Ce contine un caz de test (Test Case)?

Id, Description, Feature, Info, Revision, Steps
|[Apache OO]

Id, Title, Preconditions, Steps, Expected Results, Status,
Tested product/component/method, Link to specs,...

Test Case. Exemple

A

B

C

D

E

F

G

H I

J

l TA1.Bing.Main.Page

(== e J A g L =P PR

20

= Passed
H Failed

= Blocked
= Untested

= Skipped

25

Test Case Results

Untested 14 67% 04h
Passed K] 14% 01h
Failed 1 5% 0.0h
Skipped 1 5% 0.2h
Blocked 2 10% 0.1h

Test Date TC Comment /
TC# Test Execution Steps Expected Result Result Tested Tester Time (or Requirement xref)
ik} User Story 1 - User lands on fully functional, fully visible main entry page in less than 3 seconds
1. Open brnwagr A. Page pops up without error p 11202010 | mpierce| 1 m
2. http:/www_bing.com/
B. Page pops upin less than 3 p 1202010 | mpierce| 1 m
seconds
3. Set Windows Display Settings |A. Entire Bing main page fits on 07 . Bottom menu is truncated off X
to standard laptop 1280 x 500 sCreen A (mpsacs| SHin screen
pixels B. Stet clita kasd gubergren, no
4. Do another step sea takimata sanctus est Lorem F 142002010 |mpierce| 5 m
5 Verify separate expected results|ipsum dolor sit amet.
to the right C. Vel illum dolore eu feugiat nulla T ——
facilisis at vero eros et accumsan 5 1/20/2010 | mpierce| 10 m PP g
2 : applicable
et iusto odio
1. Vel illum dolore eu feugiat A Duis autem vel eum iriure dolor e e D R x
2. Mulla facilisis at vero eros et in hendrerit in vulputate velit esse B 172002010 |mpierce| 3 m P
; A 5 features X and '
accumsan et iusto odio malestie conseguat
B. Lorem ipsum dolor sit amet,
cpnsetetur sadmscmg elitr, sed e 8 m |No longer applicable
diam nonumy eirmod tempor
invidunt ut
1. Lorem ipsum dolor sit amet, A_ Duis autem vel eum iriure dolor
consetetur sadipscing elitr in hendrerit in vulputate velit esse
2. sed diam nonumy eirmod maolestie consequat U 1m
4o s ol omd ok
I4| 4| » M Snapshot / Trend / About) TA1l.Bing.Main.Page/ TA2.Bing.Results.Page / | <]
B N W S ve R -~ (i P S (I 3 e N R R

Test Case. Exemple

Home

Al

Layout | Tables | Charts SmartArt
| €@ & (= fx| Test Coffee Beans

Formulas = Data Review I <

Description
Test to check the type,
roast, and general
freshness of coffee beans

Test Brew Prep

|

Test to check the
preparation for coffee
brewing

Step Name
Arabica beans

Cwer roasted beans

Under roasted beans

Fresh beans
Fresh water

Secure grounds cup

Water heated

Step Instruction Expected Result

Check the package to be sure beans are Package contains Arabica
Arabica type beans

Check that beans are not roated to charcoal Beans are not over roasted
Check that beans aren't green and have Beans are not under

some roasty smell roasted

Check that beans are not moldy or have not Beans are reasonably fresh
lost their roasty smell completely
Ckeck that the reservoir contains fresh water | Reservoir water is fresh

Check that the grounds cup is securely Grounds cup is securely
mounted to the brewer attached
Check that the water is hot enough to brew Indicator light Is amber

