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ABSTRACT

We consider a traffic routing algorithm, which requires modelling of individual routing pref-

erences and is based on a selection of the shortest itinerary. This selection leads to

route comparison on the basis of historical data and dynamic observations. We propose

a generic cloud-based system architecture, based on the collaboration of individual and

cloud agents and resampling-based pairwise route comparison in a stochastic graph. The

weights of the edges are considered to be independent random variables with unknown dis-

tributions. Only historical samples of the weights are available, and some edges may have

common samples. We estimate the probability that the weight of the first route is greater

than that of the second one. The analytical expressions for the expectations and variances

allow theoretical evaluation of the method. To choose from the available alternative routes

we apply a four-step decision-making process, instantiated for route recommendations and

Markov chain based route ranking method for selection of the final decision. The experi-

mental results demonstrate that the resampling estimates are more precise than parametric

plug-in ones in the case of extreme small or extreme large sample sizes.
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1 Introduction

Modern Internet and communication opportunities open new perspectives on the development

of intelligent transport systems (ITS). Technologies such as cloud and grid computing, the

Internet of Things concept and ambient intelligence methods allow the development of new

applications, to hide the complexity of data and algorithms in the network. This allows traffic

participants to run simple applications on their mobile devices, which provide clear recommen-

dations on how they should act in the current situation. These simple applications are based

on the aggregation and processing of large amounts of data, which are collected from various

traffic participants and sensors. These data are physically distributed and available in virtual



clouds. This creates a need for innovative data analysis, processing, and mining techniques,

which run in clouds and prepare necessary information for end-user applications.

In this study, we deal with route recommender system, which is essential applications in ITS.

This system includes optimization of the booked itinerary with respect to user preferences,

time, fuel consumption, cost, and air pollution to provide better (i.e., quicker, more comfort-

able, cheaper, and greener) mobility. The recommendations are made on the basis of static

information about the network (traffic lights, public transport schedules, etc.) combined with dy-

namic information about the current situation and historically stored data about traveling under

equivalent conditions. If necessarily, the recommendations of other travelers. can be included.

Booking the shortest itinerary is a key aspect in many traffic scenarios with different partic-

ipants: a dynamic multi-modal journey, a simple private drive through a transport network,

or smart city logistical operations. We consider an example of driving through a transport

network segment considering the time consumption as the optimization criterion in itinerary

comparisons and shortest route selection. In this case, the route recommendation is based on

the estimates of the travel time along the route.

For this purpose, a simulated transport network is created, the travel times for alternative routes

are estimated, and the best route is selected. Different methods of travel-time forecasting are

used, such as regression models, and neural networks. Most of these are sensitive to outliers

or incorrect model selection (e.g. wrong distribution). In these situations, the methods of

computational statistics can be effective.

Computational statistics includes a set of methods for non-parametric statistical estimation.

The main idea is to use data in different combinations to replace complex statistical inferences

by computations. The resampling approach supposes that the available data are used in dif-

ferent combinations to obtain model-free estimators that are robust to outliers. The quality of

the estimators obtained is also important.

In this study, we propose a generic cloud-based system architecture, based on the collabo-

ration of individual and cloud agents and resampling-based pairwise route comparison in a

stochastic graph. We apply a four-step decision-making process, instantiated for route recom-

mendations and Markov chain based route ranking method for selection of the final decision.

We derive the properties of the proposed resampling estimators and compare these with para-

metric plug-in estimators.

The remainder of this study is organized as follows: Section 2 presents state of the art. Sec-

tion 3 formulates the problem, Section 4 describes resampling algorithm for cooperative route

selection procedure. Section 5 describes the properties of resampling algorithm, Section 6

presents a Markov chain based ranking algorithm for routes selection. Section 6 illustrates the

proposed approach with a numerical example, and Section 6 concludes the paper.

2 State of the Art

2.1 Big Transportation Data

Ubiquitous traffic sensors and the Internet of Things (Xiao and Wang, 2011) create world-wide

network of interconnected objects uniquely addressable that ensure an exchange and sharing



of information and an ability to interact with each other and cooperate with their neighbours

to reach common goals in intelligent transportation system (ITS). One can speak about Big

Data, which include massive data sets with sizes beyond the ability of commonly used tools

to capture, curate, manage, and process the data within a tolerable elapsed time. Big Data

(Gartner Reveals Top Predictions for IT Organisations and Users for 2013 and Beyond, 2013)

are defined as high-volume, high-velocity and/or high-variety information assets that demand

cost-effective, innovative forms of information processing for enhanced insight, decision mak-

ing, and process optimization.

Computational resources, in their turn, are shifting toward parallel and distributed architectures,

with multicore and cloud computing platforms providing access to hundreds or thousands of

processors, which present new capabilities for storage and manipulation of data. However,

from an inferential point of view, it is not yet clear how statistical methodology will transport

to a world involving massive data on parallel and distributed computing platforms (Kleiner,

Talwalkar, Sarkar and Jordan, 2012).

Providing business opportunities, Big Data means also major research challenges. One of the

key challenges is connected with techniques for analyzing Big Data, which include distributed

DA (DDA) supported by cloud computing power. By nature, Big Data is decentralized and

should be properly analysed in decentralized fashion without transmission of big information

volumes. DDA techniques should be modified for large-scale, streaming Big Data.

Centralization of DA methods supposes data aggregation in space and time, which is usually

not feasible. Using the centralized approach the system cannot adapt quickly to situations in

real time, and it is very difficult or simply impossible to transmit a large amount of information

over the network and to store, manage and process massive data sets in one location (Fiosins,

Fiosina, Müller and Görmer, 2011b). Moreover, some nodes of the distributed system prefer

relay mostly of their own experience making forecasting process more autonomous.

