
1

LiBrA-CAN: Lightweight Broadcast
Authentication for Controller Area Networks

Bogdan Groza, Stefan Murvay, Anthony Van Herrewege, Ingrid Verbauwhede

F

Abstract—Despite realistic concerns, security is still absent from ve-
hicular buses (such as CAN) mostly due to technical challenges: low
bandwidth and processing power, low cost margins, etc. Here we design
an efficient protocol based entirely on simple symmetric primitives that
takes advantage of two interesting procedures which we call key splitting
and MAC mixing. Rather than achieving authentication independently
on each node, we share keys between groups of nodes which leads to
a higher security level in case when compromised nodes form only a
minority. Based on practical arguments, we recognize this assumption
to be realistic for automotive networks. Subsequently, amalgamating
regular message authentication codes with systems of linear equations
increases the chances for a forgery to be detected. We present several
protocol variants that are extremely flexible and set way for different
trade-offs on bus load, computational cost and security level, taking into
account the most recent developments such as the recently released
CAN-FD standard. To gain full compatibility with existent networks, we
also discuss a backward compatible solution based on CAN+, a recently
proposed extension to CAN. Finally, we present experimental results on
state-of-the-art Infineon TriCore controllers which are contrasted with
low-end Freescale S12X cores, both are wide spread devices from the
automotive industry.

1 MOTIVATION AND RELATED WORK

Vehicular network security established itself as an intense
research topic in the last few years. Outstanding experimental
results from Koscher et al. [14] and later Checkoway et al. [7]
showed vehicles to be easy targets for malicious adversaries.
The myriad of attacks reported in the last five years showed
that virtually any subsystem inside a car is vulnerable to
attacks that exploit the CAN bus as an entry point. Table 1
summarizes some of the attacks reported so far, these are
grouped according to the vehicular subsystem on which they
act: power train, chassis, body, multimedia, telematics, HMI or
active/passive safety. These attacks are reproducible on most
(if not any) cars on the market. Any device inside a car can
be seriously affected by real-world adversaries and this is no
surprise as long as CAN (the bus used to connect all relevant
communications inside a vehicle) lacks cryptographic security.
The same holds for other communication buses inside the car,
even for the most recent developments, e.g., FlexRay, CAN-
FD.

B. Groza and S. Murvay are with the Faculty of Automatics and
Computers, Politehnica University of Timisoara, Timisoara, Romania.
Email: bogdan.groza@aut.upt.ro, stefan.murvay@gmail.com A. Van
Herrewege and I. Verbauwhede are with ESAT/COSIC - iMinds,
KU Leuven, Belgium. Email: anthony.vanherrewege@esat.kuleuven.be,
ingrid.verbauwhede@esat.kuleuven.be

Proposals for assuring security for in-vehicle buses are
not many and there are several clear reasons behind this.
First, the relevance of assuring security inside vehicles was
decisively proved only in the recent years [14], [7]. Second,
the design principles used by manufacturers are somewhat
out of reach for the academic community, making it hard to
understand many assertions behind protocol designs. Third,
which is relevant for our research here, intra-vehicle com-
munication is subject to constraints and specifications that
are quite different from other well studied protocols. Several
approaches to in-vehicle security advocate the use of secure
gateways between different ECUs (Electronic Control Unit)
or subnetworks [1], [27] and rely on basic cryptographic
constructions (encryptions, signatures, etc.). In particular, these
are not meant specifically for assuring broadcast authentication
on CAN which is still the most common communication bus
in automotives; we discuss next such proposals.

TESLA and CANAuth. TESLA like protocols proved to be
highly effective in sensor networks [18], [17] and so far are the
most efficient alternative for assuring broadcast authentication
with cheap Message Authentication Codes (MAC). However,
when it comes to the CAN bus, this protocol family has one
drawback that is critical for automotives: delays, which by the
nature of TESLA are unavoidable. The main purpose of the
work in [9] is to determine a lower bound on these delays and
establish some trade-offs. Delays in the order of milliseconds,
as shown to be achievable in [9], are satisfactory for many
scenarios, but such delays do not appear to be small enough
for in-vehicle communication. There is no obvious way to
improve on these delays. Of course, one alternative is in using
a bus with a higher throughput, more computational power
and better electronic components (e.g., oscillators) but this will
greatly increase the cost of components, nullifying in this way
the cost effectiveness of CAN. CANAuth [26] is a protocol
that has the merit to follow in great detail the specifications
of CAN, its security is specifically designed to meet the
requirements of the CAN bus. In particular, CANAuth is not
intended to achieve source authentication as the authentication
is binded to the message IDs and messages may originate
from different sources which will be impossible to trace. This
fits the specification of CAN which has a message oriented
communication. However, a first issue is that the number of
CAN IDs is quite high, in the order of hundreds (11 bits)
or even millions in the case of extended frames (29 bits)
and storing a key for each possible ID does not seem to

2

TABLE 1
Recently reported attacks having CAN as entry-point

Subsystem Affected module Consequence

Power Train (longitudinal propulsion: engine, transmission, etc.) Engine Increase idle RPM, temporary RPM increase, initiate crankshaft re-
learn (disturbs engine timings), disable cylinders, kill engine, grind
starter, remote car start, cannot turn on (DoS to/from BCM), cannot
turn off (while turned on, cause BCM to activate ignition output) [14]

Chassis (wheels and their relative position and movement: steering,
braking, etc.)

Brakes Disable, engage front left, engage front right, unlock front left,
unevenly engage right brakes, releases brakes (prevents braking) [14]

Power steering Disable [14]
Body (entities that do not belong to vehicle
dynamics: wipers, lighting, window lifter, air
conditioning, seats, etc.)

Doors Lock/unlock car, unlock all while at speed [14]
Gauges & instruments Falsify speedometer reading, falsify fuel level, freeze display

panel [14]
Electric window lift Control windows [11], DoS [12], disable window relays [14]

Multimedia, Telematics and HMI (information
exchange: display, switches, radio, navigation,
Internet, etc.)

Radio Increase volume, change display, produce ticking sound [14]
Driver Information Center Change display [14]

Active/Passive Safety (airbags, warnings, seatbelt, ABS, ESP, cruise
control, etc.)

Airbag Suppress missing airbag warnings by emulating its presence [12]

be so practical. For this purpose, in [26] a clever solution
is imagined: the keys are linked to multiple ID codes using
masks, which greatly reduces the number of keys. But still,
this leads to some security concerns. Traditionally, keys are
associated to entities to ensure that they are not impersonated
by adversaries, but the effect of associating keys to messages
is less obvious. For example, any external tool (assume On-
Board Diagnostics (OBD) tools which are wide-spread) that
is produced by external third parties will have to embed the
keys associated for each ID that it sends over or even just
listens to on CAN. It is thus unclear which keys can be shared
with different manufacturers and how or what the security
outcomes of this are. Obviously, if a third party device is
easy to compromise (even an innocuous one such as passive
receiver) then all the IDs which it was allowed to authenticate
are equally compromised.

Voting. Szilagyi and Koopman introduce a validity voting
scheme in [23] and [24]. The scheme is intended for generic
time-triggered communication such as TT-CAN, FlexRay, etc.
The core part of the protocol relies on the classical paradigm
of sharing keys between each sender and receiver then authen-
ticating packets on a one MAC per receiver basis. Further, to
make it feasible to embed the MACs in a single frame, the tags
are truncated and concatenated (e.g., 3 MACs each of 8 bits are
fitted at the end of a single frame). The communication is time
triggered, each receiver releasing his message and his vote on
previous messages in fixed time slots. Both the new message
and his vote, along with all previously received messages, are
authenticated under the same array of MACs to other receivers.
The scheme appears to be a trade-off between computational
time, authentication delays and bandwidth in order to fit the
authentication bits in one frame. Indeed, if the frame would
be larger, and the sender could fit more MAC bits in each
frame, then authentication could be done at once within a
single frame without needing to wait for the votes of the other
nodes. This would improve both on delays (as nodes will not
need to wait for the vote of other nodes) and computational
power since, indeed, the nodes that subsequently vote are
re-authenticating messages that were previously authenticated
with a small amount of bits. The procedure leads to a drawback
as stated in [24]: for frames that are lost, the receive history
of the nodes does not match and authentication will fail for

these frames. As suggested in [24] this can be fixed by adding
additional bits for lost packets, but sufficient votes from other
nodes would still be required to deem the frame authentic.

LibraCAN. Our protocol design is based on two paradigms:
key splitting and MAC mixing, the later procedure is optional
and is intended to increase security by allowing each node to
detect a potential forgery. In addition to these, authentication
can be achieved in a progressive manner by revealing only
a few bits of the MAC in each packet to each verifier (this
is mostly intended for the case of standard CAN frames that
cannot accommodate more than 64 bits of data).

Key splitting allows a higher entropy for each mixed MAC
that is sent at the cost of losing some security for groups that
contain more malicious nodes. An adversarial majority will
be required to break the protocol, while if there are fewer
adversarial nodes, the security level is drastically increased.
Consequently, this appears to give a flexible and efficient
trade-off. Note that in contrast to the scheme of Szilagyi and
Koopman which requires the nodes to be present and vote,
LiBrA benefits from a majority of non-corrupted nodes, but
does not require their presence to vote (it is just their keys that
need to be safe). This procedure is not new, similar techniques
were proposed in the past in the context of broadcast security.
We could trace this back up to the work of Fiat and Naor [8],
but there is a large amount of papers on this subject. The
work of Canetti et al. [3] provides efficient constructions
based on the same principles. However, the constraints of
our application in CAN networks are entirely different from
related work where this procedure was suggested or used
in scenarios such as sensor networks [5], pay-TV [16], etc.
The main idea behind such schemes is that groups of l
corrupted receivers cannot learn the secret (in settings with
n > l users). One interesting feature of such protocols, which
we consider relevant for the setting here, is the ability to
trace corrupted keys [16]. While this feature is not directly
exploited in our protocol, it can be used in our setting as well
to detect malicious nodes (roughly, a corrupted receiver has
some chances in forging a MAC but the probability that his
forgery is detected increases exponentially with the number of
forgeries).

