POPOV-TYPE STABILITY ANALYSIS METHOD FOR Fuzzy CONTROL SYSTEMS

Radu-Emil Precup**, Stefan Preitl**

+) Lecturer dr.ing., **) Professor dr.ing.

"Politehnica" University of Timisoara, Department of Automation

Bd. V. Parvan 2, RO-1900 Timisoara, Romania

Phone: +40-56204333 ext. 173, 355, Fax: +40-56192049

Email: {precup, spreitl}@aut.utt.ro

Abstract: The paper presents a stability analysis method meant for fuzzy control systems containing fuzzy controllers with dynamics. The proposed method is based on the theory of hyperstability after Popov and on a discrete time state space single input-single output linear time invariant mathematical model of the controlled plant.

1. Introduction

The stability analysis of a fuzzy control system (briefly, FCS) is necessary because only a stable FCS can: ensure disturbance rejection, guarantee desired steady states, and reduce the risk of implementing the fuzzy controller (FC).

The FC without dynamics represents a nonlinear element [1], [2] ensuring a nonlinear input-output (generalized) static map due to the nonlinearities in: the shapes of membership functions, the rule base, and the defuzzification method.

The introduction of dynamics (i.e., of integral and/or derivative actions) in the structure of a FC can be done on either the inputs or the outputs of the FC [3]. The paper deals with introducing the integral action resulting in PI-type fuzzy controllers.

Several methods for the stability analysis of a FCS are well-known [4], [5]. The paper presents a stability analysis method based on the theory of hyperstability [6] based on considering a discrete time state space mathematical model of a single input-single output linear time invariant (SISO-LTI) controlled plant (CP). An example is presented as part of the paper concerning the application of the proposed method to the design of a PI-fuzzy controller for regulation and tracking of a class of nonminimum-phased systems.

2. Mathematical models of controlled plant extended with the linear part of fuzzy controller [7]

The CP is supposed to have the following n-th order discrete time SISO-LTI state space mathematical model including the zero-order hold:

\[
\begin{align*}
\dot{x}_{k+1} &= A \cdot x_k + b \cdot u_k, \\
y_k &= c^T \cdot x_k,
\end{align*}
\]

where: \(u_k\) - the control signal; \(y_k\) - the controlled output; \(x_k\) - the state vector; \(A, b, c^T\) - matrices with the dimensions: \(\dim A = (n, n), \dim b = (n, 1), \dim c^T = (1, n)\); \(T\) - upper integer index expressing the number of the current sampling period.

The block diagram of a FCS containing a FC with its dynamic transferred to the CP can be transformed as in Fig.1 for a relatively simple stability analysis.

The elements from Fig.1 have the following significance: \(a \in \{0, 1\}\) - upper index corresponding to the type of integration: \(a = 1\) for integration on the input of FC, \(a = 0\) for integration on the output of FC; \(w_k\) - the reference input vector:

\[
\begin{align*}
w_k^a &= \begin{bmatrix} w_k^a \\ \Delta w_k \end{bmatrix}, \quad w_k^o &= \begin{bmatrix} w_k^o \\ \Delta w_k \end{bmatrix},
\end{align*}
\]

with: \(w_k\) - the reference input, \(\Delta w_k\) - the integral of reference input, \(\dot{e}_k^a\) - the control error vector.

Fig.1. Block diagram of a FCS.
with: e_k - the control error, e_k - the integral of control error, Δe_k - the increment of control error; u_k^e, y_k^o - the control signal vector and the controlled output vector, respectively, to be presented in the sequel; ECP - the extended controlled plant (with integral action). The absence of disturbance input from the block diagram is fully justified for the sake of Popov-type stability analysis [8].

Note that the extension of controlled plant appears in terms of the state space mathematical model (1), (2), and it is caused by the existing zero-order hold.

According to Fig.1, the FC is characterized by the following nonlinear input-output static map described by the following function:

$$F: \mathbb{R}^2 \rightarrow \mathbb{R}^4,$$

$$F(e_k^e) = \begin{bmatrix} f(e_k^e) \\ 0 \end{bmatrix}.$$

The mathematical model of ECP can be derived as follows by taking into account [9] for the introduction of additional state variables.