2.2 Computational Statistics for Distributed Systems

Physical and logical distribution of constantly updated data storages in complex stochastic sys-

tems can be well represented by multi-agent system (MAS) architecture. The key challenges

in MASs is the capability of agents to analyse distributed data sources and to provide suffi-

cient information for optimal decisions (Freitas, 2002), (Symeonidis and Mitkas, 2005). Fully

embedding information processing, described in terms of ubiquitous intelligence (Cao, Luo

and Zhang, 2009), can be reached by coupling of MAS with DA. DA improve agent intelli-

gence (da Silva, Giannella, Bhargava, Kargupta and Klusch, 2005), involving pro-active and

autonomous agents that perceive their environment, dynamically reason out actions, and in-

teract with each other. The knowledge of agents is a result of the outcome of empirical DA in

addition to the pre-existing domain knowledge (Klusch, Lodi and Moro, 2003). This collective

’intelligence’ of MAS must be developed by distributed domain knowledge and collaborative

analysis of the distributed data observed by different agents (da Silva et al., 2005), (Zhang,

Zhang and Cao, 2005).

Cloud computing can offer a very powerful, reliable, predictable and scalable computing in-

frastructure for the execution of MASs by implementing complex, agent-based applications for



modeling and simulation. Agents can be used as basic components for implementing intel-

ligence in clouds, making them more adaptive, flexible, and autonomic in resource manage-

ment, service provisioning and large-scale application executions (Talia, 2011). This approach

allows virtual centralisation, storing and management of such data using cloud computing tech-

nologies and logical decentralisation of data sources by MAS and their decentralised analysis

and processing, including parallel cooperative computation. Data sources remain distributed,

but connection between them becomes easier, the communication is broadly available, but a

bottleneck is computation. For DDA methods using cloud computing the quality of the infor-

mation is of great importance and they should know which information and where is available.

However the problem of the information cost (speed of its extraction, quality, reliability, etc.)

is prior the information availability. In this study, we will use MAS to represent DDA, taking

special attention to development of algorithms which coordinate the distributed parts of sys-

tem and synchronise the separate models and phases, represented by agents. In complex

stochastic systems as ITS, many different factors should be estimated and traffic flows should

be properly modelled and forecasted. MAS-based representation of ITS helps to overcome the

limitations of centralised DA, which allows vehicles making decisions autonomously (Bazzan

and Klügl, 2013). Therefore, new DDA methods should be developed and integrated into the

existent ITS at different stages of its functioning, which are capable properly aggregate, filter

and process Big Data.

A progress in Internet and communication technologies (ICT) facilitates data collection and

provides the necessary resources for the operation of the computationally intensive methods

of computational statistics (CST). This set of methods is the interface between statistics and

computer science. CST is aiming at the design of algorithms for implementing statistical meth-

ods on computers, including the ones unthinkable before the computer age (e.g.; bootstrap,

simulation) as well as to cope with analytically intractable problems. CST supposes an ap-

plication of iterative calculations instead of complex analytical models and statistical proce-

dures by using available data in different combinations. The resulting solution is approximate;

however in many practical situations (too big or too small samples, complex and hierarchi-

cal structure of analyzed system, dependency in data) this may give more robust and precise

results as classical methods or even provide a solution in the situations where classical meth-

ods fail. The term CST refers to computationally intensive statistical methods including re-

sampling, bootstrap, cross-validation, Markov Chain Monte Carlo, non-parametric regression,

kernel density estimation, generalized additive models, etc. CST approach can be success-

fully used in various DA techniques: forecasting models (Afanasyeva and Andronov, 2006),

(Afanasyeva, 2005b), (Wu, 1986), clustering (Hinneburg and Gabriel, 2007) change-point anal-

ysis (Fiosina and Fiosins, 2011).

CST methods would seem ideally suited to straightforwardly leveraging parallel and distributed

computing architectures: one might imagine using different processors or compute nodes to

process different resamples independently in parallel. ’The Bag of Little Bootstraps’ procedure

(Kleiner et al., 2012) incorporates features of both the bootstrap and subsampling to yield a

robust, computationally efficient means of assessing the quality of estimators.

A ’Divide and conquer’ approach for distributed data analysis (Chen, 2013) assumes to divide



the data of size n into K subsets of size O(n/K). For each subset of data, they perform a

DA and the results of DA of each of the K subsets are then combined to obtain an overall

result. This approach is implemented for the situation that n is extraordinarily large, too large

to perform the aforementioned DA using a single computer or available computing resources

(Chen, 2013).

In the massive data setting, computation of even a single point estimate on the full dataset

can be quite computationally demanding, and so repeated computation of an estimator on

comparably sized resamples can be prohibitively costly. However, the large size of bootstrap

resamples in the massive data setting renders this approach problematic, as the cost of trans-

ferring data to independent processors or compute nodes can be overly high, as is the cost of

operating on even a single resample using an independent set of computing resources (Kleiner

et al., 2012). Working with Big Data CST methods give a possibility to work with a parts of data

in different combinations [samples from Big Data] in various applications (image recognition,

particle filtering and artificial population), which make possible to process it with a tolerable

elapsed time.

For streaming data, CST methods provide data pre-processing by selection resamples of

data and obtaining representative samples is the only reasonable way to analyze the data

(Rajaraman and Ullman, 2011). Data filtering method based on targeted sequential resampling

and model mixtures of distributions using Markov chain Monte Carlo method was introduced in

(Manolopoulou, Chan and West, 2010). In this study, we are planning to apply the described

parallel calculation with CST methods in cloud-based infrastructure.

The traditional plug-in approach to the estimation of the probability of interest is a parametric

one. It supposes: (1) to choose distribution type; (2) to calculate a point estimator of the

parameters of the chosen distribution. In the case of small samples, it is difficult to choose the

distribution law correctly; hence the estimators obtained are usually inaccurate.