In addition to this, we exhibit a distinct contribution in the
construction of Linearly Mixed MACs which allows us to

3

TABLE 2
Specifications, advantages and limitations of current proposals for assuring CAN security

Protocol Specifications and advantages Possible Limitations

TESLA-CAN [9] - efficient use of symmetric primitives with time synchronization
- successful and well studied in sensor networks

- fixed authentication delays (usually milliseconds),
- time triggered release of keys (potential conflicts with CAN arbitration)
- resynchronization can be an issue at very small authentication delays

CAN-Auth [26]
- ID oriented authentication, follows in detail CAN specifications
- no authentication delays or time synchronization

- no source authentication (unclear security implications, e.g., third party
tools can inject forged frames)
- number of keys increases with number of IDs

Voting [10]
- shared symmetric keys between each 2 nodes
- each node votes for the authenticity of previous messages

- small number of nodes
- time triggered release of authentication tags (nodes need to wait over
multiple time slots to get sufficient votes)
- nodes are required to be present and vote
- disagreements between nodes if packets are lost
- each node needs to apply a MAC on his current message, his votes on
previous messages, and all messages that he received previously

Libra-CAN

- efficient source authentication with dishonest minority
- efficient forgery detection with MAC mixing
- no authentication delays or time synchronization

- small number of participants
- malicious nodes in minority

amalgamate more authentication codes in one via a system
of linear equations. This construction has the advantage that
if one of the MACs is wrong then this will affect all other
MACs and thus the mixed MAC will fail to verify on any
of the multiple keys. This increases the chance of a forgery
being detected and ultimately it increases the reliability in case
benign nodes are in possession of a wrong key. To the best of
our knowledge this procedure is new. The closest work that we
could find are the multi-verifier signatures proposed by Roeder
et al. [21]. In their work, linear systems of equations are used
as well upon message authentication codes but the security
properties and goals of their construction are different. For our
construction we require that the mixed MACs are strongly non-
malleable, a property which appears to be entirely different.

For our setting we assume a reduced number of participants.
To strengthen our assumption we present in Figure 1 the
network topology of a high-end vehicle based on [15]. Indeed,
it is easy to see that while there is a high number of ECUs,
not all of them share the same network, and consequently they
can be easily placed into small broadcast groups based on the
subnetwork they are part of. While indeed ECUs inside cars
come from different manufacturers which may or may not be
trustworthy, we believe that suspicious ECUs should be limited
in number, since the potential insertion of a trapdoor in some
component will discredit the public image of the manufacturer
too much and there appears to be little or no benefit for this.
In our design we try to take advantage of this assumption, and
our approach is more efficient in the case when compromised
nodes form only a minority.

It is also an advantage for the current proposal that this
year a new CAN standard that supports flexible data rates was
released: CAN-FD [20]. This is strong evidence that CAN will
persist in the industry despite more recent developments such
as FlexRay. The larger data frames of CAN-FD [20] allow
us to design a more robust authentication protocol that sig-
nificantly reduces the overhead of independent authentication
frames, we detail this in the main version of the protocol.
Besides the larger data field, CAN-FD allows an increased
data rate after the arbitration which will make it even faster to
carry the authentication data. We present real-time simulation

Gateway

Powertrain
CAN

Comfort
CAN

Infotainment
CAN

Diagnostics
CAN

Fig. 1. Network topology of a VW Phaeton based on [15]

of our protocol using the industry standard CANoe tool from
Vector (www.vector.com).

2 THE PROTOCOL

We begin with a brief overview of the application setting and
assumptions. Then we outline the main authentication scheme
and discuss some variations or improvements to it.

2.1 Setting, assumptions and goals
The Controller Area Network (CAN) is a broadcast serial bus
designed by Bosch [19], [13]. The typical topology consists
of a differential bus which connects multiple nodes by two
wires (called CAN-High and CAN-Low). This topology is also
suggested in Figure 4.

In this setting, we do assume the usual presence of a Dolev-
Yao adversary that has full control over the communication
channel. That is, he can eavesdrop, modify and send messages
at his will. Of course, the goal of our scheme is to assure an
authentic channel, i.e., to prevent messages that originate from
the adversary to be accepted by the honest principals. This
is achieved by authentication tags added to each message or
separately sent (according to the protocol variant). Further, the
security and efficiency gain stem from the way in which we
share keys between the nodes (avoiding the simple but less
efficient pair-wise sharing) and the way in which we build

4

the authentication tags (while a simple concatenation of the
authentication tags can be also employed in our scheme, we
view this rather as a basic approach and propose the more
elegant linear mixing).

2.2 Frame structure
CAN frames carry at most 8 bytes of data. Each CAN frame
begins with a start bit followed by the arbitration field (29 bits
in extended frames and 11 bits in standard frames), a control
field (6 bits), data bits (0-64), CRC sequence (15 bits), a 2
bit acknowledgement and 7 bits that mark the end of frame.
Stuffing bits are added after each 5 consecutive bits of identical
value. The newer CAN-FD standard [20] allows up to 64 bytes
of data to be carried by one frame and more, the data rate can
be increased after the arbitration procedure.

For the case of standard CAN frames (unable to carry both
the data and authentication tag), as well as for some variations
of the main scheme, we separate between message frames
and authentication frames. Larger data blocks or authentication
tags (exceeding 8 bytes) can be split across multiple frames
with the same ID field and counter. On the other side, with
CAN-FD frames, it is advantageous to embed the authen-
tication tag in the message frame and take benefit of the
increased data rate that follows the arbitration procedure. This
also reduces the authentication delay and allows immediate
verification.

In Figure 2 we suggest the structure of the frame for the case
when the authentication tag, i.e., M-MACKiN (m̃), is embedded
in the message frame and we also outline the case when it
is sent as a separate authentication frame (dashed arrow). In
both cases the frame structure consists in the identifier of the
message id frame which is the usual CAN ID, the identifier of
the source nodeNi, a message counter cmes , the message itself
m and the authentication tag M-MACKiN (m̃). Supplementary,
in the case of authentication frames, a new counter caut
specifies the number of the authentication frame (intended for
protocol variants where there is more than 1 authentication
frame for a message). The last bit of the identifier field
specifies whether a frame carries an authentication tag or
message (1 vs. 0). Separate authentication frames are sent in
our experimental setup with CAN capable boards, while in the
CAN-FD simulation from CANoe the data frames carries the
authentication tag as well (allowing immediate authentication).
The size of the message counter cmes could be roughly around
20–40 bits but this greatly depends on the bus speed (which
determines the number of frames released each second). For
example, in the case of high-speed 1Mbps CAN at most 10–
20 thousand messages can be sent each second. Using large
counters may lead to an unnecessary waste of resources, which
can be avoided if participants have synchronized clocks. In
this case, the protocol can operate over fixed time periods,
for example of around 1 hour, and a 20 bit counter may
be sufficient (a random nonce can be used to uniquely bind
messages to each such time frame).

2.3 The main scheme
In previous work [10] we defined the main authentication
scheme around a master oriented communication. This was

ID Field (11 or

29 bit)

frameid
iN mesc mMessage

Frame

Authentication

Frame

Data Field
ID Field (11 or

29 bit)

frameid
autc

1

0

M MAC ()i m
N

-

Data Field

iN

iN

mesc
iN M MAC ()i m

N
-

Fig. 2. Data frames and authentication frames

justified by the fact that due to the limited size of a standard
CAN frame [19] one frame would not be enough to carry
both the message and the authentication tag. Consequently,
using a master node with higher computational power to
continue the authentication seemed like a correct practical
approach, justified also by the results of the experimental
section. However, the master oriented communication may
somewhat conflict with CAN specifications (which clearly
specify that CAN is a multi-master bus) and it also results
in more overhead by sending multiple authentication frames
(notably, CAN frames have about 50% overhead). Fortunately,
as we worked on the protocol, the new CAN standard with
flexible data rates CAN-FD was released [20] and this allows
us to place all the authentication information in a single frame,
reducing the overhead and making it possible to have a cleaner,
crisper protocol specification (we also include results from a
real-time simulation of the main scheme on CAN-FD).

In the main scheme we make use of Mixed Message Au-
thentication Codes (M-MAC) which amalgamate more MACs
into one. Here we give an abstract definition for this con-
struction while in a forthcoming section we provide a more
elaborate instance with additional security properties. The
easiest way to build an M-MAC is simply by concatenating
multiple tags, such a construction is fine for our protocol and
can be safely embodied in the main scheme (still, we can
achieve more security with the LM-MAC introduced in an
upcoming section).

Construction 1. (Mixed Message Authentication Code)
A mixed message authentication code M-MAC is a tuple
(Gen,Tag,Ver) of probabilistic polynomial-time algorithms
such that:

1. K← Gen(1`, s) is the key generation algorithm which takes
as input the security parameter ` and set size s then outputs
a key set K = {k1, ...,ks} of s keys,
2. τ ← Tag(K,M) is the MAC generation algorithm which
takes as input the key set K and message tuple M =
(m1, ...,ms) where each mi ∈ {0, 1}∗ then outputs a tag τ
(whenever needed, to avoid ambiguities on the message and
key, we use the notation M-MACK(M) to depict this tag),
3. v ← Ver(k,m, τ) is the verification algorithm which takes
as input a key k ∈ K, a message m ∈ {0, 1}∗ and a tag
τ and outputs a bit v which is 1 if and only if the tag is
valid with respect to the key k, otherwise the bit v is 0. For
correctness we require that if k ∈ K and m ∈ M then 1 ←
Ver(k,m,M-MACK(M)).

