001739, inf, inf]) and (skew in [-inf, -inf, 2.330569, 2.399919]) => state=c1m 
(CF = 0.65) 

7. (se in [0.001947, 0.001953, inf, inf]) and (skew in [-inf, -inf, 3.687214, 3.710682]) => state=c1m 
(CF = 0.92) 

8. (min in [-inf, -inf, -0.790249, -0.647234]) and (skew in [-inf, -inf, 3.17084, 3.178481]) and (se in 
[0.001871, 0.001878, inf, inf]) and (kur in [34.028453, 35.344428, inf, inf]) => state=c1m (CF 
= 0.98) 

9. (se in [0.002026, 0.002042, inf, inf]) => state=c1m (CF = 0.88) 
10. (se in [-inf, -inf, 0.001401, 0.001571]) => state=c2m (CF = 0.99) 
11. (min in [-inf, -inf, -0.677865, -0.670902]) and (se in [-inf, -inf, 0.001822, 0.001822]) and (skew 

in [1.766063, 1.789447, inf, inf]) => state=c3m (CF = 0.98) 
12. (kur in [52.17887, 52.256831, inf, inf]) => state=c3m (CF = 0.84) 
13. (kur in [41.163852, 41.872439, inf, inf]) and (se in [-inf, -inf, 0.001862, 0.001862]) => 

state=c3m (CF = 0.81) 
14. (skew in [1.266158, 2.220344, inf, inf]) and (se in [-inf, -inf, 0.001846, 0.001848]) => 

state=c3m (CF = 0.87) 
15. (kur in [46.674071, 48.041141, inf, inf]) and (min in [-inf, -inf, -0.851113, -0.843388]) => 

state=c3m (CF = 0.75) 
16. (skew in [1.060682, 2.978808, inf, inf]) and (se in [-inf, -inf, 0.001876, 0.001876]) and (kur in [-

inf, -inf, 40.526977, 40.946652]) and (min in [-0.811254, -0.780305, inf, inf]) => state=c3m 
(CF = 0.84) 



 

17. (kur in [37.168119, 39.494076, inf, inf]) and (min in [-0.677865, -0.675765, inf, inf]) and (se in 
[0.001913, 0.001914, inf, inf]) and (max in [-inf, -inf, 3.072211, 3.077719]) => state=c4m (CF 
= 0.97) 

18. (skew in [2.986058, 2.990408, inf, inf]) and (se in [-inf, -inf, 0.001909, 0.001961]) and (sd in 
[0.168523, 0.168523, inf, inf]) => state=c4m (CF = 0.65) 

 
The inferences from the rules directly deliver the classification. Consider equation (1) where the rule 
says that for all instances of kurtosis equal to or greater than 0.183662 and less than 1.102526 will 
belong to Good i.e. no misfire and the rule has a certainty factor or confidence factor of 0.99. Any 
value lying outside this boundary does not belong to the class “Good”. The confidence factor of 0.99 
signifies very high rule strength. If multiple features are involved then the features are linked using the 
operator “and” only as observed in all the rules except rule 1. Other operators like “or, not” etc., are 
not required since the rules are pruned using the minimum possible description length. They will not 
be grown further if the smallest rule itself can effectively accomplish the classification. This 
observation is generally valid for all rule based classifiers. Discussion of the rules and their impact on 
the classifier is presented in the following section. 
 
 

6. RESULTS AND DISCUSSION 
 
The development of the expert system for misfire detection using Fayyad and Irani discretisation and 
decision tree based feature subset evaluator embedded in to a fuzzy round robin classifier algorithm 
is discussed with the implications of the following factors 

• Classification accuracy of the classifier without data preprocessing 
• Dimensionality reduction or feature reduction using Fayyad and Irani’s algorithm 
• Features subset selection using CFS 

From the experimental setup through data acquisition, 200 signals have been acquired for each 
condition. The conditions are mentioned in section 3 and the features were extracted as mentioned in 
section 4. These features are pre-processed using feature reduction and features subset selection 
techniques and the effect of these techniques on the FURIA model is thoroughly investigated. 
 
 

6.1 Evaluation of classifier 
 
Evaluation of the FURIA classifier is performed using the standard tenfold cross validation process. 
The misclassifications details pertaining to FURIA without any data pre-processing is presented in the 
form of a confusion matrix in Table 1. C1m represents misfire in cylinder 1, C2m, C3m and C4m 
represents misfire in cylinder 2, 3 and 4 respectively. Good represents no misfire in any cylinder. The 
diagonal elements shown in the confusion matrix represents the correctly classified points and non-
diagonal elements are the misclassified instances. Referring to Table 1, it is evident that the 
misclassification among the faulty conditions and ‘good’ condition is minimal. However there are 
misclassifications among the faulty conditions which do not compromise the prediction accuracy but 
the converse is undesirable. For example consider row C1m in which 182 conditions are correctly 
identified as misfire in C1 but 8 are wrongly identified as misfire in C3, 8 in C4 and 2 in good. A 
specific setback at this point indicated in row C1m is that, two instances of misfire are wrongly 
misclassified as good, which is undesirable. We can infer that, adequate data preprocessing and 



 

model fine tuning are essential to avoid misclassification of good as misfire or vice versa. This model 
in the current form is not robust enough for real time application. Data preprocessing using FI model 
and FSS using CFS are embedded in to the model and evaluated for performance and robustness. 