Hence, it is preferable to use the non-parametric resampling procedure (Gentle, 2002), which

is a variant of the bootstrap method (Davison and Hinkley, 1997), (Efron and Tibshirani, 1993).

The implementation of this approach to various problems was considered in the studies re-

ported in (Afanasyeva, 2005a), (Andronov, Fioshina and Fioshin, 2009), (Fioshin, 2000). We

employ the usual simulation technique with one distinguishing feature: we don’t make any pa-

rameter estimations, but extract elements in the simulation process randomly from the samples

of random variables. We produce a series of independent experiments and accept the average

over all realizations as the resampling estimator of the parameter of interest.

2.3 Probabilistic Preference Modelling

2.3.1 Travel Time Forecasting: Predictive models

Travel times play an important role in transportation and logistics. From travellers’ viewpoints,

the knowledge about travelling time helps to reduce delays and improves reliability through

better selection of routes. In logistics, accurate travelling time estimation could help to reduce

transport delivery costs and to increase the service quality of commercial delivery by bringing

goods within the required time window. For traffic managers, travelling time is an important



index for traffic system operation efficiency (Lin, Zito and Taylor, 2005). A chaotic genetic

algorithm based tourist demand forecasting was considered in (Hong, Dong, Chen and Wei,

2011).

There are several studies in which a centralised approach is used to predict travel times (Lin

et al., 2005). The approach was used in various ITS, such as in-vehicle route guidance and

advanced traffic management systems. To make the approach effective, agents should coop-

erate with each other to achieve their common goal via so-called gossiping scenarios. The

estimation of the actual travelling time using vehicle-to-vehicle communication without MAS

architecture was described in (Malnati, Barberis and Cuva, 2007).

A combination of centralized and decentralized agent-based approaches to the traffic control

was presented in (Görmer, Ehmke, Fiosins, Schmidt, Schumacher and Tchouankem, 2011).

In this approach, the agents maintain and share the ’local weights’ for each link and turn,

exchanging this information with a centralized traffic information centre. The decentralised

MAS approach for urban traffic network was considered also in (Claes and Holvoet, 2011),

where the authors forecast the traversal time for each link of the network separately. Two types

of agents were used for vehicles and links, and a neural network was used as the forecasting

model.

A promising approach to agent-based parameter estimation for partially heterogeneous data in

sensor networks was suggested in (Guestrin, Bodik, Thibaux, Paskin and Madden, 2004). An-

other decentralised approach for homogeneous data was suggested in (Stankovic, Stankovic

and Stipanovic, 2009) to estimate the parameters of a wireless network by using a parametric

linear model and stochastic approximations.

A problem of decentralised travel time forecasting was considered in (Fiosina, 2012), (Fiosina

and Fiosins, 2012), (Fiosina and Fiosins, 2013a). An MAS-based architecture with autonomous

agents was implemented for this purpose. A decentralised linear (Fiosina, 2012), (Fiosina

and Fiosins, 2013a) and kernel density (KD) based (Fiosina and Fiosins, 2012), (Fiosina and

Fiosins, 2013a) multivariate regression models were developed to forecast the travelling time.

The iterative least square estimation method was used for regression parameter estimation,

which is suitable for streaming data processing. The resampling-based consensus method was

suggested for coordinated adjustment of estimates between neighbouring agents. The effi-

ciency of the suggested approach using simulation with data from the southern part of Hanover

was illustrated. The experiments showed the efficiency of the proposed approach. The pre-

diction technique in tutorial style was described in terms of distributed network intelligence in

(Fiosina and Fiosins, 2013a). The comparison of parametric and non-parametric approaches

for traffic-flow forecasting made in (Smith, Williams and Oswaldl, 2002), demonstrates the ef-

ficiency of the non-parametric KD regression (Fiosins, Fiosina, Müller and Görmer, 2011a),

(Fiosins et al., 2011b).

2.3.2 Traffic routing problem

A traffic routing problem with decentralized decision making of vehicle agents in urban traf-

fic system was investigated, where the planning process for a vehicle agent is separated into

two stages: strategic planning for selection of the optimal route and tactical planning for pass-



ing the current street in the optimal manner. A MAS architecture and the necessary com-

putational statistics-based algorithms for comparing two routes in a stochastic graph (Fiosins

et al., 2011a), (Fiosins et al., 2011b), and the shortest path search were developed (Fiosina

and Fiosins, 2013b), which are carried out at strategic planning stage. The models were imple-

mented to real data and integrated into a traffic domain application use case, where efficiency

of the algorithms was evaluated. Distributed optimization approach for traffic flow routing was

considered in (Fiosins, 2013). A combination of centralized and decentralized agent-based

approaches to the traffic control was presented in (Görmer et al., 2011), where the agents

maintain and share the ’local weights’ for each link and turn, exchanging this information with a

centralized traffic information centre. A gravitational search algorithm for the optimal tuning of

position control system that can be used in traffic networks was considered in (Precup, David,

Petriu, Preitl and Radac, 2012).

3 Problem Formulation

3.1 System Architecture

We consider a cloud-based ITS architecture (Li, Chen and Wang, 2011). In terms of the

Internet of Things, the real-world users are represented in the cloud system as virtual agents,

which act in the cloud and virtual traffic network. The street network is presented by the

simulated transport network, which consists of a digital map as well as the associated ad-hoc

network models that allow estimation and forecasting of the important network characteristics

for each problem (Fiosins et al., 2011b). The virtual agents store the real-time information,

which is collected and constantly processed in the cloud. Moreover, the strategies for execution

of the cloud application are constantly pre-calculated and checked in the virtual network (e.g.,

the shortest routes are pre-calculated). When a user runs the cloud application, the pre-

calculated strategy is updated with the real-time data and is executed, with respect to the

corresponding changes. Data flows and corresponding optimization methods in the cloud-

based ITS architecture are presented in Fig. 1.