NOTATION. To avoid unnecessary formalism that would not
impact security we make some simplifications. Whenever the

5

TABLE 3
Possible groups with 4 nodes, groups of size 2 outlined

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14

N1 0 0 0 0 0 0 0 1 1 1 1 1 1 1

N2 0 0 0 1 1 1 1 0 0 0 0 1 1 1
N3 0 1 1 0 0 1 1 0 0 1 1 0 0 1
N4 1 0 1 0 1 0 1 0 1 0 1 0 1 0

authentication tag does not fit in a single frame we assume
that it is sent over separate authentication frames each of
them having the proper counter caut (we do not explicitly
use caut in the description of the schemes since this will
only overload the notations). For the same reason, we use the
notation m̃ to denote the message that is already augmented
by the counter cmes and node identity Ni (the node identity
Ni can be eventually skipped if it is embedded in the ID field
of the frame). Since, with one exception, all versions of the
protocol authenticate the same message to all nodes (rather
than authenticate a tuple of messages), we replace M with the
augmented message m̃ and we write M-MACK(m̃). Obviously
in this case the M-MAC receives as input a message tuple of
s identical messages m̃, i.e., M = {m̃, m̃, ..., m̃︸ ︷︷ ︸

s−times

}.

The key allocation procedure distributes the keys to the n
nodes by placing them in groups of size g. Figure 4 provides
an example of key-sharing for the master oriented version of
the scheme, for the main scheme every sender will be placed
in the role of the master. We start with an example that shows
how we intend to distribute keys to the nodes, then we proceed
to the main scheme.

Example 1. Table 3 shows the groups that can be formed
in the case of 4 nodes (the empty group G0 and the group
containing all nodes G15 are skipped). If we consider groups
formed by exactly 2 nodes we have

(
4
2

)
= 6 groups (denoted

in grey) and each two nodes share exactly
(
2
0

)
= 1 group.

We also outline the groups shared by N1, i.e., G9, G10, G12,
and those shared by N2, i.e., G5, G6, G12 by marking them
with a square. Note that they intersect in one group G12. In
Table 4 the case of n = 8 is explored, with complete groups
of all sizes g and any number of corrupted nodes l. The total
number of groups |G| and the number of groups shared by
each node |G′| as well as the percentage of uncorrupted keys
on each node, i.e., keys that are not known by the adversary,
are outlined. This value is computed as follows: for n = 8 and
g = 2 there are 28 groups, if there is only a single corrupted
node, i.e., l = 1, this is part of exactly 7 groups and controls
7/28 = 25% of the 56 shared keys. But each honest node
shares exactly one key with the dishonest one, consequently,
out of the 7 keys only 6 cannot be controlled by the dishonest
node resulting in a fraction of 6/56 = 21%.

Construction 2. (LiBrA-CAN - Main Scheme) Given an
M-MAC construction for some security parameter ` and
n nodes placed in groups of size g, we define protocol
LiBrA-CANN∗(M-MAC, `, n, g) as the following set of actions
for each CAN node denoted as Ni, i = 1..n:

1. Setup(`, n, g) is the key setup procedure. Let t =
(
n−1
g

)
be the number of subsets of g nodes out of the n − 1 nodes.
For each sender, the Setup procedure generates t random keys,

TABLE 4
Fraction of uncorrupted keys on each node in the case of
n = 8 participants, groups of size g = 1..7 and l = 0..8

Fraction of uncorrupted keys on each node (%)
g |G| |G′| l=0 l=1 l=2 l=3 l=4 l=5 l=6 l=7
1 8 1 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5
2 28 7 25 21 17 14 10 7 3.5 0
3 56 21 37.5 26 17 10 5 1.7 0 0
4 70 35 50 28 14 5 1.4 0 0 0
5 56 35 62 26 8.9 1.7 0 0 0 0
6 28 21 75 21 3.5 0 0 0 0 0
7 8 7 87 12.5 0 0 0 0 0 0

each of ` bits, then distributes to each recevier the keys for the
groups that he is part of. For practical reasons, the keys can
be distributed in an off-line manner or in an on-line manner
by standard techniques, e.g., key-exchange protocols between
the corresponding nodes, we do not insist on this since such
issues are straight-forward to solve. Let KiN = {ki1,ki2, ...,kit}
with t =

(
n−1
g

)
denote the key set of each sender node Ni and

Ki,jN = {ki1,ki2, ...,kit′} with t′ =
(
n−1
g−1
)

the key set of each
receiver Ni from the setup procedure of sender Nj .
2. SendMesTag(Ni, m̃,KiN) on which node Ni whenever
wants to broadcast a message m̃ increments its local counter,
computes the tag M-MACKiN (m̃) with its keyset KiN and sends
the message m̃ and the authentication tag on the bus.
3. RecMesTag(Ni,Nj , m̃,M-MACKiN (m̃)) on which node Ni
receives a data frame containing message m̃ from node Nj
along with the corresponding tag M-MACKjN

(m̃). Node Ni
checks if the message is fresh, i.e., counter up to date,
and authentic for all common keys, i.e., 1 ← Ver(m̃, k,
M-MACKjN

(m̃)), ∀k ∈ Ki,j . If the tag is correct for all keys
in the common keyset, i.e., Ki,j , then message m̃ is deemed
authentic.

Example 2. To see that our scheme achieves superior
security we compare it to the scheme in [24]. We take for
example a setup with 4 receivers and 1 sender. In Szilagy
and Koopman’s scheme, one frame will be sent containing 4
MACs (one for each receiver). Set each of these tag to 9 bits
(in [24] 8 bits are suggested for each MAC, we use 9 here
just to make the comparison fair between the schemes, but
these numbers are artificially small anyway and serve just as
an example). The security level after the first frame is 9 bits for
each node and, regardless of the number of subsequent votes
from the other nodes, the security level is at most (4− l)× 9
bits, where l is the number of corrupted nodes. This is because
subsequent votes from other nodes will only confirm that their
fragment from the initial MAC is correct and there are only
(4− l) trusted fragments each of 9 bits. Now consider LiBrA
in the case of groups of size 2 and one sender. In this setup,
there are 6 groups and keys shared between the sender and
these groups. The sender now has to broadcast 6 MACs each
of 6 bits each (this adds up to a 36 bit tag as previously).
If there is no corrupted node, as each node has 3 of the
6 keys, the security level after the first message from the
sender is double compared to Szilagy and Koopman’s scheme,
i.e., 50% × 36 = 18 bits vs. 9 bits. Subsequently each new

6

authentication frame of the sender contributes with the same
amount of authentication bits (though our intention is to assure
authentication in a single frame in order to avoid delays and
reduce overheads which can be done simply by increasing the
size of each tag). If we set the number of corrupted nodes to
1, we still get 12 bits of security after a single message and
the same amount of authentication bits will be added by each
new frame (because for each honest node 33% of the key bits
are not corrupted).

The security of the main scheme can be directly linked
to the security of the M-MAC construction that we analyse
in Appendix A. Below we give an account for the influence
of corrupted principals on the security level, i.e., collusion
attacks. We simply point to combinatorial bounds as the
security of such multicast schemes is well established, see
for example [3].
SECURITY. For n participants we have 2n groups, this in-
cludes one empty group and one group which contains all
participants. There are

(
n
g

)
possible groups of size g. For n

nodes, given all groups of size g, each node is part of
(
n−1
g−1
)

groups. Further, if one considers that there is 1 corrupted node
then he shares with each other node

(
n−2
g−2
)

groups. If there
are l corrupted nodes then they share with each node

(
n−l−1
g−l−1

)
groups (this gives the number of corrupted keys on each node).
For a more accurate view, we translate this discussion into
security bits. Assume that the M-MAC is built by simple
concatenation of regular MACs (each of them computed with
the corresponding shared key). Having an M-MAC of some
fixed bit-length t, each individual MAC is truncated to t/n
bits. If keys are pair-wisely shared between the sender and
receivers, i.e., g = 1, then each node receives exactly t/n
security bits (since it is in possession of a single key that
works for one of the MACs). But in case we share the keys
between groups of size g, then each node is in possession of(
n−1
g−1
)

keys which is a fraction of
(
n−1
g−1
)
·
(
n
g

)−1
from the total

number of keys and equivalently from the bits carried by the
M-MAC (obviously this more than 1/n for g = 1).

Figure 3 shows on the left side the decrease in security
bits, having fixed 256 bits for the tag, for groups of size
g = 1, 2, 4, 6 in the case of 0..4 adversaries (a dishonest
minority). If we consider an authentication tag of 256 bits,
if this is to be shared by 8 nodes with 8 different keys then
only 256/8 = 32 bits per node remain. Contrary, in the case
of groups of size g = 2 there are 64 bits for each node; even if
there is 1 corrupted node, still 54 bits remain untouched (while
this is not much, it may be enough for real-time security).
Generally, with 1 adversarial node the highest security is for
g = n/2 due to the binomial expansion in which the middle
coefficient is the larger. With at most n/2 adversaries, i.e.,
adversarial minority, the highest security is at g = 2 and
it decreases linearly. On the right side, Figure 3 shows the
number of groups (which translates into keys) in the case of
n = 1..8 nodes and subgroups of size g = 1, 2, 3, 4. Obviously,
this grows exponentially, but for smaller g the number of keys
is decent and gives strong security benefits.