A) The case of integration on fuzzy controller input.

![Fig.2. Block diagram of ECP in the case of integration on FC input.](image)

$$u_k^i = \begin{bmatrix} u_k \\ u_{k-1} \end{bmatrix}.$$

So, the $(n+1)$-th order discrete time state space mathematical model of ECP can be arranged as:

$$\dot{x}_k^i = A^i x_k^i + B^i u_k^i,$$

$$y_k^i = C^i x_k^i,$$

where x_k^i represents the extended state vector:

$$x_k^i = \begin{bmatrix} x_k \\ x_{k-1} \end{bmatrix},$$

and the matrices are:

$$A^i = \begin{bmatrix} A & 0 \\ C^T & A \end{bmatrix}, \quad \text{dim } A^i = (n+1, n+1),$$

$$B^i = \begin{bmatrix} B \\ C^T B \end{bmatrix}, \quad \text{dim } B^i = (n+1, 2),$$

$$C^i = \begin{bmatrix} C^T & 0 \\ B & 1 \end{bmatrix}, \quad \text{dim } C^i = (2, n+1).$$

B) The case of integration on fuzzy controller output.

The block diagram of ECP pointing out the additional state variables $\{x_{k_e}, x_{k_o}\}$ is presented in Fig.3. The extended state vector can be expressed as:

$$x_k^o = \begin{bmatrix} x_k \\ x_{k_e} \\ x_{k_o} \end{bmatrix}.$$

The controlled output vector and the control input vector are:

$$y_k^o = \begin{bmatrix} y_k \\ y_{k_e} \end{bmatrix}, \quad u_k^o = \begin{bmatrix} \Delta u_k \\ \Delta u_{k_e} \end{bmatrix}.$$
where: $\Delta y_k = y_k - y_{k-1}$ - the increment of controlled output;
Δu_k - the increment of control signal; Δu_{ak} - the fictitious increment of control signal introduced for the same reason as in the previous case.

The $(n+2)$-th order discrete time state space mathematical model of ECP in this case is as follows:

$$x_{k+1} = A^o x_k + B^o u_{ak},$$
$$y_k = C^o x_k,$$

with the corresponding matrices:

$$A^o = \begin{bmatrix} A^o & 0 & 0 \\ 0^T & 1 & 0 \\ C^o & 0 & 0 \end{bmatrix}, \quad \text{dim} \ A^o = (n+2, n+2),$$

$$B^o = \begin{bmatrix} b \\ 1 \\ 0 \end{bmatrix}, \quad \text{dim} \ B^o = (n+2, 2),$$

$$C^o = \begin{bmatrix} C^o \\ 0 & -1 \end{bmatrix}, \quad \text{dim} \ C^o = (2, n+2).$$

The state space mathematical models from (9), (10) and (17), (18) can be written down together in the following form:

$$\begin{align*}
x_{k+1} &= A^a x_k + B^a u_k, \\
x_k &= C^a x_k,
\end{align*}$$

where: $a \in \{1, 0\}; \ \text{dim} \ A^a = (n^a, n^a), \ n^a = n+1, \ n^o = n+2; \ \text{dim} \ B^a = (n^a, 2); \ \text{dim} \ C^a = (2, n^a).$

Note that the last column of B^a is full of ones in order to ensure that the above mentioned state space mathematical models are minimum realizations. The last column of B^a could take any values because it is multiplied with the fictitious controls $\{u_{ak}, \Delta u_{ak}\}$ that have no influence on control system behaviour (the second component of E is zero, relation (6)).

3. Stability analysis method

Generally speaking, the block diagram involved in the stability analysis of a nonlinear control system is shown in Fig.4. The block NL from Fig.4 represents a static nonlinearity due to the nonlinear (static) part of the FC.

The relations between the block diagrams from Fig.1 and Fig.4 are [10]:

$$x_k = -x_k^a + x_k^a \text{ from Fig.1};$$
$$u_k = -u_k^a \text{ from Fig.4 = } F(x_k^a) \text{ from Fig.1}. $$

The second component of E is always zero (see the relation (6)) for neglecting the effect of fictitious control signals (u_{ak} and Δu_{ak}).