We consider an application that provides route recommendations to vehicle drivers. The es-

sential process of this application is the comparison of pre-defined routes. It is based on

historical samples of the route segments, which are collected from the virtual users. The can-

didate routes are compared in the virtual transport network in order to recommend the best

route to a user.

The considered system consists of two levels: individual level and cloud level. The users of the

system are constantly connected to the cloud and have their virtual representations - agents

on the individual level. Each agent in the cloud system represents a physical traffic participant;

it has a number of goals defined by the user and relative freedom of means to achieve this

goal. For example, if a goal of the agent is to plan (and correspondingly, to follow) an optimal

route under certain conditions and constraints defined by the user, the agent can communicate

or cooperate with other agents in the system. However important decisions (such as final route

selection from a set of alternatives or cooperation in driving) makes a human.

There is another type of agents - cloud agents, which goal is to provide services and support



Simulated network

Individual agents
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Figure 1: Data flows and corresponding optimization methods in ITS

to the individual level agents in their problem-solving. Cloud level agents are virtual central

agents, which have a global picture of the system and can provide, for example, route recom-

mendations to the individual agents.

All the agents of the system, both on the individual level and on the cloud level have a similar

four-step decision-making loop demonstrated in Fig. 2 (left).

Let us consider the mentioned steps in detail.

• On the information collection and storage step, agents collect information from the envi-

ronment and put it into virtual storages, depending on a type of the agent. For example,

individual agents act as data generators, because they have physical sensors and are

associated with physical data (location, speed etc.). The users decide, which part of the

information should be stored in the cloud. Individual agents act as data sources for the

cloud agents, which perform mining of relevant data and organize virtual repositories of

the relevant data.

• On the data models step, agents construct relevant data models to get and forecast

important system characteristics (e.g. travel time). If this information cannot be directly

calculated or forecasted, a simulation-based approach can be used for system modelling.



Figure 2: Generic four-stage decision loop of the agents (left) and its example for the routing

problem (right)

Individual agents rely on their own experience and deal with a limited amount of data,

which correspond to the local view to the system. However they can apply relatively

complex data models or simulations, because the cloud provides relevant computational

resources. Cloud agents have global view to the system and so should deal with big

amounts of information (Big Data). They also apply complex data models or simulations

to get the necessary system characteristics.

• On the static decision step, agents pre-calculate decisions for different possible situations

(e.g. travel time under different conditions or for different sources-destinations). This

creates a decision library, which can be used for a fast decision-making. These decisions

can be checked on the simulation model as well.

• On the dynamic decision step, agents make decisions based on actual system conditions.

The described above decision-making procedure for the route selection problem is illustrated

in Fig. 2 (right).

Let us consider this interpretation.

• Initial data is represented by travel times over the street network. This information is col-

lected by vehicles and associated in the cloud with the corresponding individual agents.

Cloud agent mines and collects this data to create its own virtual repository of the travel-

time data.

• The graph and the resampling-based route comparison algorithm (Section 4.1) are used

as a data model. Resampling allows to solve the problem of Big Data, especially for cloud

agents.

• The Markov-chain based ranking algorithm (Section 4.2) is used to rank the routes based

on the comparison results. The outcome of the algorithm is a probability distribution over

the routes, which is used for route selection

• At the actual route selection stage the cloud agents provide to the individual agents their

recommended route distribution (or a part of it). The individual agents make a final route



decision based on their own probability distribution of routes and the distribution received

from cloud agents.

Figure 3: Decision loop for the route selection and cooperation between agents

In the system, agents can cooperate at any stage of their decision-making process. However

the most important cooperations are following (Fig. 3):

• Individual and cloud agents cooperate mostly on the data collection and dynamic deci-

sion steps. On the data collection step, individual agents act as raw data sources for the

cloud agent. Data model construction and static decision-making process are different for

individual and the cloud agents as they act with different system views. They cooperate

again on the dynamic decision-making step only, when the cloud agent provides a de-

cision recommendation and the individual agent uses it in its individual decision-making

process.

• Cooperation between individual agents is mostly on data models and static decision step.

On these two steps, agents can adjust parameters of their local data models for more

precise forecasting or their plans for the common planning (coordination).



3.2 Formal definitions

We consider a directed graph G = (V,E) with n edges, |E| = n, where each edge ei ∈ E has

an associated weight Xi (e.g. travel time). We assume that the weights {X1,X2, . . . ,Xn} are

independent random variables (r.v.).

A route in the graph is a sequence of edges such that the next edge in the sequence starts

from the node, where the previous edge ends. We consider a set of routes R = {r1,r2, . . .} (they

possibly have the same source and destination, but this is not essential for our procedure).

A route rb, b = 1,2, . . . is defined by a sequence kb of edge indices in the initial graph kb =

(kb
1,k

b
2, . . . ,k

b
nb
), which consists of nb edges. Hence, a route rb is the sequence of edges: rb =

{ekb
1
,ekb

2
, . . . ,ekb

nb
}. The route weight Sb is the sum of the corresponding edge weights, so Sb =

∑i∈kb Xi.

The distributions of the edge weights are unknown. This means that the weights (e.g. travel

times) are collected in samples, but the distribution low is neither assumed nor estimated.

Such information is local for each agent in the system. Let us define Ha
i = {Hi,1,Hi,2, . . . ,Hi,ma

i
}

the sample, which contains observations collected by the agent a about the weights of edge

i, i = 1,2, . . . ,c, c ≤ n. Note that ma
i can be very big as well as very small. An (unknown) true

cumulative distribution function (cdf) of the sample Hi elements is denoted by Fi(x), i=1,2, . . . ,c,

and the elements of samples Ha
i for all a have the same distribution Fi(x), which means that all

agents observe the same system.