We further design several variations of the main authenti-
cation scheme that give efficient trade-offs as shown in the

H1L

H2L H4L

H6L

1 2 3 4
l

20

40

60

80

100

120
bits

(i)

H1L

H2L
H3L

H4L

2 4 6 8
n

10

20

30

40

50
ÈGÈ

(ii)

Fig. 3. Fraction of recovered bits (i) for 8 nodes with l =
1..7 and number of groups (ii) for n = 1..8 (group size
given in the round brackets)

experimental results section. These variations can be roughly
grouped in two main classes. First, for non-homogeneous
networks it makes sense to have a master oriented authenti-
cation where the node with higher computational power deals
with the main part of the authentication procedure. Second,
for homogeneous networks where all nodes have similar
computational power it makes sense to have a distributed
authentication scheme where all participants contribute to the
authentication task. For brevity, whenever possible without
confusions, we skip the formalism related to the schemes.

2.4 Master oriented versions of the scheme
A master oriented communication makes sense since it is prac-
tical to have one node with higher computational power that
can take care of the most intensive part of the authentication.
This is also supported by our experimental results. More, if the
master node is a trustworthy third party, there are clear security
benefits if he handles all keys that are shared between nodes
since he can continue the authentication further with all the
remaining keys (not only with the keys known to the sender).
This is summarized by the next construction. Figure 4 shows
the master node and the slave nodes connected to the bus, it
also outlines the keys that are shared between nodes.

Construction 3. (Centralized Authentication) Given an
M-MAC construction for some security parameter ` and
n nodes placed in groups of size g, we define protocol
CN-LiBrA-CANM,N∗(M-MAC, `, n, g) as follows. Let KM
denote the keyset of the master node and run the previous
key-setup procedure only for the master node (i.e., the master
places the slaves in groups of size g and shares keys with the
groups). The following set of actions hold for the master M:
1. RecMesTag(M,Ni, m̃,M-MACKiN (m̃)) on which mas-
ter M receives message m̃ and authentication the tag
M-MACKiN (m̃) from slave Ni. Subsequently, master M
checks if the counter is up-to-date and if the message is
authentic, i.e., 1 ← Ver(m̃,k, M-MACKiN (m̃)), ∀k ∈ KiN .
If so, he proceeds to authenticating the tag to other nodes
with SendTag(M, m̃,KiN).
2. SendTag(M, m̃,KiN) on which master M gathers all the
remaining keys KM \KiN computes M-MACKM\KiN (m̃) and
broadcasts it as an authentication frame with the same ID
as the original message (note that in this case the M-MAC
is computed with the remaining

(
n
g

)
− g keys, there is no

restriction from the construction of M-MAC to do it so).
and for each of the slaves N ∗:

7

4 12μC

CAN-H

CAN-L

μC
9

10

12

μC
5

6

12

μC
3

6

10

μC
3

5

9

8

1

2

3

4

5

6

8

9

10

12

Fig. 4. Master and slave microcontrollers (µC) in a setting
for centralized authentication

1. RecMesTag(Ni,Nj , m̃,M-MACKjN
(m̃)) on which slave Ni

receives message m̃ and an authentication tag from another
slave Nj and proceeds similarly to master M by check-
ing if the message is authentic but only with respect to
the keys k ∈ KiN ∩ KjN that he shares with slave Nj .
The message is not deemed authentic until a successful
RecTag(Ni,M,Nj ,M-MACKM\KjN

(m̃)) event follows.
2. RecTag(Ni,M,Nj ,M-MACKM\KjN

(m̃)) on which slave
Ni receives an authentication frame containing the tag
M-MACKM\KjN

(m̃) from the master M (that continues the
authentication of slave Nj) and verifies for all keys k ∈
KiN ∩

(
KM \KjN

)
if the tag is correct. If for all keys in its

keyset the tag is correct then message m̃ is deemed authentic.
3. SendMes(Ni,m,KiN) on which slaveNi whenever wants to
broadcast a message m̃ increments its local counter, computes
the tag M-MACKiN (m̃) with its keyset KiN and sends the data
frame containing message m̃ and the corresponding tag on
the bus.

CUMULATIVE AUTHENTICATION. Since in some scenarios
small delays may be acceptable, we can take benefit of
them and increase the efficiency of the main scheme. In the
cumulative authentication scheme a timer can be used and all
messages are accumulated by the master over a predefined
period δ then authenticated at once (this procedure can be
employed in the slave-only settings as well). While this intro-
duces an additional delay δ, similar to the case of the TESLA
protocol, this delay can be chosen as small as needed to cover
application requirements. Distinct to the case of the TESLA
protocol the delay is not strongly constrained by external
parameters (such as oscillator precision, synchronization error,
bus speed, etc.).
LOAD BALANCED AUTHENTICATION. The centralized au-
thentication scheme is beneficial in the case when the commu-
nication master has higher computational resources, but it may
be the case that the master node is already busy with other
computational tasks. For such case, a load balanced version
of the scheme can be used in which the communication master
can send a flag (authenticated along the message) to point for
a particular slave(s) to carry the authentication further.

2.5 Distributed versions of the scheme
Indeed, an authentication master may not always be present.
Moreover, several events can lead to his unavailability (for
example he can enter Bus Off-mode due to problems with the

transceiver or the ECU itself can suffer a malfunction). For
this purpose we introduce the cascade authentication scheme
where the slaves reply in a cascade manner by sending the
authentication tag for their group of keys. In what follows,
we assume that all the nodes continue the authentication in a
round-robin fashion until they reach the sender (or stop after
sufficient authentication tags are released). Thus, we point out
to node (i+1) as the next node and whenever we reached the
n-th node the first one becomes the next, etc.

Construction 4. (Cascade Authentication) Given an
M-MAC construction for some security parameter ` and
n nodes placed in groups of size g, we define protocol
DC-LiBrA-CANN∗(M-MAC, `, n, g) as follows. Let Ki,jN de-
note the keys shared between nodes i and j (we assume the
same key-setup as previously, except that the master does not
play any role in authentication), then the following set of
actions is defined for each of the nodes N ∗:
1. RecMes(Ni,Nj , m̃) on which node Ni receives a data
frame containing message m̃ from another node Nj checks
if the counter is up-to-date then stores the message in a queue
of messages to be authenticated.
2. RecTag(Ni,Nj ,M-MACKj,j+1

N
(m̃)) on which Ni receives

an authentication frame containing tag M-MACKj,j+1
N

(m̃)

from another node Nj and verifies for all keys k ∈ KiN ∩
Kj,j+1
N if the tag is correct. If for all keys in its keyset a

correct tag was received then message m̃ is deemed authentic.
If i = j + 1 then it proceeds to SendTag(Ni, m̃,Ki).
3. SendTag(Ni, m̃,Ki) on which node Ni gathers all the
keys shared with node Ni+1 in the set Ki,i+1

N , computes
M-MACKi,i+1

N
(m̃) and broadcasts it as an authentication

frame.
4. SendMes(Ni, m̃,Ki) on which node Ni whenever wants to
broadcast a message m̃ increments its local counter, computes
the tag M-MACKi,i+1

N
(m̃) and sends the data frame containing

m̃ followed by an authentication frame containing the tag on
the bus.

SECURITY. The cascade authentication is mainly intended
for balancing the computational costs of the authentication
between principals. Since the nodes proceed in a chain reaction
by simply re-authenticating messages with their own keys, new
tags are produced that extend the authentication over new keys.
The security level at each node is at most that of the tag from
the initial message that started the cascade (assuming all nodes
in the cascade are trusted, otherwise this is proportional to the
number of uncorrupted keys).
TWO-STAGE AUTHENTICATION. In the case of two-stage
authentication we assume a scenario with nodes of equal com-
putational power. In this case each node can start broadcasting
by sending a tag which includes only a part of the keys for
the subgroups that he is part of and a second node (pointed
out by some flag, or predefined in protocol actions) continues
with the authentication. The procedure is repeated until the
desired number of authentication frames is reached.
MULTI-MASTER AUTHENTICATION. For the same reasons, a
distributed version of the centralized authentication scheme
can be imagined. In this case, several nodes with higher
computational power can form a group of communication

8

masters. Each of them may broadcast a distinct authentication
tag and if any such tag is missing, due to the unavailability of
a particular node, the other masters will take care of replacing
this tag with one of their own.

2.6 Increasing security with LM-MAC

The M-MAC uses an array of keys to build a tag which
is verifiable by any of the keys. The first security property
which we require for an M-MAC is unforgeability and is a
standard property for any MAC code. We do develop on this by
requiring a new property which we call strong non-malleability
and which lets any verifier detect whenever the adversary had
tampered with any part of the M-MAC. We show that both
these properties are achievable by the following LM-MAC
construction.

Construction 5. (Linearly Mixed MAC) We define the
LM-MAC as the tuple of probabilistic polynomial-time algo-
rithms (Gen,Tag,Ver) that work as follow:

1. K← Gen(1`, s) is the key generation algorithm which flips
coins and returns a key set K = {k1, ...,ks} where each key
has ` bits (` is the security parameter of the scheme),
2. τ ← Tag(K,M) is the mac generation algorithm which
returns a tag τ = {x1, x2, ..., xs} where each xi is the solution
of the following linear system in GF (2b):

KD1(k1,m1) · x1 + ...+ KDs(k1,m1) · xs ≡ MACk1(m1)

KD1(k2,m2) · x1 + ...+ KDs(k2,m2) · xs ≡ MACk2(m2)

...

KD1(ks,ms) · x1 + ...+ KDs(ks,ms) · xs ≡ MACks(ms)

Here b is polynomial in the security parameter ` and KD
stands for a key derivation process. If such a solution does
not exist, then the M-MAC algorithm fails and returns ⊥.
3. v ← Ver(k,m, τ) is the verification algorithm which
returns 1 if and only if having τ ′ = MACk(m) it holds
τ ′ ≡ KD1(k,m) · x1 +KD2(k,m) · x2 + ...+KDs(k,m) · xs.
Otherwise it returns 0.