Test Case. Exemple

Test Case Description

=
:;I_-:
=, M
-q'i.:
=
Ho-
-
[
[_|

Funetonal C1

L |
-

Funetonal C2

Performance

TC1.0 - Crzate new contacts: Losin 2 Contacts N/A| Approved X 34,112, 212,
Mew > New Comtacts = Varjfv Data Elements 243, 244
Contact
TC2.0 - Validates the creation of a new contract and TC1.0,| Approved e X | 24,25, 36,37,
Mew the approval process: Lomin = Contract TCL.1, 40, 44 535 &G
Contract Holder 2 New Comtract Holdsr & Contracts Username, 107, 154, 156,
Standard = New Comtract = Commissions 2> Pazzword, 226,233, 235,
Commissions = Logout Appropriate 244 234 236
TC23- Testing a Campaign: Login -> Login - TC1.0,| Not Reviewad X X 129, 130,
Tasta Program Plans -> Query Program Plan -> TCL.1, 133,134, 155,
TC2.0 - Validates the creation of a new contract and TCl.x, LOVs| Not Eeviewad XX 24 44 38 77
Mew the approval process: Lomin = Contract and State 79, 85, 68, 65,
Contract Holder 2 New Contract Holdsr = Contracts model 100, 112, 133,
Etandard = New Comtract = Commissions 2> 135, 138, 153
Commissions = Approval process = Logout
TC3.0 - Walidates that this process will fail correctly TCl x, LOVs| Not Reviewad XX 24 44 36 77,
Contracts |(negative test): Logsin 3 New Contract Holder and State 79, 85, 68, 65,
= New Contract Holder = Contracts > New moddel 100, 107, 112,
Contrast = Commissions = Commissiorns 133, 135, 138,
Approval Process 2 Rgjection = Resubmit 163,
2> Logout
TC43 - Walidate the converted data in the Contracts TCl x, | Not Reviewad X 51,112 143
Contracts |fields are correct based on test inputs (using TC2.x, 193, 200, 201,
fizld names from the Design document). Contracts data 204, 263

Test Case. Exemple

Open the google chrome browser and enter the url hittpsffwenw.Ebooks.com/ Login page should be displayed Login page displayed
115 | With Username and Password fields With Username and Password Pass
16
Enter valid data in to the username and password field and UserName = admin

17 2 TC-02 click on login button PassWord = admin It should redirect to the home page Home page displayed Pass

18

l"‘i-_1 3 TC-03 Enter valid data in to the UserMame field UserName = admin

|20 But don't enter any thing in the PassWord field PassWiord = Error message should be displayed has Error message displayed has

1) Click on login button PassWord field cannot be empty PasswWord field cannot be emply |Pass
E

]

B 4 TC-04 Enter valid data in to the PassWord field UserMame =

5 ! But don't enter any thing in the UserName field PassWord = admin Errer message should be displayed has Error message not displayed
:_i] Click on login button UserMame flield cannot be emply [t redirected to the hbﬂwpa‘n-__
E
|28

k=i 5 TC-05 Don't enter any thing in the UserMame and PassWaord UserMame = Error message should be displayed has Emror message displayed has

30 Fiebds Click on login button PassWord = UserMame field cannot be emply UserMame field cannot be empty |Pass
3 Pasaward field cannot be emply Passwiord field cannot be empty

2
E:i & TC-05 Enter walid data in to the UserName field UserMame = admin Errer message should be displayed has Eror message displayed has

. Enter invalid data in to the Password field Password = ggisfis Please enter valid password Please enter valid password Pass
a5 Click on login button

a7 7 TC-07 Enter invalid data in to the UserMame field UserMame = 878545 Error message should be displayed has Error message displayed has
| 38 | Enter valid data in to the Pass\Word field PassWord = admin Please enter valid UserName Please enter valid UserName Pass
33 Click on login button

% |
a1 dstfchstudigvpsdighd, vgds dgsdgdsgdsgfs fighthget

42

xUnit. 1 Test Case = 1 Test Method

Test Test
Method

5
Z
2
H

Ceaate new contacts: Login > Contacts red 34,112,212, I eSt
3 New Contasts 5 Verify Data Elsments z4€
. .
TC20- | Validates the creation of a naw contract and TCL0,| Approved X | 2425 36 37 u bl IC Vo Id I eStM ethod
Mo the spproval process: Login > Contract TCL1 40, 44,59, 99,

Contract |Holder > New Conpact Holder > Conteacts | Usarname 107, 194, 196,

Standasé | New Comvact > Commissions > Password, 226,233, 235, //a r ra n e
Commissions - Logout 244,254,256 g