Note that we consider a situation, when a sample may correspond to several edges. This

can a case in the situation, when two similar edges are observed and these observations

are not separated and collected in one sample; as well, this can be in the situation when no

observations about an edge are available and a sample of observations about another edge

is used instead. So each sample may correspond to one or several edges and a number of

samples c can be less that the number of edges n.

On the second stage of the four-step route selection process, each agent performs pairwise

comparisons of routes based on available samples Ha
i . This means that the probabilities p∗ab,b′

that the route b has bigger weight than the route b′ are estimated:

p∗ab,b′ = P∗{Sb > Sb′}.

Note that the estimates p∗ab,b′ are consistent estimators of true probabilities pb,b′ = P{Sb > Sb′}

(limma
i→∞ p∗ab,b′ = pb,b′). For calculation of p∗ab,b′ we use a resampling procedure described in

Section 4.1.

The next problem is routes ranking. We use Markov chain based ranking, described in the

Section 4.2 and calculate the probability distribution πa over the routes R.

Finally, the agent decides about a route. It has a distribution πa and receives a recommendation

πa′ from the cloud agent a′. A decision idea is to create a mix of distributions πa and πa′ . The

agent uses a constant 0≤ αa ≥ 1. The following two-step procedure is used:

• A distribution πa is selected with a probability α and a distribution πa′ with a probability

1−α ;

• A route is selected according to the selected distribution.



4 Cooperative Route Selection

4.1 Resampling Procedure for Route Preference Estimation

Let us consider a procedure for a pairwise comparison of two non-overlapping routes. In

general formulation of Section 3.2 we compare the routes rb and rb′ . For simplicity in this

Section we suppose that b = 1 and b′ = 2, so we compare the routes with indices 1 and 2. So

our purpose is to calculate the probability that the weight of route 1 is greater than that of route

2:

Θ = P{S1 > S2}. (4.1)

Two cases are considered: (1) each edge has different samples, so only one element is ex-

tracted from the sample Hi; and (2) edges may correspond to common samples, including the

common samples for two routes.

We propose an N-step resampling procedure. At each step, we randomly without replacement

choose η1
i +η2

i elements from each sample Hi: η1
i elements for route 1, and η2

i elements for

route 2: η i = (η1
i ,η2

i ).

Let Jb
i (l), |J

b
i (l)| = ηb

i be a set of element indices extracted from the sample Hi, for a route b,

b = 1,2, during resampling step l, i = 1, . . . ,c.

Let

X∗l =
c
⋃

i=1

{Hi, j : j ∈ J1
i (l)}∪

c
⋃

i=1

{−Hi, j : j ∈ J2
i (l)} (4.2)

be the l-th resample of the edge weights for both routes, with the weights of route 2 assumed

to be negative.

Let Ψ(x) be an indicator function, where x = (x1,x2, . . .) is a vector of real numbers: Ψ(x) is

unity if ∑
i

xi > 0; otherwise, it is zero.

The average of Ψ(X∗l) over all N steps is accepted as the resampling estimator of the proba-

bility of interest:

Θ∗ =
1
N

N

∑
l=1

Ψ(X∗l). (4.3)

The resampling-based route comparison procedure is presented in Algorithm 1.

Algorithm 1 Function RESAMPLING COMPARE
1: function RESAMPLING COMPARE(Hi,ηi, i = 1, . . . ,c, N)

2: for all l ∈ 1, . . . ,N do

3: for all i ∈ 1. . .c do

4: X∗li ← extract(Hi,η1
i +η2

i )

5: X1∗li ← subsample(X∗li ,1,η1
i ); X2∗li ← subsample(X∗li ,η1

i +1,η2
i )

6: end for

7: X∗l =
⋃

X1∗li
⋃

−X2∗li ; Θl ←Ψ(X∗l)

8: end for

9: Θ∗← 1
N ∑N

l=1 Θl

10: return Θ∗

11: end function



The function extract(X ,n) randomly chooses n elements without replacement from the set X .

The function subsample(X ,a,n) returns n elements from X , starting from position a. These two

cases differ with the parameters of the extract procedure.

4.2 Markov Chain Based Ranking of Routes

There are known different algorithms used in optimization in relation with the shortest path

search (Ali, Alkhatib and Tashtoush, 2013), (Yazdani, Nasiri, Azizi, Sepas-Moghaddam and

Meybodi, 2013). In this paper, we focuss on an algorithm for ranking of routes based on

Markov Chain (Negahban, Oh and Shah, 2012). For this purpose, agent a constructs a Markov

chain Ma = (R,Ea,Pa), where the states are considered routes R = {r1,r2, . . .}, transitions Ea ⊂

R×R are a set of route pairs being compared by the agent a. Let Pa = {pa
b,b′ |(r

b,rb′) ∈ Ea} be

outcomes of comparisons, dmax be maximum out-degree of a node. The transition probabilities

P of this Markov chain are defined as

pi j =

{

1/dmaxai, j if i 6= j,

1−1/dmax∑ai,k if i = j.
(4.4)

There are some intuitive arguments, why the Markov chain can be a good model for analysis

of route comparisons. We suppose that if some route was selected by the decision-maker, at

the next time moment a route preferred by the comparisons will be selected. So we represent

the semantics of comparisons as transitions from one route to another.

Assume that the considered Markov chain is irreducible, which means that the graph (R,E) is

connected. Let us require as well that at least one state is aperiodic (e.g. has a loop edge). The

first condition can be achieved by proper selection of compared routes (the set E). The second

condition is achieved by construction of the transition probabilities P (4.4). In this case the

considered chain is ergodic and have an unique stationary distribution. Stationary distribution

represents a fraction of a time, which will be spent in each state. In our interpretation, the

routes, which has bigger values of stationary distribution, will be more preferred.