Let us emphasize that the probability that the M-MAC fails
to return a solution is negligible in the security parameter (if
proper b and s are chosen). As shown in [6] the probability that
an n by n matrix with random elements from GF (q) is non-
singular converges to

∏∞
i=1(1−1/qi) as n→∞. For example,

in case when s = 4, we have a chance for the M-MAC to fail
of around 10−5 for b = 16 and 10−10 for b = 32.

Example 3. We want to clarify here our intentions on
M-MACs with respect to the protocol design. Consider a case
when master M broadcasts messages m1 and m2 to slaves
S1 and S2 along with the authentication tag. To increase
the efficiency of our protocol we want to authenticate both
messages with the same mixed MAC and more, since only a
portion of each tag is disclosed, e.g., 64 bits (reducing the
bus overhead but also the security level), we want one of
the slaves to be able to carry out the authentication further
with a new valid tag (note that this is what happens in
the case of the two-stage authentication). Consider that the
following packets arrive on the bus: message m1, message

m2 and the mixed tag obtained by simply concatenating
the two tags MACk1(m1)||MACk2(m2). However, due to the
message filtering feature of the CAN bus it may be that the
two messages do not reach both slaves. Assume message
m1 reaches S1 and m2 reaches S2. Now neither S1 or S2

can carry the authentication further, even in the case when
they both have k1 and k2 they are not in possession of the
message that reached the other slave and thus they can not
validate the other part of the tag. More relevant, note that
the nodes are unable to detect if the other part of the tag is
compromised. Now consider the case of the LM-MAC. In this
case the tag is obtained by mixing the two tags via the linear
equation system, e.g., the two components of the tag x1, x2
verify a relation of the form α1x1+α2x2 = MACk1(m1) and
β1x1+β2x2 = MACk2(m2) (here α’s and β’s are derived from
the secret keys k1, k2). If an adversary compromises any part
of the tag, i.e., either x1 or x2, then both equations will fail
to verify and any of the receivers can detect this (indeed, we
assume that the adversary is not in possession of the secret
keys k1 and k2 since in such case he can compute correct
LM-MACs anyway). Consequently, with the LM-MACs any
of them can check the tag for correctness and this validation
will also hold for the other receiver, this is inherited from the
strong non-malleability property for M-MACs.

For efficiency, we can drop on some of the computation
from the M-MAC at small penalties in security. The next
construction provides such a simplification.

Construction 6. (Simplified Linearly Mixed Message Au-
thentication Code) We define the SLM-MAC in the same
manner as the LM-MAC except for the fact that in the
generation and verification algorithms the message is not used
by the key derivation process, i.e., KDi(kj ,mj) is replaced by
KDi(kj),∀i, j ∈ 1..s.
SECURITY. Both these constructions are unforgeable, provided
that the underlying MAC is unforgeable. They are also strongly
non-malleable and an adversary cannot manipulate a single
element of the tag without making the tag fail on all of
the underlying keys (except for negligible probability). As
the coefficients are constant in the case of the SLM-MAC,
this construction will not provide strong non-malleability if
the adversary learns any of the MACki(mj) values. This
would not be the usual case as the authentication tag is
comprised by τ = {x1, x2, ..., xs} from which one cannot
build MACki(mj) unless he is in possession of ki in order to
derive the corresponding coefficients KDj(ki), j ∈ 1..s. We
defer the formal treatment of these properties for Appendix
A.

3 EXPERIMENTAL RESULTS

To evaluate the performance of the proposed protocol suite, we
used several setups with different hardware components having
the goal to determine the minimum authentication delay.

3.1 Protocol performance
Automotive grade embedded devices from Freescale and In-
fineon as well as a notebook equipped with an adapter for
CAN communication from Vector were employed. On the

9

S12X platform, only the main core was used at a frequency
of 80MHz (the X stands for the XGATE co-processor that
can be further used to optimize computations). The embedded
platforms that we used are representative for industry’s low-
end and high-end edges. We built several test beds as follows:
• Testbed T1: Intel T7700+4×TC1797 . The master node
is implemented on a standard PC connected via a high speed
CANcab connector from the CANcardXL board to the slave
nodes that are built on the TriCore platform (this enables a
1Mbps communication speed).
• Testbed T2: TC1782+4×TC1797 . Master and slave
nodes are built on similar TriCore (TC1797) development
boards. CAN communication speed is set to 1Mbps.
• Testbed T3: Intel T7700+4×S12X . The master node is
implemented on a PC (Intel Core2Duo CPU T7700@2.4GHz)
while slave nodes are built on the S12X boards. The master-
slave CAN communication is done through the CANcardXL
using a low speed CANcab for 125kbps.
• Testbed T4: S12X+4×S12X . Both master and slave
nodes are built on identical S12X development boards with
CAN communication speed set to 125kbps.
• Testbed T5: S12X+8×S12X . We used 8 nodes based on
S12X boards for cascade and two-stage authentications. To
these, one more S12X node was added as master for the case
of centralized authentication.

Centralized authentication was tested for the case of 4 nodes
in groups of size 2 that leads to a total of 6 groups. Messages
and authentication tags are always sent as separate frames and
the message size is always 8 bits, e.g., the size of a message
from an analog-to-digital converter. The MAC size for each
key is truncated to 21 bits so that 3 authentication tags fit a
single 64 bit CAN frame. The MAC is computed using the
MD5 hash function over an input formed by concatenating
the group key to the message. While we are aware that MD5
is weak and collisions were found long ago, we use it as a
baseline for speed comparisons (since real-time attacks were
not reported so far on MD5, it should still be secure for the
setting that we address). The resulting hash is then truncated
to the desired size. Table 6 holds the timings and bus loads
for each test bed. Here δ is the authentication delay, i.e., the
delay between the time at which a message is received up to
when it is authenticated on the receiver side (this includes the
time to verify the tag and partly the time to compute and send
it since these two can start as soon as the message is sent).
For the bus load we considered the fraction of traffic caused
by the authentication tags over the entire bandwidth.

As expected, scenarios in which high end devices played
the role of master nodes (PC, TriCore) showed better perfor-
mances than in the case of low end master nodes. The case of a
PC master with TriCore slaves does not perform better, despite
the considerable difference in computational power between
master nodes (TriCore vs. Intel Core2Duo) due to limitations
of CAN adapters. Because of their internal hardware/software
design, these adapters introduce some limitations, e.g., the
average response time specified by Vector for the CANcardXL
is 100µs.

A more complex setting was implemented around 8 S12X
nodes grouped two by two which leads to 28 groups. The size

TABLE 5
Example of tag allocation for the cascade scheme DC-8S2F4

- N1 N2 N3 N4 N5 N6 N7 N8

N1 - 36 10 10 8 - - -
N2 - - 26 10 10 18 - -
N3 - - - 18 10 10 26 -
N4 - - - - 8 10 10 36

of the authentication tags and the truncated MAC size differs
in each variant. We set up the implementations as follows:

• Centralized: The sender computes and sends one MAC for
each group that he is part of. The master computes and sends
one MAC for each of the other 21 groups (if groups of size 2
are used). If the master is to perform the authentication in only
2 frames then each MAC can be truncated to 5 bits and this
will lead to a total of 35 security bits for each node. But if we
increase the number of authentication frames from the master
to 3, then each MAC can be truncated to 9 bits giving a total
of 63 authentication bits for each node which is a reasonable
level for real-time security.
• Cascade: Three additional nodes take part in the au-
thentication process besides the sender. The sender computes
four MACs, three of which are for the nodes that will help
to authenticate the message. The helper nodes will then
compute three extra authentication tags to provide enough
authentication information for all other nodes. An example
of tag allocation is suggested in Table 5. On each line 64
bits are distributed to the nodes denoted on the columns (this
is achieved by concatenating MACs that are truncated to the
corresponding bit length). Here N1 is the sender and nodes
N2, N3 and N4 continue the authentication. If the size of the
groups is 2 then each node will get around 36 security bits,
but if the size of the groups is increased to 3 then, at the same
computational cost and bandwidth, around 63 security bits are
received by each node.
• Two-stage: The master node is missing in this imple-
mentation, therefore we use two helper nodes for computing
and sending the complete authentication tag. In the two-stage
variant, the sender will first put one authentication tag on
the bus which contains the full 36 authentication bits for one
of the helper nodes, 20 bits for the second one and 8 extra
bits for another node. This first tag is followed by a second
tag generated by the first helper node which contains the
remaining 16 authentication bits for the second helper node
and 48 bits equally distributed for three of the remaining
nodes. To complete the 36 authentication bits for each of
the remaining nodes, the sender and the second helper node
will each put an authentication tag on the bus. As discussed
previously, the security level can be raised to around 64 bits
by using groups of size 3 and the described tag allocation
procedure.

Table 6 holds the results achieved with these three imple-
mentations. The worst performer in terms of authentication
delay is the implementation of the centralized authentication
variant as it involves computing MACs for each of the 28
groups in a sequential manner. In the other implementations,
a smaller number of MACs are computed some of which are

10

TABLE 6
Authentication delay and bus-load (various configurations)

Setup and scheme
Tag Msg. δ

Bus load Speed
(bits) (bits) (ms)

T1: Centralized n=4, g=2 64 8 0.267 54.31% 1Mbps
T2: Centralized n=4, g=2 64 8 0.378 42.54% 1Mbps

T3: Centralized n=4, g=2 64 8 2.54 53.84% 125Kbps
T4: Centralized n=4, g=2 64 8 1.848 72.22% 125Kbps
T5: Centralized n=8, g=2 64 8 22.62 11.27% 125Kbps
T5: Cascade n=8, g=2 64 8 9.86 36.11% 125Kbps
T5: TwoStage n=8, g=2 64 8 6.806 46.21% 125Kbps

done by different nodes in parallel. A smaller authentication
delay is obtained when using the two-stage implementation at
the cost of an increased CPU load on the sender side.

