
Ce conține un caz de test (Test Case)?

Id, Title, Preconditions, Steps, Expected Results, Status,
Tested product/component/method, Link to specs,…

Id, Description, Feature, Info, Revision, Steps

ine un caz de test (Test Case)?

Regression

Id, Title, Preconditions, Steps, Expected Results, Status,
Tested product/component/method, Link to specs,…

Id, Description, Feature, Info, Revision, Steps
[Apache OO]

Test Case. Exemple

Test Case. Exemple

Test Case. Exemple

Test Case. Exemple

xUnit. 1 Test Case = 1 Test Method

Test
Case

1

1

xUnit. 1 Test Case = 1 Test Method

Test
Method

1

[Test]
public void TestMethod(){

//arrange
…
//act
…
//assert
…

}

1

Test Methods naming

� No standards !

� Self-explanatory

� Easy to read/understand

Test Method name. Good to have: Test Method name. Good to have:

� Unit of work/SUT (method/class)

� State under test (short and meaningful description of the test scope)

� Expected behavior

Public void Sum_NegativeNumberAs1stParam_ExceptionThrown()

Public void Sum_NegativeNumberAs2ndParam_ExceptionThrown ()

Public void Sum_simpleValues_Calculated ()

Unit of work/SUT (method/class)

State under test (short and meaningful description of the test scope)

Public void Sum_NegativeNumberAs1stParam_ExceptionThrown()

Public void Sum_NegativeNumberAs2ndParam_ExceptionThrown ()

Public void Sum_simpleValues_Calculated ()

Stunt Doubles

Stunt Doubles

Test Doubles

What if the SUT was designed/not designed

isolation of other pieces of software?

If testing in isolation is possible -> easy � If testing in isolation is possible -> easy

� If testing in isolation is not possible

� testing the SUT together with all the dependencies

� try to isolate the SUT with various

[Gerard Meszaros]

designed/not designed that it could be tested in

of other pieces of software?

> easy > easy

possible -> 2 options:

testing the SUT together with all the dependencies

various techniques

Test Doubles. Example

Testing the quality of water in an aquarium

ITemperatureSensor interfaces are implemented by classes that control specialist

hardware with sensors that are placed into the water being checked. We need to

test the WaterQualityReporter class. HOW?

. Example

Testing the quality of water in an aquarium. IAmmoniaMeter, IOxygenMeter and

ITemperatureSensor interfaces are implemented by classes that control specialist

hardware with sensors that are placed into the water being checked. We need to

HOW?

blackwasp.co.uk

Test Doubles. Indirect Inputs/Outputs

� testing classes in groups

-> very hard to cover all the paths

� DOC (depended-on components) return values or throw

exceptions to the SUT (the SUT depends on the DOC). Sometimes

impossible to make the DOC respond as needed by the SUT

� Indirect Inputs received from the DOC could be

(temperature, oxygen level, system clock, calendar,..) or DOC

could be not implemented yet

� monitoring the side effects of exercising the SUT difficult to

monitor -> Indirect Outputs

Test Doubles. Indirect Inputs/Outputs

all the paths through code

on components) return values or throw

exceptions to the SUT (the SUT depends on the DOC). Sometimes

impossible to make the DOC respond as needed by the SUT

received from the DOC could be unpredictable

(temperature, oxygen level, system clock, calendar,..) or DOC

monitoring the side effects of exercising the SUT difficult to

Test Doubles. Indirect Inputs

� untested SUT paths = untested code

� challenge to test all paths

� testing in production = probably catastrophic failures

� the solution: make the DOC return values/throw exceptions such as the

SUT paths should be exercised regarding DOC

(simulated/artificial/inauthentic) behavior

Test Doubles. Indirect Inputs

testing in production = probably catastrophic failures

the DOC return values/throw exceptions such as the

SUT paths should be exercised regarding DOC mocked

behavior

Test Doubles. Indirect Inputs

� for testing the SUT with Indirect Inputs

to cause the DOC to return every possible value

exception in the context of given requirements

� can not use the real component (DOC) for producing needed

� Real component can not be manipulated

� Real component can be manipulated but is cost

� Real component is not available/not yet implemented

� solution: implement a Test Double that will simulate (hardcoded or not) DOC

behavior

Test Doubles. Indirect Inputs

Indirect Inputs we need to control the DOC, we need

return every possible value and to throw every possible

in the context of given requirements

can not use the real component (DOC) for producing needed II:

Real component can not be manipulated

Real component can be manipulated but is cost-effective

Real component is not available/not yet implemented

: implement a Test Double that will simulate (hardcoded or not) DOC

Test Doubles. Indirect Outputs

� Indirect Inputs = return values/thrown exceptions by DOC

� What if DOC return/throws nothing? How can we test SUT behavior?