Let pt(i) = P{Xt = i} denote the distribution of the Markov chain at time t, where Xt is a state of

the chain, pt = {pt(i)}. Then it is well-known that

pt+1 = ptP.

Also there exists an unique stationary distribution π = limt→∞ pt , which does not depend on the

initial distribution p0. A possible way to calculate it is to solve a system of equations

(PT − I)π = 0

(for non-trivial π and requiring ∑π = 1).

The stationary distribution π provides ranking for the routes R. Moreover, the distribution itself

will be used as a desired distribution of vehicles among the routes in the system.



5 Properties of the Resampling Algorithm

The estimator Θ∗ is obviously unbiased: E(Θ∗) = Θ, so we are interested in its variance. Con-

sider the elements extracted at two different steps l 6= l′. Moreover, we denote:

µ = E Ψ(X∗l), µ2 = E Ψ(X∗l)2, µ11 = E Ψ(X∗l) ·Ψ(X∗l
′
), l 6= l′. (5.1)

Then, the variance of the estimator 4.3 is

V (Θ∗) = E(Θ∗2)−µ2 =

{

1
N

µ2+
N−1

N
µ11

}

−µ2, (5.2)

for the estimation of which we need the mixed moment µ11 depending on the resampling pro-

cedure.

5.1 Different Samples for Each Edge

In this case, Jb
i (l) consists of one element, denoted as jb

i (l). This is the index of an element

extracted from the sample Hi at step l for route b.

Let Mi = {1,2, . . . ,mi}, Ub : {i : ηb
i 6= /0}, Mb = ∏i∈Ub Mi and

jb(l) = { jb
i (l) : i ∈Ub},

j(l) = (j1(l), j2(l)),
(5.3)

where jb(l) ∈Mb and b = 1,2.

We use a modification of the ω-pair notation (Fioshin, 2000). Let ωb ⊂Ub, ω = (ω1,ω2). We

assume that two vectors j(l) and j(l′) produce an ω-pair, if jb
i (l) = jb

i (l
′) for i ∈ ωb and jb

i (l) 6=

jb
i (l
′) for i /∈ ωb. In other words, the components of the vectors j(l) and j(l′) produce the ω-pair

if they have the same elements from the samples, whose indices are contained by ω.

Let A(ω) be an event ’resamples j(l) and j(l′) for the different steps l 6= l′ produce the ω-pair’,

let P{ω} be the probability of this event, and let µ11(ω) be the corresponding mixed moment.

The probability of producing the ω-pair is

P{ω}=
1

|M1||M2| ∏
i∈
⋃

b {Ub\ωb}

(mi−1). (5.4)

The mixed moment µ11 can be calculated with the formula

µ11 = ∑
ω⊂U1×U2

P(ω)µ11(ω). (5.5)

Next, we intend to calculate µ11(ω), ω ⊂U1×U2. Let

Sdi f
l (ω) = ∑i∈U1\ω1 Hi, j1i (l)

−∑i∈U2\ω2 Hi, j2i (l)
,

Scom
ll′ (ω) = ∑i∈ω1 Hi, j1i (l)

−∑i∈ω2 Hi, j2i (l)
.

(5.6)

We note also, that the mentioned sums can be expanded in another way as follows

∑
i∈U1

Hi, j1i (l)
= ∑

i∈U1\ω1

Hi, j1i (l)
+ ∑

i∈ω1

Hi, j1i (l)
,

∑
i∈U2

Hi, j2i (l)
= ∑

i∈U2\ω2

Hi, j2i (l)
+ ∑

i∈ω2

Hi, j2i (l)
.

(5.7)



Then, µ11(ω) can be calculated as

µ11(ω) = E(Ψ(X∗l) ·Ψ(X∗l
′
)|ω) = P

{

Ψ(X∗l) = 1,Ψ(X∗l
′
) = 1|ω

}

=

= P

{

∑
i∈U1

Hi, j1i (l)
− ∑

i∈U2

Hi, j2i (l)
> 0, ∑

i∈U1

Hi, j1i (l
′)− ∑

i∈U2

Hi, j2i (l
′) > 0|ω

}

=

= P
{

Sdi f
l (ω)+Scom

ll′ (ω)> 0,Sdi f
l′ (ω)+Scom

ll′ (ω)> 0
}

=

=

+∞
∫

−∞

P
{

Sdi f
l (ω)>−x

}

·P
{

Sdi f
l′ (ω)>−x

}

dFc
ω(x) =

+∞
∫

∞

(

1−Fd
ω (−x)

)2
dFc

ω(x),

(5.8)

where Fd
ω (x) is cdf of Sdi f

l (ω), Fc
ω(x) is cdf of Scom

ll′ (ω) given ω-pair. Note, that for the fixed value

of r.v. Scom
ll′ (ω) = x the events

{

Sdi f
l (ω)>−x

}

and
{

Sdi f
l′ (ω)>−x

}

are independent.

5.2 Common Samples for Edges

Here, we use the notation of α-pairs (Afanasyeva, 2005a), (Andronov et al., 2009), (Fioshin,

2000) instead of ω-pairs.

Let
Jb

i (l) = { jb
i,1(l), jb

i,2(l), . . . , jb
i,ηb

i
(l)},

Jb(l) = {Jb
i (l) : i ∈Ub},

J(l) = {J1(l),J2(l)},

(5.9)

where Jb
i (l)⊂Mb, b = 1,2, l = 1, . . . ,N, i = 1,2, . . . ,c.