 
 
Table 1 Confusion matrix – FURIA with all features considered 

 
 
 
 
 
 
 
 
 
 
Table 2 FURIA Classifier performance evaluation chart 
 

 
Without data 

preprocessing 
With FI 

discretisation 
With CFS 

based FSS  

With CFS based 
FSS and FI 

discretisation 
Model performance 

 
88.4 87.6 87.3 86.9 

Processing time taken 
in seconds 

47.3 36.3 31.3 35.9 

Number of rules 
generated by model 

22 36 18 38 

Model performance 
in two-class mode 

99 98.5 99 97 

 
 
 
Table 3 Decision tree Classifier performance chart 
 

 
Without data 

preprocessing 
With FI 

discretisation 
With CFS 

based FSS  

With CFS based 
FSS and FI 

discretisation 
Model performance 

 
87.6 87.5 89.3 87.2 

Model performance 
in two-class mode 

99 100 99 100 

 
 
The performance values depicted in Table 2 clearly portrays the performance of the developed model 
when subjected to various data preprocessing techniques. From the table it is evident that including 
all the data gives better performance but there is a risk of performance reduction due to model over 

STATE Good C1m C2m C3m C4m 

Good 200 0 0 0 0 
C1m 2 182 0 8 8 
C2m 0 0 200 0 0 
C3m 0 23 0 135 42 
C4m 0 16 0 17 167 



 

fitting the data. In a later date when the engine noise increases due to wear, there are possibilities of 
the model suffering setbacks due to increased misclassifications. Detailed investigations reported by 
(Devasenapati, et al., 2010) on similar systems using decision trees are prone to instabilities when 
change in signal pattern appears due to ageing of the engines. The reported work has not used data 
preprocessing techniques which are proven to generalize the model for robust performance. The data 
has been used to build a decision tree classifier with data preprocessing for the sake of comparing 
performance. This rule based classifier is considered a bench mark classifier to evaluate other new 
algorithms. Table 3 depicts the performance of decision tree with similar conditions and it can be 
observed that all variations in decision tree are very much comparable to FURIA and achieve 
comparable classification efficiency. The model using CFS based features is selected since it has a 
higher performance in multi class mode and also performs well in two class mode but if only two class 
mode is essential then the option with CFS based FSS and FI discretisation can be chosen. However 
a judicious decision has to be taken among the available alternatives to freeze the best among the 
developed models. 
 
On closely observing the rules presented in section 5.1.3 it is observed that conditions which were 
defined using a single rule (i.e. good and C2m) had the highest classification efficiency as depicted in 
(1,1) and (3,3) in table 1. The number of rules pertaining to C1m and C3m are the highest but when 
confidence factor (CF) is considered the condition C1m has rules with an average CF of 0.93 hence a 
higher classification accuracy is achieved but when condition C3m is evaluated the confidence factor 
of almost all the rules are less than 90% and the average CF is 0.85 leading to loss of classification 
accuracy. The loss of classification accuracy may be due to physical variations in components specific 
to cylinder 3. The system is aiming at forming more rules to capture the information for classifying 
C1m and C3m due to inherent noise in the signal but the strength of the rule is reflected by the CF 
value assigned to it. The best fuzzy system is the one which can classify the classes with minimum 
number of rules with a CF value as close to 1 as possible and capable of achieving 100% 
classification accuracy. 
 
       Table 3 Analysis of rules per class 
 
 
 
 
 
The fuzzy rule based classifier by virtue of its operation will avoid features that do not have 
appreciable information for classifications and hence those features will not form part of the classifier. 
The algorithm by itself performs data granulation however the effect of external data granulation 
(Fayyad, 1993) and feature subset selection (Hall, 2000) techniques have been analysed.  
 
The results in Table 2 clearly confirms the findings and establishes the fact that the standalone FURIA 
classifier takes longer time in arriving at a decision compared to a hybrid expert system having 
additional data discretisation or feature subset selection algorithm supporting FURIA. This validates 
the need for using FI discretiser or CFS based FSS, both with comparable classification accuracy but 
with significantly reduced computation time required for arriving at a decision when compared to the 
stand alone FURIA model. The main advantage of proposing the use of FURIA is due to the fact that 
it has a novel rule stretching algorithm which is invoked when an unseen instance appears in the 

STATE Good C1m C2m C3m C4m 

Number 
of rules 

1 8 1 6 2 



 

system. This is very attractive given the possibility of change in engine signature due to wear and 
tear. 

 
 

 
7. CONCLUSION 

 
In a condition monitoring activity fault identification forms the major objective and fault classification 
comes second in priority. In this context, the present algorithm performs fault identification 
(differentiating between good and faulty conditions) sufficiently well since it has not misclassified any 
instances out of 1000 samples supplied. This is calculated by considering good as one class and all 
defects as the second class. This assumption is logically valid since misfire detection is crucial and 
the identification of the exact cylinder where misfire happens is not critical. 
 
From the results presented it is encouraging to conclude that FURIA based model is suitable for 
detection of misfire in IC engines. A relationship between the number of rules and the classifier 
accuracy or the computation time could not be inferred since the size and complexity of the rule could 
not be evaluated. Specifically focusing on the two-class model result that is presented in the fourth 
row of Table 2, one is able to infer that data preprocessing is absolutely necessary for improving the 
performance of the expert system and to reduce computational time required to arrive at a decision. 
The authors conclude that the model based on FI data discretisation is the best since it has 99% 
classification accuracy combined with minimum processing time of 31.3 seconds. 
 
It should be noted that these results are specific to this application and cannot be generalized to other 
similar applications. Further studies are to be conducted on different engines at different operating 
conditions in order to generalize this finding. 
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Figure 1 Flowchart for fault diagnosis system. 
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Figure 2 Experimental setup 

 
 
 
 
   
   
 

 
Figure 3a Amplitude plot-cylinder1 misfire               Figure 3b Amplitude plot- no misfire 
 
 
 

 
 

 
 
 
 
 
 

 
Figure 4a Membership function with open interval in upper bound 
 
 
 
 
  

 

 

 

  

  

 Figure 4b Non-symmetric trapezoidal membership function 
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