3.2 Computational performance with LM-MAC

Previous results were based on the simple concatenation of
individual MACs computed with MD5 as the underlying hash
function. We now take a brief account of the impact of mixing
tags using linear systems of equations.

In Table 7 we give an overview on the computational
timings for various hash functions and input sizes on both
of the employed platforms. The usual message size for our
scenario will be less than 64 bits (the maximum size of the
data carried in one CAN frame) since it contains values from
various sensors, etc., that are usually small. To this one will
need to add the size of the key that is hashed with the message,
thus 16 bytes for the input should be the expected length. We
also give measurements for a 64 bytes input just to get an
upper bound since an input of such size is less likely (this
is in fact the maximum size of the CAN-FD data field). For
the Linearly Mixed MACs, in addition to the computation of
the MACs, two additional computational tasks are required:
solving the linear system of equations on the sender side (a
task which should be usually done by the master which has
higher computational power) and reconstructing the MAC on
the receiver side.

We made a customized implementation dedicated for
GF (216) and GF (232) which resulted in a less general but
more compact source code without any unnecessary operation
(note that more than a single authentication frame is sent, thus
security is not limited to a single GF (232) part of a tag).
We improved more by noticing that we could perform the
same mixing procedure by working in the integer group Zp
where p is Mersenne prime, i.e., a prime of the form 2q − 1
for some other prime q, since in this case modular reduction
can be performed more efficient. Concretely, for a group size
close to GF (232) we chose p = 231 − 1 = 2147483647
which allows 31 bits of entropy for any of the mixed tags.
Having this fixed, the computational performance was up to
about one order of magnitude cheaper than in the case of the
GF (232) field. In Figure 5 (i) we make a graphical depiction
of the computational costs for the case of n = 2, 4, and 8
nodes respectively. In each case the computational costs of
mixing the MACs is compared to the computational cost of 2,
4 and 8 MD5 or HMAC-MD5 operations (these are required

TABLE 7
Execution time for some common hash functions

Function
Input size (bytes)

S12X TriCore
0 16 64 0 16 64

MD5 371µs 374µs 689µs 10.16µs 11.00µs 18.34µs

SHA1 1.144ms 1.148ms 2.285ms 14.64µs 15.10µs 27.60µs

SHA256 2.755ms 2.755ms 5.440ms 41.70µs 42.35µs 80.80µs

TABLE 8
Execution time for MAC-mixing (Infineon TriCore)

SMIX (GF16) SMIX (GF32) SMIX (Zp) MIX (Zp)

2x2 4.205µs 7.89µs 2.045µs 12.50µs

4x4 15.16µs 28.80µs 5.17µs 36.95µs

8x8 57.3µs 111.0µs 17.28µs 180.20µs

to compute the authentication tags in any case). The simplified
mixing is significantly cheaper compared to the MD5, in the
case of Zp its cost is relatively inexpensive compared to the
required hashes. Even in the case of the linear mixing based
on Gaussian elimination in Zp it is still half the cost of
the corresponding hashes. Table 8 shows the computational
costs of simplified linearly mixing SMIX (based on matrix
multiplication and required for the SLM-MAC) in the case
of GF (216), GF (232) and Z231−1 and the case of regular
mixing MIX (based on Gaussian elimination and required by
LM-MAC) in the case of Z231−1. In Figure 5 (i) we make
a graphical representations of the costs when compared to
the costs of regular MD5s or HMACs required for the cor-
responding number of nodes. Figure 5 (ii) shows a prediction
of the cost increase when comparing the symmetric functions
with the additional costs for mixing the tags. The prediction is
based on the fact that mixing with linear equations (MIX) is
done by Gaussian elimination which is O(n3) while matrix
multiplication by a vector (SMIX) required for simplified
mixing is O(n2). Finally, the number of MD5s or HMACs
increases linearly with the number of nodes. Even in the case
of n = 32 nodes, the cost for mixing the tags is lower than
the cost incurred by the corresponding HMACs.

4 IMPROVEMENTS WITH CAN-FD AND CAN+
There are two main shortcomings with the previous LiBrA-
CAN implementation. First of all, depending on the setup, it
can require quite a lot of the CAN bus’ bandwidth, and second,
all nodes in the system need to be aware of the LiBrA-CAN
protocol for it to work. In this section, we discuss two methods
of eliminating these drawbacks, first by employing the recently
released CAN-FD standard and second by using an unofficial
extension of the CAN protocol, called CAN+ [28].

4.1 CAN with Flexible Data-Rate (CAN-FD)
Since CAN-FD capable boards are not yet widely available
on the market, we take advantage of the CANoe tool from
Vector (www.vector.com) which is the industry standard for

11

M
D

5

H
M

A
C

SM
IX

HG
F

16
bi

tL
SM

IX
HG

F
32

bi
tL

SM
IX

HZ
pL

M
IX

HZ
pL

n=2

M
D

5

H
M

A
C

SM
IX

HG
F

16
bi

tL
SM

IX
HG

F
32

bi
tL

SM
IX

HZ
pL

M
IX

HZ
pL

n=4

M
D

5

H
M

A
C

SM
IX

HG
F

16
bi

tL
SM

IX
HG

F
32

bi
tL

SM
IX

HZ
pL

M
IX

HZ
pL

n=8

50

100

150

200

250

300

(i)

MD5

HMAC

MIXIZpM
SMIXHGF232L

SMIXIZpM

SMIXHGF216L

0 5 10 15 20 25 30
n0

200

400

600

800

1000

1200

1400

cost

(ii)

Fig. 5. Computational costs (Infineon TriCore) for mixing
the tags (i) and influence of the participants number on
computational costs (ii)

developing real-time simulations of in-vehicle networks. We
underline that this is a real-time simulation and the software
allows connection with real-world networks via various hard-
ware interfaces, e.g., VN1630.

Our simulation considers networks of 4 or 8 nodes in groups
of size 2 which send messages in a cyclic manner at 1 or 10
ms. The messages are always 8 bytes long (the maximum
allowed in CAN frames) followed by the authentication tag
(which shares the same frame with the message in case of
CAN-FD). With CAN-FD, the Libra Main Scheme can deliver
immediate authentication since the MAC tag can be send with
the message in the generous 64 byte data field. Thus there is no
authentication delay in our simulation (in contrast to previous
experiments from Table 6) since this delay depends solely on
the computational power of the node (for which results in
Tables 7 and 8 should be taken into account). To emphasize
on the benefits of CAN-FD, we compare the bus-load with that
of CAN in the case when nodes are broadcasting messages at
1or 10 ms cycles. For the CAN simulation every node sends a
message and an additional authentication tag, i.e., 2 frames, at
each cycle (immediate authentication is not possible on CAN).

Table 9 illustrates the simulation parameters and the bus-
loads obtained for both CAN (running at 1Mbaud) and CAN-
FD (running at 1Mbaud with the data segment at 8Mbaud).
The first lines show the behaviour for 64 bit tags at various
number of nodes, group sizes and cycles, CAN copes with all
of these but the bus-load for CAN-FD is at least 4× lower.
We also increased the size of the authentication tag to 192 and
448 bits respectively. This allows a very high security level,
e.g., in case that no corrupted nodes are present; each node
harvests 50% of security bits for n = 4 and 12.5% for n = 8.
CAN-FD behaves perfectly well with bus loads under 25–33%.

TABLE 9
Bus-load at immediate authentication (main scheme)

Scheme
Tag Msg. Cycle Bus load

(bits) (bits) (ms) CAN CAN-FD
Main Scheme n=4, g=2 64 8 1 16.68% 4.41%

Main Scheme n=4, g=2 64 64 10 9.85% 2.07%

Main Scheme n=4, g=2 64 64 1 75.32% 15.98%

Main Scheme n=8, g=2 64 64 10 9.57% 2.03%

Main Scheme n=8, g=2 192 64 1 100% 26.26%

Main Scheme n=4, g=2 192 64 10 19.41% 2.86%

Main Scheme n=8, g=2 448 64 1 100% 33.77%

Main Scheme n=8, g=2 448 64 10 37.97% 4.29%

Note that in the case of standard CAN there is a 100% bus
load and some nodes do not manage to transmit messages. In
particular, for the case of 192 bits tag only two CAN nodes
can send messages along with all the authentication tags, while
at 448 bits there is only one node that succeeds so. In contrast
to Table 6, since for CAN-FD we don’t have separate frames
that carry the authentication tag, the bus load covers the entire
traffic. Out of this, the authentication tag represents less than
1/2 for 64 bit tags and is sent in the high data rate segment
which works 8 times faster than usual (8 Mbps vs. 1 Mbps).
This leads to a bus load of only 33% even in the case of the
larger 488 bit tags.

4.2 Backward compatibility with CAN+
The CAN+ protocol allows transmission of extra data along
with a CAN packet on an out-of-band channel. It does this by
transmitting data at an increased rate in between CAN sample
points. At least 225 extra bits can be transmitted with the
CAN+ protocol alongside a CAN message.

Using the CAN+ protocol for LiBrA-CAN data transmission
helps in two ways. First of all, the required bandwidth drops.
For LiBrA-CAN schemes whereby a single node never needs
to transmit more than d 22564 e = 3 authentication tags, all
LiBrA-CAN data can be transmitted as CAN+ data. This
reduces the LiBrA-CAN overhead for those schemes to 0%.
Nodes that need to transmit just a tag, can do so by trans-
mitting a 0-byte CAN message and embedding the tag as
CAN+ data, thereby reducing the time they use the bus from
108 bit lengths (for an 8-byte message) to 44 bit lengths in
non-extended CAN mode, which is a 60% decrease.