Let Ab
i (ll
′) be a set of indices of the common elements, extracted from the sample Hi for route

b at steps l and l′. Let Abp
i (ll′) be a set of indices of the common elements, extracted from the

sample Hi for route b at step l and for route p and at step l′. Let Ābp
i (l) be a set of indices of the

elements from route b at step l, which were in neither route b nor route p at step l′, b, p ∈ {1,2}

and b 6= p:

Ab
i (ll
′) = Jb

i (l)∩ Jb
i (l
′)

Abp
i (ll′) = Jb

i (l)∩ Jp
i (l
′)

Ābp
i (l) = Jb

i (l)\ (A
b
i (ll
′)∪Abp

i (ll′))

Āpb
i (l) = Jp

i (l)\ (A
p
i (ll

′)∪Apb
i (ll′)).

(5.10)

Let 0 ≤ αb
i ≤ ηb

i , 0 ≤ αbp
i ≤ min(ηb

i ,η
p
i ), b, p ∈ {1,2} and b 6= p. Let αi = {α1

i ,α2
i ,α12

i ,α21
i },

α = {αi}, i = 1,2, . . . ,c. Next, we say that J(l) and J(l′) produce an α-pair, if and only if:

α1
i = |A1

i (ll
′)|,

α2
i = |A2

i (ll
′)|,

α12
i = |A12

i (ll′)|,

α21
i = |A21

i (ll′)|.

(5.11)

Let All′(α) denote the event ’subsamples J(l) and J(l′) produce an α-pair’, and let Pll′{α} be

the probability of this event: Pll′{α}= Pll′{All′(α)}.



To calculate µ11(α) we replace ω-pairs with α-pairs. Therefore we need to calculate P{α} and

µ11(α). The probability P{α} is

P{α}= ∏i∈1,2,...,c

(

η1
i

α1
i

)(

η2
i

α21
i

)(

mi−η1
i −η2

i

η1
i −α1

i −α21
i

)

(

mi

η1
i

) ×

×

(

η1
i −α1

i

α12
i

)(

η2
i −α21

i

α2
i

)

(

mi−2η1
i −η2

i +α1
i +α21

i

η2
i −α12

i −α2
i

)

(

mi−η1
i

η2
i

) ,

where
(n

m

)

is a binomial coefficient.

To calculate µ11(α) we divide each sum into three subsums: Sdi f
l (α) contains different elements

for steps l and l′; Scom
ll′ (α) - the common elements for the same route; Scom12

ll′ (α) - the common

elements for different routes.

Let

Sdi f
l (α) =

c

∑
i=1







∑
j∈Ā12

i (l)

Hi, j− ∑
j∈Ā21

i (l)

Hi, j







,

Scom
ll′ (α) =

c

∑
i=1







∑
j∈A1

i (ll
′)

Hi, j− ∑
j∈A2

i (ll
′)

Hi, j







,

Scom12
ll′ (α) =

c

∑
i=1







∑
j∈A12

i (ll′)

Hi, j− ∑
j∈A21

i (ll′)

Hi, j







.

(5.12)

We note also, that the mentioned sums can be expanded in another way as follows

c

∑
i=1

∑
j∈J1

i (l)

Hi, j = ∑
j∈Ā12

i (l)

Hi, j + ∑
j∈A1

i (ll
′)

Hi, j + ∑
j∈A12

i (ll′)

Hi, j,

c

∑
i=1

∑
j∈J2

i (l)

Hi, j = ∑
j∈Ā21

i (l)

Hi, j + ∑
j∈A2

i (ll
′)

Hi, j + ∑
j∈A21

i (ll′)

Hi, j.
(5.13)

As Scom
ll′ (α) = Scom

l′l (α) and Scom12
ll′ (α) =−Scom12

l′l (α), µ11(α) is:

µ11(α) = E{Ψ(X∗l) ·Ψ(X∗l
′
)|α}= P

{

Ψ(X∗l) = 1,Ψ(X∗l
′
) = 1|α

}

=

= P







c

∑
i=1



 ∑
j∈J1

i (l)

Hi, j− ∑
j∈J2

i (l)

Hi, j



> 0,
c

∑
i=1



 ∑
j∈J1

i (l
′)

Hi, j− ∑
j∈J2

i (l
′)

Hi, j



> 0|α







=

= P
{

Sdi f
l (α)+Scom

ll′ (α)+Scom12
ll′ (α)> 0,Sdi f

l′ (α)+Scom
ll′ (α)−Scom12

ll′ (α)> 0
}

=

=

+∞
∫

−∞

+∞
∫

−∞

(1−Fd
α (−x− y))× (1−Fd

α (−x+ y))dFc
α(x)dFc12

α (y),

(5.14)

where Fd
α (x) is cdf of Sdi f

l (α), Fc
α(x) is cdf of Scom

ll′ (α), Fc12
α (x) is cdf of Scom12

ll′ (α).

5.3 Special Case: Normal Distribution

In this section we illustrate the proposed approach for a case of normally distributed weights;

samples Hi are normally distributed:



Fi(x) = Φ
(

x−βi

σi

)

,

where Φ(x) is standard normal distribution function with mean 0 and variance 1.

The probability of interest can be represented by formula:

Θ(β ,σ) = P{S1 > S2}=

= 1−Φ













0−

(

∑
i∈U1

βi− ∑
i∈U2

βi

)

√

∑
i∈U1

σ2
1 + ∑

i∈U2

σ2
i













.
(5.15)

The parametric plug-in approach supposes an estimation of the parameters βi, σi to obtain

β̃i, σ̃i using the available sample populations. Then to calculate the estimator Θ̃(β̃ , σ̃) we use

formula (5.15) replacing β with β̃ and σ with σ̃ .