TC23- | Testing 2 Campaizn: Lozin > Login = TCL0,| Not Reviewsd| X| X 129, 150,

Tasta Drosram Plans -» Quary Program Plan -» TCL1 153,154,159

TC2.0 - Validates the ereation of a new contract and TCl.x, LOVs| Not Reviewed X[® 24,44 58 77, L

New the approval process: Lozin 5 Contract and State| 7. 85,98, 99

Contract |Holdar > New Conpact Holder > Contracts modal 100, 112,135 / / aCt

Standasé | New Comvact > Commissions > 135, 138, 193

smmissions 3 Approval process 3 Logout

TC3.0_ |Validates that this process will fail corractly | TCLx, LOVa| Not Reviewsd X% 24,44, 58,77, -

Contracts |(nesative test): Lozin New Contract Holder and State| 7. 85,98, 99
> New Conpast Holder » Conteacts New modal 100, 107, 112 // t
Contract > Commissions > Commizsions 133, 135, 138, aSS e r
Approval Process > Rejection > Resubmit 183,
> Logout

TC43 - Validate the convertad data in the Contracts TCl.x,| Not Reviewed X 51,112,143 A

Contracts fizlds ars corract basad on test inputs (using TC2x, 198, 200, 201,

field names from ths Desizn document). Contracts data| 204, 265 }

Test Methods naming

> No standards !
> Self-explanatory

> Easy to read /understand

Test Method name. Good to have:
> Unit of work/SUT (method/class)
> State under test (short and meaningful description of the test scope)

» Expected behavior

Public void Sum NegativeNumberAslstParam ExceptionThrown()
Public void Sum_NegativeNumberAs2ndParam_ExceptionThrown ()

Public void Sum_simpleValues Calculated ()

Stunt Doubles

p)
L
O

D

o
-
+

-

D
i)
0p.

TCSt DOUbleS [Gerard Meszaros]|

What if the SUT was designed/not designed that it could be tested in

isolation of other pieces of software?
- If testing in isolation is possible -> easy
> If testing in isolation is not possible -> 2 options:

> testing the SUT together with all the dependencies

» try to isolate the SUT with various techniques

Test Doubles. Example

blackwasp.co.uk

Testing the quality of water in an aquarium. IJAmmoniaMeter, IOxygenMeter and

ITemperatureSensor interfaces are implemented by classes that control specialist

hardware with sensors that are placed into the water being checked. We need to

test the WaterQualityReporter class. HOW?

WaterQualityReporter

-0 25afetyCalculator
-ammoniaieter

+CheckWater(): string

W o

z<interface ==

1025afetyCalculator

zinterface ==
IAmmonialMHeter

+0xygenLevellsSafe(): boal

+PartsPerMillion: int

'y

'y

< <interface =

< <interface =

I0wygenMeter ITemperatureSensor

+0xygenPercentage: int +Celcius: double

Test Doubles. Indirect Inputs/Outputs

> testing classes in groups

-> very hard to cover all the paths through code
» DOC (depended-on components) return values or throw
exceptions to the SUT (the SUT depends on the DOC). Sometimes
impossible to make the DOC respond as needed by the SUT
> Indirect Inputs received from the DOC could be unpredictable
(temperature, oxygen level, system clock, calendar,..) or DOC
could be not implemented yet
> monitoring the side effects of exercising the SUT difficult to

monitor -> Indirect Outputs

Test Doubles. Indirect Inputs

> untested SUT paths = untested code

> challenge to test all paths

> testing in production = probably catastrophic failures

> the solution: make the DOC return values/throw exceptions such as the

SUT paths should be exercised regarding DOC mocked

(simulated /artificial /inauthentic) behavior

Test Doubles. Indirect Inputs

» for testing the SUT with Indirect Inputs we need to control the DOC, we need
to cause the DOC to return every possible value and to throw every possible

exception in the context of given requirements

> can not use the real component (DOC) for producing needed II:
> Real component can not be manipulated
> Real component can be manipulated but is cost-effective
- Real component is not available/not yet implemented
> solution: implement a Test Double that will simulate (hardcoded or not) DOC

behavior

Test Doubles. Indirect Outputs

> Indirect Inputs = return values/thrown exceptions by DOC

> What if DOC return/throws nothing? How can we test SUT behavior?