Second, if LiBrA-CAN authentication data is only trans-
mitted as CAN+ data, then nodes that do not support CAN+
will not even see the LiBrA-CAN data. Thus, a system can
be setup whereby important nodes are outfitted with a CAN+
transceiver, while non-important nodes aren’t. This makes
the LiBrA-CAN protocol completely backwards compatible
with existing CAN networks: nodes supporting CAN+ could
be dropped into the network at will and start authentication
messages with LiBrA-CAN, while existing CAN nodes will
be completely oblivious as to what is going on and continue
functioning as before. An added bonus is that this also
drastically reduces roll-out cost.

The CAN+ protocol [28] allows out-of-band data transmis-
sion by inserting extra data into the CAN bitstream in between

12

CAN sample points. To better understand this, one must first
take a step back and take a look at the CAN protocol.

At the data link level, CAN works with a non-destructive
arbitration mechanism. The first step of message transmission
consists of sending the message’s ID. Due to synchronization,
all nodes on a bus will start transmission at the same time.
If one of the nodes transmits a zero (dominant) bit, the bus
will be pulled low, thereby “destroying” the transmission of
any one (recessive) bit being transmitted at the same time.
Stopping transmission as soon as such a collision is detected
leads to the non-destructive arbitration mechanism, which
prioritizes low-value IDs. One of the requirements of the
arbitration processes is that transceivers detecting a collision
do not transmit any more bits, so they need to be able to
detect a collision on a bit in the same time window during
which that bit is sent. This requires the propagation delay to be
less than one clock cycle. However, after the arbitration step,
only a single node will still be transmitting and thus, there
is no more need to detect bit errors during their transmission
window, meaning transmission can happen at an increased rate.

The idea to split CAN message transmission in a slow and
fast phase was first proposed by [4]. The CAN+ protocol takes
a slightly different approach: CAN messages themselves are
transmitted at their usual rate, however, in between sample
points, extra data is sent at an increased rate. A traditional
CAN transceiver will not notice these extra bits, thereby
making the CAN+ protocol function effectively out-of-band.
Figure 6 shows the transmission window for CAN+ data inside
a CAN bit. Up to 15 extra CAN+ bits can be transmitted
along with each CAN bit on a 1 MHz bus. On slower buses,
even more bits can be inserted into the data stream. If we
assume that CAN+ bits are inserted during the data and CRC
field transmission, then a minimum of 225 CAN+ bits can be
transmitted (inside the 15 CRC bits, for a 0 byte message on
a 1 MHz bus).

CAN bit

CAN+ transmission
window

15% 55%
75% - CAN
sample point

Fig. 6. Timeframe during which the CAN+ protocol can
insert extra data into a CAN bit

We implemented a CAN+ transceiver to get a better idea
of it’s area requirements. The basis of this implementation
is revision 1.47 of the open-source CAN transceiver imple-
mentation by Igor Mohor, found on the OpenCores website
(http://www.opencores.org). The design was synthesized with
Xilinx ISE 12.2 for a Spartan-6 FPGA with design goal
“Area reduction”. Our design takes into account the worst
case maximum CAN+ data length of 225 bits and, for the
given synthesis results, can not transmit or receive more than
that. The required area can be found in Table 10. Since it is
able to piggyback onto the existing CAN interface logic, the
CAN+ transceiver only increases the total transceiver size by
a moderate 20%, for a total size of only 430 slices. The total

TABLE 10
Synthesis results for CAN & CAN+ transceiver on a Spartan-6

using Xilinx ISE 12.2 (goal: “Area Reduction”).

Slices Registers LUTs
CAN 499 603 917
CAN+ 106 95 227
Combined 430 698 1192

size of the design is smaller than the sum of the size of the
two subdesigns (CAN and CAN+), since the Xilinx ISE tool
executes compacting operations on the full design. A minimum
clock speed of 80 MHz is required for the CAN+ transceiver
to function on a 1 MHz CAN bus. Our design meets those
requirements with a maximum clock speed of 90.75 MHz.

5 CONCLUSION

LiBrA-CAN is an efficient alternative to achieve source au-
thentication if nodes can be placed in small broadcast groups
with dishonest nodes in minority. We expect this to be the case
in many automotive scenarios where, although the number
of ECUs may be high, the numbers of manufacturers from
which they come may not be high and distributing trust
between several groups is an acceptable solution. Experiments
performed on the recently released CAN-FD, showed that it
is possible to achieve immediate authentication at small costs
in bandwidth. If the number of nodes is high we see only
two resolutions: public key cryptography (with the drawback
of high computational requirements, at least 2 orders of
magnitude) or TESLA like protocols (with the drawback of
authentication delays as shown in [9]). CANAuth [26] is also
a solution for high number of nodes if one considers that
source authentication is not relevant and associating keys to
message groups is sound from a security perspective. While a
decision on real-world protocol deployments can be taken only
by manufacturers and by means of consortium, we believe that
LiBrA carries key concepts for such a deployment. We also
consider that the proposal here has the advantage of being
simple to implement and simplicity is one relevant criteria for
adoption in practice.

Acknowledgment. We thank to Prof. Zonghua Gu for pointing the
works of [24] and [25] to our attention. This work was supported
by in part by research grants PNII-IDEI 940/2008 and POSDRU
107/1.5/S/77265. It was also supported in part by the Research
Council KU Leuven: GOA TENSE (GOA/11/007). In addition, this
work is supported in part by the Flemish Government through FWO
G.0550.12N and the Hercules Foundation AKUL/11/19, and by the
European Commission through the ICT programme under contract
FP7-ICT-2011-284833 PUFFIN.

REFERENCES

[1] H. Bar-El. Intra-vehicle information security framework. In Proceedings
of 9th Embedded Security in Cars Conference, ESCAR, 2009.

[2] D. Boneh, G. Durfee, and M. Franklin. Lower bounds for multicast
message authentication. In Advances in CryptologyEUROCRYPT 2001,
pages 437–452. Springer, 2001.

13

[3] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas.
Multicast security: A taxonomy and some efficient constructions. In IN-
FOCOM’99. Eighteenth Annual Joint Conference of the IEEE Computer
and Communications Societies. Proceedings. IEEE, volume 2, pages
708–716. IEEE, 1999.

[4] G. Cena and A. Valenzano. Overclocking of Controller Area Networks.
Electronics Letters, 35(22):1923–1925, Oct. 1999.

[5] H. Chan, A. Perrig, and D. Song. Random key predistribution schemes
for sensor networks. In Security and Privacy, 2003. Proceedings. 2003
Symposium on, pages 197–213. IEEE, 2003.

[6] L. S. Charlap, H. D. Rees, and D. P. Robbins. The asymptotic probability
that a random biased matrix is invertible. Discrete Mathematics,
82(2):153 – 163, 1990.

[7] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham,
S. Savage, K. Koscher, A. Czeskis, F. Roesner, and T. Kohno. Compre-
hensive experimental analyses of automotive attack surfaces. In USENIX
Security 2011, 2011.

[8] A. Fiat and M. Naor. Broadcast encryption. In Advances in Cryptology
(Crypto93), pages 480–491. Springer, 1994.

[9] B. Groza and P.-S. Murvay. Efficient Protocols For Secure Broadcast
In Controller Area Networks. accepted for publication in: Industrial
Informatics, IEEE Transactions on, 2012.

[10] B. Groza, P.-S. Murvay, A. Van Herrewege, and I. Verbauwhede. LiBrA-
CAN: a Lightweight Broadcast Authentication protocol for Controller
Area Networks. In Proceedings of The 11th International Conference on
Cryptology and Network Security, CANS 2012, Springer-Verlag, LNCS,
2012.

[11] T. Hoppe and J. Dittman. Sniffing/replay attacks on CAN buses: A
simulated attack on the electric window lift classified using an adapted
cert taxonomy. In Proceedings of the 2nd Workshop on Embedded
Systems Security (WESS), 2007.

[12] T. Hoppe, S. Kiltz, and J. Dittmann. Security threats to automotive CAN
networks–practical examples and selected short-term countermeasures.
Computer Safety, Reliability, and Security, pages 235–248, 2008.

[13] International Organization for Standardization. ISO 11898-1. Road
vehicles - Controller area network (CAN) - Part 1: Controller area
network data link layer and medium access control, 2003.

[14] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham, and S. Savage.
Experimental security analysis of a modern automobile. In Security
and Privacy (SP), 2010 IEEE Symposium on, pages 447 –462, May
2010.

[15] J. Leohold. Communication requirements for automotive systems. In
Keynote speech 5th IEEE international workshop on factory communi-
cation systems, Vienna, Austria, Vienna University of Technology, 2004.

[16] M. Naor and B. Pinkas. Threshold traitor tracing. In Advances in
Cryptology (CRYPTO’98), pages 502–517. Springer, 1998.

[17] A. Perrig, R. Canetti, D. Song, and J. D. Tygar. SPINS: Security
protocols for sensor networks. In Seventh Annual ACM International
Conference on Mobile Computing and Networks (MobiCom 2001), pages
189–199, 2001.

[18] A. Perrig, R. Canetti, J. Tygar, and D. X. Song. Efficient authentica-
tion and signing of multicast streams over lossy channels. In IEEE
Symposium on Security and Privacy, pages 56–73, 2000.