Then the expectation of this estimator is:

E(Θ̃) =

∞
∫

−∞

∞
∫

−∞

· · ·

∞
∫

−∞

Θ̃(x,{y1, . . . ,yc})×

× fβ̃s
(x) fσ̃1(y1) . . . fσ̃c(yc)dxdy1 . . .dyc,

(5.16)

where

fβ̃ s(x) = Φ









∑
i∈U1

βi− ∑
i∈U2

βi

√

∑
i∈U1

σ2
i /mi + ∑

i∈U2

σ2
i /mi









is pdf of ∑
i∈U1

β̃i− ∑
i∈U2

β̃i, and fσ̃i(x) is pdf of miσ̃2
i /σ2

i , which is χ2 distributed with mi degrees of

freedom.

The expression for the second moment E(Θ̃2) can be calculated by replacing in (5.16) Θ̃(β̃ , σ̃)

with Θ̃(β̃ , σ̃)2. Then the variance V (Θ̃) and mean squared error MSE(Θ̃) of Θ̃ are:

V (Θ̃) = E(Θ̃2)−E(Θ̃)2,

MSE(Θ̃) =V (Θ̃)+
(

Θ−E(Θ̃)
)2
.

Now let us consider the resampling estimator. For the case, demonstrated in Section 5.1

distributions of the sums (5.6) are also normal:

Fd
ω (x) = Φ









x− ∑
i∈U1\ω1

βi− ∑
i∈U2\ω2

βi

∑
i∈U1\ω1

σi + ∑
i∈U2\ω2

σi









,

Fc
ω(x) = Φ







∑
i∈ω1

βi− ∑
i∈ω2

βi

∑
i∈ω1

σi + ∑
i∈ω2

σi






.

(5.17)



For the case from Section 5.2 the sums (5.12) distributions are normal:

Fd
α (x) = Φ











c

∑
i=1

(η1
i −α1

i −α12
i −η2

i +α2
i +α21

i )βi

c

∑
i=1

(η1
i −α1

i −α12
i +η2

i −α2
i −α21

i )σi











,

Fc
α(x) = Φ











c

∑
i=1

(α1
i −α2

i )βi

(α1
i +α2

i )σi











,

Fc12
α (x) = Φ











c

∑
i=1

(α12
i −α21

i )βi

(α12
i +α21

i )σi











.

(5.18)

6 Numerical Example

As a test network for our experiments we used a street network from the southern part of the

city of Hanover (Germany), which is shown in Fig. 4, and represented by the graph in Fig. 5.

We compare routes for vehicles travelling from 9 to 1.
e

Figure 4: Test street network

We model travel times for different road segments by traffic participants (individual agents)

and its aggregation by cloud agents. We assume that due to the technical or organizational

limitations, travel times on different roads are indistinguishable. Travel times are collected into

five samples H1 - H5, as demonstrated in the graph in Fig. 4.

Travel times correspond to the real-world data for this road network are represented by a mix

of distributions, close to a normal one (Fig 6).
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Figure 5: A graph of the street network of Fig. 4
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Figure 6: Histogram presenting travel times in one sample (H1)



We used the described methods to compare and rank the routes. We applied two methods for

route comparison: the resampling-based and parametric plug-in. For the resampling case, we

used N = 500 resamples. Next, the estimated probabilities were used to construct a Markov

chain and to rank the routes. The results are illustrated in Fig. 7. One can see a reliable

forecast (mean is near to the exact value, dash line). Also the variance is stable, so the method

provided good results for big sample sizes. One can see as well (will be illustrated later) that

the resampling estimator is good for small sample sizes as well.

We compare our approach with parametric plug-in one implemented according to formula

(5.15), estimating expectation βi as β̃i and standard deviation σi as σ̃i, replacing unknown

values by their estimates. However such an approach has a number of disadvantages. First,

formula (5.15) assumes normal distribution of samples. If this is not a case (the distribution

is close to normal, but not exactly normal), this causes estimation error. Second, even if the

distribution is normal, this estimator is biased due to the usage of the same samples for several

routes. Finally, plug-in methods assume usage of all data for average and deviation calculation.

If not complete information is used, this can lead to the additional bias or big variance.
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Figure 7: Resampling-based estimates of the best route probability: values (circles), true value

and mean (practically identical, dashed line), deviation (dotted lines)

The results of parametric plug-in estimator are demonstrated in Fig. 8. We use only a part of

available information for the calculation of mean and deviation, which is realistic working with

with big data. We can see that the parametric plug-in estimator is biased, and with increase of

sample size variance increases and the estimator loses precision.
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Figure 8: Plug-in estimates of the best route probability: values (circles), true value (a dash-dot

line), mean (dashed line), deviation (dotted lines)

Now let us consider our theoretical results. We calculate variance of resampling and paramet-

ric plug-in estimators theoretically to compare them for small samples. For comparison, we

use the mean squared errors of the plug-in MSE(Θ̃) estimator and the resampling estimator

MSE(Θ∗) =V (Θ∗) because it is unbiased. The experimental results are shown in Fig. 9.

We can see that the resampling estimator is effective for small sample sizes.

7 Conclusion

Cloud applications open new perspectives on intelligent transportation services. Data mining

is one of the most important problems for such systems. We demonstrated an approach to

route recommendations in cloud-based traffic management systems. We proposed a generic

cloud-based system architecture, based on the collaboration of individual and cloud agents

and resampling-based route comparison approach. We applied a four-step decision process,

instantiated for route recommendations and Markov chain based route ranking method for

the final decision making. We investigated theoretically properties of the resampling-based

route comparison and showed that it is effective alternative to parametric plug-in approach,

especially for extremely small or extremely big sample sizes. Our experimental results based

on real-world traffic data demonstrated advantages of the resampling-based approach, which

showed more accurate results with smaller variance. Future work will be devoted to the integra-
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Figure 9: MSE (vertical axis) of plug-in and res. estimators for Θ = 0.5

tion of the proposed algorithms to ITS and their validation on large-scale transport networks.
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