By taking into account the relation (24), the relation (23) becomes (26):

$$x_k = -C^a x_k,$$

and it can be written down as:

$$x_k = C^a \xi_k,$$

with the matrix $C^a (\text{dim} \ C^a = (n^a, 2))$ that can be easily obtained as function of C^a.

The proposed stability analysis method can be stated in terms of the following theorem:

Theorem. The nonlinear system from Fig.4 with the mathematical model of the linear part (22), (23) is globally assymptotically stable if the three matrices P (positive definite, $\text{dim} \ P = (n^a, n^a))$, L (regular, $\text{dim} \ L = (n^a, n^a)$), V (any, $\text{dim} \ V = (n^a, 2)$) fulfill the following requirements:

$$1. \ A^a P A^a - P = V L^T,$$
$$2. \ C^a B^a P A^a = V L^T.$$
- $P^T P A^e = Y^T Y$:

II. by introducing the following matrices:

\[M = C^T (L + L^T - D) C, \quad \text{dim} \ M = (2, 2), \]

\[N = C^T (L Y - A^T P B^e - 2 C^T), \quad \text{dim} \ N = (2, 2), \]

\[R = Y^T Y, \quad \text{dim} \ R = (2, 2), \]

there exists the positive definite matrix S ($\text{dim} \ S = (2, 2)$) that makes the inequality (34) hold for any value of e_k:

\[f_n(\xi) \xi^T A^e \geq \xi^T (S - M) \xi, \]

where n represents the first column of N.

Proof. The condition I is immediately fulfilled because it represents the first equation from the Kalman-Szego lemma [11].

The Popov inequality - that ensures the global asymptotic stability of the nonlinear control system with the block diagram from Fig. 4 - is reminded for the fulfillment of condition II:

\[S(k_i) = \sum_{k=0}^{k_i} \xi_{k+1}^T A^e \xi_k \geq - \beta^2, \quad \forall \ k_i \in \mathbb{N}, \]

for any positive constant β^2.

By taking into account the correspondences (24) and (25) the Popov sum $S(k_i)$ from (35) becomes:

\[S(k_i) = - \sum_{k=0}^{k_i} \eta_{k+1}^T \eta_k, \quad \forall \ k_i \in \mathbb{N}. \]

The substitution of ξ_k from (23) in (36) followed by adding and subtracting the term $\xi_{k+1}^T P \xi_{k+1}$ yields:

\[S(k_i) = - \sum_{k=0}^{k_i} \left(\xi_k^T C^T \xi_k + \xi_{k+1}^T P \xi_{k+1} - \xi_{k+1}^T P \xi_{k+1} \right), \quad \forall \ k_i \in \mathbb{N}. \]

Then, ξ_{k+1} is substituted from (22) in (37) resulting in:

\[S(k_i) = \sum_{k=0}^{k_i} \left[- \xi_k^T A^T P A^e \xi_k - \xi_k^T (B^T P A^e + B^T P^T A^e + C^T) \eta_k - \xi_{k+1}^T P \xi_{k+1} \right], \quad \forall \ k_i \in \mathbb{N}. \]

By replacing the expressions $A^T P A^e$, $B^T P A^e$ and $B^T P B^e$ from the equations (26), (29) and (30), respectively, in (38), and using the relations (25), (31) ... (33), another form of the Popov sum is obtained:

\[S(k_i) = \sum_{k=0}^{k_i} \xi_{k+1}^T P \xi_{k+1} + \sum_{k=0}^{k_i} \left[\eta_k^T M \eta_k + \eta_k^T N \xi_k + \eta_k^T B^e \xi_k \right], \quad \forall \ k_i \in \mathbb{N}. \]

Finally, by pointing out the positive element r_{11} of R and the elements of F from (6), the relation (39) becomes:

\[S(k_i) = \sum_{k=0}^{k_i} \left[\xi_{k+1}^T P \xi_{k+1} + r_{11} f_n(\xi_k) \right] + \sum_{k=0}^{k_i} \left[\eta_k^T M \eta_k + \eta_k^T B^e \xi_k \right], \quad \forall \ k_i \in \mathbb{N}. \]

It is obvious that the first sum from (40) is strictly positive. Using (34) determines the second sum from (40) to be expressed as:

\[\sum_{k=0}^{k_i} \xi_{k+1}^T S \xi_{k+1}, \quad \forall \ k_i \in \mathbb{N}. \]

Therefore, the condition II ensures the positive value of $S(k_i)$ fulfilling the Popov inequality (35).