[19] Robert BOSCH GmbH. CAN Specification Version 2.0., 1991.
[20] Robert BOSCH GmbH. CAN with Flexible Data-Rate Version 1.0, 2012.
[21] T. Roeder, R. Pass, and F. Schneider. Multi-verifier signatures. Journal

of Cryptology, 25(2):310–348, 2012.
[22] V. Shoup. Sequences of games: a tool for taming complexity in security

proofs. IACR Cryptology ePrint Archive, 2004:332, 2004.
[23] C. Szilagyi and P. Koopman. Flexible multicast authentication for time-

triggered embedded control network applications. In Dependable Sys-
tems & Networks, 2009. DSN’09. IEEE/IFIP International Conference
on, pages 165–174. IEEE, 2009.

[24] C. Szilagyi and P. Koopman. Low cost multicast authentication via
validity voting in time-triggered embedded control networks. In Pro-
ceedings of the 5th Workshop on Embedded Systems Security, page 10.
ACM, 2010.

[25] C. J. Szilagyi. LOW COST MULTICAST NETWORK AUTHENTICA-
TION FOR EMBEDDED CONTROL SYSTEMS. PhD thesis, Carnegie
Mellon University, 2012.

[26] A. Van Herrewege, D. Singelee, and I. Verbauwhede. CANAuth-a
simple, backward compatible broadcast authentication protocol for CAN
bus. In 9-th Embedded Security in Cars Conference, 2011.

[27] M. Wolf, A. Weimerskirch, and C. Paar. Secure in-vehicle communica-
tion. Embedded Security in Cars, pages 95–109, 2006.

[28] T. Ziermann, S. Wildermann, and J. Teich. CAN+: A new backward-
compatible Controller Area Network (CAN) protocol with up to 16x
higher data rates. In DATE, pages 1088–1093. IEEE, 2009.

APPENDIX A - SECURITY PROOFS

OVERVIEW OF DEFINITIONS AND PROOFS. We now give
a formal account of the properties that we require for the
M-MAC constructions. These are proved in a framework of
two attack games: one for the unforgeability of the M-MAC,
i.e., GameUFM-MAC, and the other for the strong non-malleability
of the M-MAC, i.e., GameSNMM-MAC. We define these games in
similar manner to the games used by Boneh et al. in [2]
to derive lower bounds on the security of multicast message
authentication. That is, in each game the adversary sends to
the challenger a target message and a subset of corrupted
parties that collude to fool one or more receivers, further the
challenger answers to the adversary’s queries and the game
ends with the adversary delivering a forged authentication
tag. The attack on unforgeability is classical and the proof
is straight-forward from the property of the underlying MAC
function. The attack on strong non-malleability GameSNMM-MAC

requires an adversary to be able to modify an M-MAC in such
way that verification fails with at least one of the keys but
succeeds with another. We call an M-MAC that is resilient to
such attacks to be strongly non-malleable.

Since the unforgeability attack game is easier to derive,
we begin with the second property. We prove this by means
of a sequence of games following a transition based on the
indistinguishability between the key derivation function and
some complete random function, a crisper way for providing
a security proof [22].

For simplicity of the exposition, we use m̃ to denote the
input to the Tag algorithm and we assume it stands for a
tuple of s identical messages, i.e., M = {m̃, m̃, ..., m̃︸ ︷︷ ︸

s−times

}.

Definition 1. (Strong Non-malleability Attack Game) We
define the M-MAC strong non-malleability game GameSNMM-MAC

as the following three stage game between challenger C and
adversary Adv :

1) Setup stage:
a) Challenger C runs the key generation algorithm

Gen(1`, s) to get a key set K = {k1, ...,ks} of `-bit
keys (` is the security parameter of the scheme).

b) The adversary Adv makes its corruption query by
requesting C a subset of the keyset K♠ = {kj1 , ...,kjt},
where ji ∈ [1..s] and t < s− 1. Note that in this case
the adversary is always missing at least two of the keys.

c) The adversary Adv fixes its target message m̃� and
two target key indexes α, β such that kα,kβ 6∈ K♠
(that is, these two keys are not corrupted).

2) Query stage:
a) Adversary Adv is allowed to make queries to the MAC

generation oracle OTag(K, m̃) for any message tuple
m̃ to obtain the corresponding tag τ = {x1, x2, ..., xs}
where each xi is the solution of the following linear
system in GF (2b):

14

KD1(k1, m̃) · x1 + ...+ KDs(k1, m̃) · xs ≡ MACk1m̃)

KD1(k2, m̃) · x1 + ...+ KDs(k2, m̃) · xs ≡ MACk2(m̃)

...

KD1(ks, m̃) · x1 + ...+ KDs(ks, m̃) · xs ≡ MACks(m̃)

b) Adversary Adv is allowed to make queries to the MAC
verification oracle OVer(i, m̃, τ) with any key index
i, tag τ = {x1, x2, ..., xs} and message m̃. The
oracle OVer(i, m̃, τ) proceeds in the natural way by
computing τ ′ ≡ KD1(ki, m̃) · x1 + KD2(ki, m̃) · x2 +
...+KDs(ki, m̃)·xs and checking that τ ′ = MACki(m̃).

3) Output stage:
a) Eventually, the adversary outputs the pair (m̃�, τ♣)

where τ♣ is a tag maleated by the adversary.
b) The game output is 1 if the following two condi-

tions hold: Ver outputs 1 on (α, m̃�, τ♣) and 0 on
(β, m̃�, τ♣). Otherwise the game output is 0. Note
that in this case, the adversary is allowed to query
the MAC generation oracle OTag(K, m̃) with m̃� to
get the correct tag τ�.

Definition 2. (Strong Non-malleability) We say that a
mixed message authentication code M-MAC is strongly non-
malleable if:

Pr
[
GameSNMM-MAC(1

`, s) = 1
]
< negl(`).

Theorem 1. The linearly-mixed message authentication
code LM-MAC is strongly non-malleable.

Proof. We construct the following sequence of games:
• Game G0. Let this be the original attack game

GameSNMM-MAC.
• Game G1. Let this be identical to game G0 ex-

cept for the following: in the query stage, when-
ever solving the linear system of equations replace
KD1(kα, m̃),KD1(kα, m̃), ...,KDs(kα, m̃) with some
pure random values ρ1, ρ2, ..., ρs (for each m̃ these are
stored on a tape).

• Game G2. Let this be identical to game G1 except that
when verifying the tuple (α, m̃�, τ♣) instead of running
OVer(i, m̃, τ) in the usual way the challenger first checks
if the adversary ever asked for the correct tag τ�, retrieve
it from the tape (if not then run OTag(K, m̃) to get it) and
checks if: ρ1 · (x♣1 − x

�
1) + ρ2 · (x♣2 − x

�
2) + ... + ρs ·

(x♣s − x�s) ≡ 0.

Assuming that the probability in distinguishing between the
key derivation function and some pure random function is neg-
ligible ε(`) we have: Pr [Adv wins G0 −Adv wins G1] <
ε(`).

If ρ1 · (x♣1 − x
�
1) + ... + ρs · (x♣s − x�s) ≡ 0 then it also

holds that ρ1 · x♣1 + ...+ ρsx
♣
s ≡ MACkα(m̃), thus whenever

the condition of game G2 is verified the one for game G1

is verified as well. It follows that the probability that game
G2 outputs 1 is at least that of game G1 and we have:
Pr [Adv wins G1] ≤ Pr [Adv wins G2] . However, note that
∃i ∈ [1..s] such that x♣i 6= x�i since otherwise τ♣ = τ� and
in this case x♣i will also pass verification for key kβ making
the adversary loose the game. Therefore ∃i ∈ [1..s] such that

x♣i −x
�
i 6= 0 and since this is multiplied by some pure random

ρi value we have:

Pr [Adv wins G2] = Pr

 ∑
j=1..s

ρj · (x♣j − x
�
j) ≡ 0

 =
1

2b

⇒ Pr [Adv wins G0] ≤ ε(`) +
1

2b
= ε(`) +

1

2p(`)
≤ negl(`).

We considered b to be a polynomial p(`) in the security
level `.

Definition 3. (Unforgeability Attack Game) We define the
M-MAC unforgeability game GameUFM-MAC as the following five
stage game between challenger C and adversary Adv :

1) Setup stage: is identical to that of the strong non-
malleability game GameSNMM-MAC with the following mod-
ification. We request that t < s (that is, the adversary
can get all except one of the keys) and the adversary
Adv fixes its target message m̃� and a single key index
α such that kα 6∈ K♠.

2) Query stage: is identical to that of the strong non-
malleability game GameSNMM-MAC.

3) Output stage: the adversary outputs the pair (m̃�, τ♣)
where τ♣ and the game outputs 1 if the following two
conditions hold: Ver outputs 1 on (α, m̃�, τ♣) and the
adversary never queried m̃� to OTag(K, m̃). Otherwise
the game outputs 0.

Definition 4. (Unforgeability) We say that a mixed message
authentication code M-MAC is unforgeable if:

Pr
[
GameUFM-MAC(1

`, s) = 1
]
< negl(`).

Theorem 2. The linearly-mixed message authentication
code LM-MAC is unforgeable if the underlying MAC is
unforgeable.

Proof. Unforgeability is straight-forward to relate to the
unforgeability of a single MAC. In the Setup stage, challenger
C after receiving the index α from the adversary Adv solves
all future calls to the generation oracle OTag(K, m̃) and
verification oracle OVer(i, τ, m̃) by using the black box for the
MAC. When the adversary outputs (i, m̃�, τ�) the challenger
yields MACkα(m̃) = KD1(kα, m̃) · x♣1 + KD2(kα, m̃) · x♣2 +
...+ KDs(kα, m̃) · x♣s which is a valid tag if and only if the
adversary Adv is successful. Note that similar to the previous
games since the adversary is not in possession of kα all values
KDi(kα, m̃), i = 1..s are simulated by random coins.