� Example: DOC = a message logging system. No returns to the SUT

� How can we test that the SUT called correctly the DOC? (Or how can we

test the Indirect Outputs?)

� Not testing Indirect Outputs leads to Untested Requirements

Test Doubles. Indirect Outputs

= return values/thrown exceptions by DOC

How can we test SUT behavior?

Example: DOC = a message logging system. No returns to the SUT

How can we test that the SUT called correctly the DOC? (Or how can we

Untested Requirements

Test Doubles. Indirect Outputs

� to test Indirect Outputs we must be able to observe

� Back Door Verification

� we need a Test Spy to record SUT calls to DOC

� make assertions on the expected calls and the recorded calls

Test Doubles. Indirect Outputs

we must be able to observe SUT calls to DOC

to record SUT calls to DOC

make assertions on the expected calls and the recorded calls

Test Doubles. Types

� Dummy Object - II (Indirect Inputs)

� Test Stub & Test Spy - II & IO

� Mock Object - IO

� Fake Object - alternative implementation of the same functionality

(Indirect Inputs)

II & IO (Indirect Outputs)

alternative implementation of the same functionality

Test Doubles. Dummy Obj

� never used in the SUT business logic

� irrelevant behavior

just needed by the SUT as a parameter� just needed by the SUT as a parameter

[Test]
public void TestMethod(){

//arrange
var product = new Product(“Dummy name”
var invoice = new Invoice (new DummyCustomer

//act
invoice.AddItemQuantity(product, 1);

//assert
Assert.AreEqual(invoice.GetLineItems

}

Dummy Obj

just needed by the SUT as a parameterjust needed by the SUT as a parameter

(“Dummy name”, getUID());
DummyCustomer());

(product, 1);

invoice.GetLineItems().size(),1);

Test Doubles. Test Stub

� an object that delivers Indirect Inputs to the SUT

� allows to exercise untested path through the SUT

Responder Test Stub injects valid/invalid Indirect Inputs into the SUT � Responder Test Stub injects valid/invalid Indirect Inputs into the SUT

through returns from method calls

� Saboteur Test Stub raises and injects exceptions or errors into the SUT

STATE verification – verify if SUT worked correctly by
examining the state of the SUT after being exercised

Test Stub

an object that delivers Indirect Inputs to the SUT

allows to exercise untested path through the SUT

injects valid/invalid Indirect Inputs into the SUT injects valid/invalid Indirect Inputs into the SUT

raises and injects exceptions or errors into the SUT

verify if SUT worked correctly by
of the SUT after being exercised

Test Doubles. Test Stub. Example

interface ISecondDeep { Boolean SomethingToDo(String

class SecondDeep : ISecondDeep { ... }

class FirstDeep {
readonly ISecondDeep secondDeep;
public FirstDeep(ISecondDeep secondDeep) {
public String AddA(String str) {

var flag = this.secondDeep.SomethingToDo
}

}

class SecondDeepStub : ISecondDeep { class SecondDeepStub : ISecondDeep {
public Boolean SomethingToDo(String str) {

}

var firstDeep = new FirstDeep(new SecondDeepStub

var firstDeep = new FirstDeep(new SecondDeep());

Testing without Indirect Inputs. Production code

Testing using a Test Stub

Test Stub. Example

String str); }

secondDeep) { this.secondDeep = secondDeep; }

SomethingToDo(str); ...

str) { return true; }

SecondDeepStub());

());

Testing without Indirect Inputs. Production code

Test Doubles. Test Spy

� an object that acts as an observation point for the Indirect Outputs of the

SUT

� quietly records SUT method calls

� useful for a method calls assertions

Test Spy

an object that acts as an observation point for the Indirect Outputs of the

Test Doubles. Test Spy.Example

[Test]
public void TestMethod(){

//Arrange

//fixture setup
var expectedFlightDto = CreateAnUnregFlight
var facade = new FlightManagementFacadeImpl

//test double setup
var logSpy = new AuditLogSpy();
facade.SetAuditLog(logSpy).facade.SetAuditLog(logSpy).