Finally, note that only the matrix P (instead of P, L and Y) from the relations (28) ... (30) is important for FCS stability analysis because the matrices M, N and R from (31) ... (33) can be expressed as:

\[M = - C^T A^T P A^e C, \]

\[N = - C^T (A^T P + P^T B^e + C^T), \]

\[R = - B^T P B^e. \]

4. Example

For the PI-fuzzy controller with integration on FC output meant for a class of nonminimum-phased systems and developed in [12] the matrices envolved in stability analysis have the following values:
\[
A^o = \begin{bmatrix}
0.9927 & 0.0072 & 0.0142 & 0 \\
0 & 0.9556 & 0.1333 & 0 \\
1 & 0 & 0 & 0
\end{bmatrix}, \quad B^o = \begin{bmatrix}
-0.0142 \\
0.1333 \\
1 \\
0
\end{bmatrix}, \quad C^o = \begin{bmatrix}
1 & 0 & 0 & 0
\end{bmatrix};
\]
\[
\Sigma^o = \begin{bmatrix}
-1 & 0 \\
0 & 0 \\
0 & 0 \\
1 & 1
\end{bmatrix}, \quad \Sigma = \begin{bmatrix}
1 & 0 & 0 & -1
\end{bmatrix};
\]
\[
M = \begin{bmatrix}
-1.9854 & 0 \\
0 & 0
\end{bmatrix}, \quad N = \begin{bmatrix}
0.9719 & 5.9853 \\
0 & 1
\end{bmatrix}, \quad R = \begin{bmatrix}
-1.0180 & -1.1192 \\
-1.1192 & -4
\end{bmatrix}, \quad S = \begin{bmatrix}
1 & 1
\end{bmatrix}.
\]

The free parameter used in FC design is \(B_e \). For \(B_e \in [0.2; 0.5] \) the relation (34) is fulfilled, and the fuzzy control system is globally asymptotically stable.

5. Conclusions
The paper outlines - by applying the theory of hyperstability - a stability analysis method for FCSs containing two possible types of fuzzy controllers with dynamics, i.e. with integrator introduced on both the input and the output of the FC.

The theorem presented as part of the paper gives sufficient conditions ensuring the stability of FCS when a discrete time SISO-LTI mathematical model of the controlled plant is taken into consideration. The relation (34) represents a geometrical condition because its left hand side describes a cone and its right hand side describes a cone.

The proposed stability analysis method is similar to the method from [10] for continuous time systems, and the stability conditions are stronger than the conditions from [13] for discrete time systems.

Digital simulation results confirm the validity of the proposed stability analysis method.

References
4. Fuzzy Sets in Artificial Intelligence

Artificial Intelligence

Approximate Reasoning Using Different Types of Knowledge Representation
Joachim Weisbrod, Nicole L. Fantana
About the Representation of Negative Information
Daniel Pocholezyk
A Possibilistic Model of a Causal Bipartite Network for the Diagnostic Problem
Cristina Segal, Severin Bumbaru, Luminita Dumitriu
Poll Interpretation up to a Related Population via AWFO Operators
Christiane Dujet, Nicole Vincent
Soft Modeling for Intelligent and Complex Systems
Paul F. Wang

Fuzzy Rules

Rule Extraction from Data Using “Near FD” Preprocessing
Shlomo Geva, M. Orlowski
Assessment of Classical Search Techniques for Identification of Fuzzy Models
Angela Nebot, Antoni Jerez
Fuzzy Rule Interpolation Using an Additive Conservative Strategy
Tamás D. Gedeon, L.T. Koczy
ASAFES2: A Functional Reasoning Algorithm for Function Approximation and Control
Athanasios V. Vasilakos, Konstantinos C. Zikidis
Fuzzy Linear Associative Memory Codified in a Discrete Form
Waldo Fajardo, M. Delgado, A. Blanco

Fuzzy Sets in Artificial Intelligence

Fuzzy Rule-Based Models for Case-Based Reasoning
Didier Dubois, Francesc Esteva, Pere Garcia, Lluis Godo, Ramon Lopez de Mantaras, Henri Prade
Modelling by Fuzzy Interpolation
Leila Zerrouki, Bernadette Bouchon-Meunier
Learning Based Similarity Ordering of Fuzzy Sets
Athena Tzoulidou
Inductive Views of Generalization
Christophe Marsala, Maria Rifqi

Information Engineering I: Valued Constraint Satisfaction

An Overview of Valued CSP and Related Results
Thomas Schiex
Algorithmic Problems and Solutions in the Valued Constraint Satisfaction Problem Framework
Gerard Verfaillie, Simon de Givry
Hierarchical Propagation of Uncertain Constraints
Eyke Hüllermeier
Intelligent Control in Robotics

Adaptive Fuzzy Navigation for Robotic Manipulators
Kasper Althoefer, Panos Zavlangas, Bart Krekelberg
Fuzzy Control of Rigid Robots via a Sliding Manifold Approach
Alberto Cavalle, Elisa Leccia
Fuzzy Control for a Robot Gripper System to Handle Slipping Objects
Henning Schmidt, Sergio Velastin

Hybrid Methods in Development of Fuzzy Systems

On the Combination of Probabilistic and Fuzzy Concepts in Signal-Based Data Analysis
Olaf Wolkenhauer
Fuzzy Power Control for Mobile Radio Systems
Tapio Frantu
Tuning of a Fuzzy System with Genetic Algorithms and Linguistic Equations
Sami Lotvonen, Sauli Kiviluoma, Esko Juuso

Stability Analysis of Fuzzy Control Systems

Fuzzy Stability Analysis of Fuzzy Systems Part I: Quadratic Parametrization of Fuzzy Systems
Jean-Philippe Marin, Andre Titli
Fuzzy Stability Analysis of Fuzzy Systems Part II: Fuzzification of Lyapunov Theory and Application
Jean-Philippe Marin, Andre Titli
Popov-Type Stability Analysis Method for Fuzzy Control Systems
Radu-Emil Precup, Stefan Freitl

Fuzzy Modelling

Neural and Fuzzy Modelling and Fuzzy Predictive Control of a Non-linear Coupled Multi-variable Plant
Stephen E. McCormac, John V. Ringwood
Fuzzy Input-Output Linearization of Nonlinear Systems
Reda Boukezzoula, Sylvie Galichet, Laurent Fouloy
Fuzzy Modelling of Non-Linear Systems by a Multimodel Approach
Laurent Gross, H. Noura, D. Sauter
Control Charts for Fuzzy Data
Przemyslaw Grzegorzewski
Translating Human and Artificial Experience into a Knowledge Based Control System. A Systematic Approach Using White Box Neural Networks
Alessandro De Carli, A. Cerrini, A. Caso, L. Arcangeli

Industrial Application of Neuro-Fuzzy Technologies

Inlet and Return Sludge Fuzzy Logic Control for a Large Scale Sewage Treatment Plant
Jorg Gebhardt, Thomas Lochndorf
Optimization of Multi-Stage Chemical Plants Using ANN Models and Genetic Optimizers
Thomas Froese
Fuzzy Logic Data Analysis of Environmental Data for Traffic Control
Bernhard Krause, Constantin von Altrock, Martin Poznyiob
Fuzzy Logic Supervisory Control for Coal Power Plant
Constantin von Altrock, Dirk Fruezmann, Bernhard Krause

Fuzzy Control Applications 1

Implementing Fuzzy Control in the Manufacturing of Washing Powders
Magne Setnes, R. Fleer, P. Brujin, H.R. van Nauta Lemke, F. Emick