//Act
facade.RemoveFlight(expectedFlightDto.GetFlightNumber

//Assert
Assert.AreEqual(logSpy.GetNumberOfCalls
Assert.AreEqual(logSpy.GetDate(), helper.GetTodayDate
Assert.AreEqual(logSpy.GetDetail(), expectedFlightDto.GetFlightNumber

}

Test Spy.Example

CreateAnUnregFlight();
FlightManagementFacadeImpl();

RemoveFlight() calls LogMessage()

expectedFlightDto.GetFlightNumber());

logSpy.GetNumberOfCalls(), 1);
helper.GetTodayDate());
expectedFlightDto.GetFlightNumber());

Test Doubles. Mock Obj

� looks like a Test Spy

� contains predefined expectations

2 types:� 2 types:

1. Strict – verify the expected calls are made in the exact predefined

order

2. Lenient – tolerates out-of-order calls

BEHAVIOR verification

Mock Obj

verify the expected calls are made in the exact predefined

order calls

verification – verify if SUT called the
exact expected methods

Test Doubles. Mock Obj. Example

[Test]
public void TestMethod(){

//Arrange

//fixture setup
var expectedFlightDto = CreateAnUnregFlight

//mock object setup/config

var mockLog = ConfigurableMockAuditLog
mockLog.SetExpectedLogMessage(mockLog.SetExpectedLogMessage(

helper.GetTodayDate(),
expectedFlightDto.GetFlightNumber

mockLog.SetExpectedNumberCalls(1);

//mock instalation

var facade = new FlightManagementFacadeImpl
facade.SetAuditLog(logSpy).
//Act
facade.RemoveFlight(expectedFlightDto.GetFlightNumber

//Assert
mockLog.verify();

}

Mock Obj. Example

CreateAnUnregFlight();

ConfigurableMockAuditLog();

RemoveFlight() calls LogMessage()

expectedFlightDto.GetFlightNumber());

FlightManagementFacadeImpl();

expectedFlightDto.GetFlightNumber());

Test Doubles. Fake Obj

TO BE CONTINUED…

Fake Obj

TO BE CONTINUED…

TEMA

Test Doubles. How to implement?

C# Code examples

� Dummy Object

� Test Stub � Test Stub

� Test Spy (Internal & Dependency)

� Mock Object

� Fake Object

How to implement?

Test Spy (Internal & Dependency)

Test Doubles. Dependency injection

public void TransferFundsFromEurAmount
float amountInEur)

{
var convertor = new CurrencyConvertor
var amountInRon = convertor.EurToRon

destination.Deposit(amountInRon
Withdraw(amountInRon);

Production code

Withdraw(amountInRon);
}

How do we domain test this SUT?

How do we test this SUT for different Eur/Ron rates?

We inject the DOC (CurrencyConverter) into the SUT

Is this code designed for testability?

Dependency injection

TransferFundsFromEurAmount(Account destination,

CurrencyConvertor();
convertor.EurToRon(amountInEur);

amountInRon);

How do we test this SUT for different Eur/Ron rates?

We inject the DOC (CurrencyConverter) into the SUT

Test Doubles. Dependency injection

A testable version of the production code

public void TransferFundsFromEurAmount
Account destination,
float amountInEur,
ICurrencyConvertor convertor)ICurrencyConvertor convertor)

{
var amountInRon = convertor.EurToRon

destination.Deposit(amountInRon
Withdraw(amountInRon);

}

Dependency injection

A testable version of the production code

TransferFundsFromEurAmount(

convertor)convertor)

convertor.EurToRon(amountInEur);

amountInRon);

Test Doubles. Dependency injection

The client provides the DOC to the SUT

Dependency injection

The client provides the DOC to the SUT

Test Doubles. Dependency injection types

� Constructor Injection

� Setter Injection

� Parameter Injection

Dependency injection types

Constructor Injection

Parameter Injection

Test Doubles. Dependency lookup

The SUT asks another object to

Test Doubles. Dependency lookup

to return the DOC before using it.

Test Doubles. Dependency lookup types

� Object Factory

the TestMethod tells (set) the

TestDouble instead of DOC whenever a specific method is called

� Service Locator

the TestMethod configures the

TestDouble instead of DOC whenever the SUT requests it

Dependency lookup types

tells (set) the Object Factory to create a

instead of DOC whenever a specific method is called

configures the Service Locator to return the

instead of DOC whenever the SUT requests it

Mocking Frameworks (C#)

� NSubstitute

http://nsubstitute.github.io

Moq� Moq

https://github.com/Moq/moq4/wiki/Quickstart

� FakeItEasy

https://github.com/FakeItEasy/FakeItEasy/wiki

Mocking Frameworks (C#)

http://nsubstitute.github.io

https://github.com/Moq/moq4/wiki/Quickstart

https://github.com/FakeItEasy/FakeItEasy/wiki