» Example: DOC = a message logging system. No returns to the SUT

> How can we test that the SUT called correctly the DOC? (Or how can we

test the Indirect Outputs?)

» Not testing Indirect Outputs leads to Untested Requirements

Test Doubles. Indirect Outputs

> to test Indirect Outputs we must be able to observe SUT calls to DOC

> Back Door Verification

> we need a Test Spy to record SUT calls to DOC

> make assertions on the expected calls and the recorded calls

Test Doubles. Types

> Dummy Object - II (Indirect Inputs)

- Test Stub & Test Spy - II & IO (Indirect Outputs)

- Mock Object - IO

- Fake Object - alternative implementation of the same functionality

Test Doubles. Dummy Ob;j

> never used in the SUT business logic
» irrelevant behavior

> just needed by the SUT as a parameter

[Test]

public void TestMethod(){
//arrange
var product = new Product(“Dummy name”, getUID());
var invoice = new Invoice (hnew DummyCustomer());

/lact
invoice.AddltemQuantity(product, 1);

/lassert
Assert.AreEqual(invoice.GetLineltems().size(),1);

Test Doubles. Test Stub

> an object that delivers Indirect Inputs to the SUT

> allows to exercise untested path through the SUT

» Responder Test Stub injects valid /invalid Indirect Inputs into the SUT

through returns from method calls

» Saboteur Test Stub raises and injects exceptions or errors into the SUT

STATE verification — verify if SUT worked correctly by
examining the state of the SUT after being exercised

Test Doubles. Test Stub. Example

interface ISecondDeep { Boolean SomethingToDo(String str); }
class SecondDeep : ISecondDeep { ... }

class FirstDeep {
readonly ISecondDeep secondDeep;
public FirstDeep(ISecondDeep secondDeep) { this.secondDeep = secondDeep; }

public String AddA(String str) {
var flag = this.secondDeep.SomethingToDo(str);
}

class SecondDeepStub : ISecondDeep {
public Boolean SomethingToDo(String str) { return true; }
}

Testing without Indirect Inputs. Production code

var firstDeep = new FirstDeep(new SecondDeep());

Testing using a Test Stub

var firstDeep = new FirstDeep(new SecondDeepStub());

Test Doubles. Test Spy

> an object that acts as an observation point for the Indirect Outputs of the

SUT
> quietly records SUT method calls

> useful for a method calls assertions

Test Doubles. Test Spy.Example

[Test]

public void TestMethod(){ .
//Arrange RemoveFlight() calls LogMessage()
/ffixture setup
var expectedFlightDto = CreateAnUnregFlight();
var facade = new FlightManagementFacadelmpl();

//test double setup
var logSpy = new AuditLogSpy();
facade.SetAuditLog(logSpy).

//Act
facade.RemoveFlight(expectedFlightDto.GetFlightNumber());

//Assert

Assert.AreEqual(logSpy.GetNumberOfCalls(), 1);
Assert.AreEqual(logSpy.GetDate(), helper.GetTodayDate());
Assert.AreEqual(logSpy.GetDetail(), expectedFlightDto.GetFlightNumber());

Test Doubles. Mock Obj

> looks like a Test Spy
» contains predefined expectations

> 2 types:
1. Strict — verify the expected calls are made in the exact predefined
order

2. Lenient — tolerates out-of-order calls

BEHAVIOR verification — verify if SUT called the
exact expected methods

Test Doubles. Mock Obj. Example

[Test]

public void TestMethod(){ .
//Arrange RemoveFlight() calls LogMessage()
/ffixture setup
var expectedFlightDto = CreateAnUnregFlight();

//mock object setup/config

var mockLog = ConfigurableMockAuditLog();

mockLog.SetExpectedLogMessage(
helper.GetTodayDate(),
expectedFlightDto.GetFlightNumber());

mockLog.SetExpectedNumberCalls(1);

//mock instalation

var facade = new FlightManagementFacadelmpl();
facade.SetAuditLog(logSpy).

//Act
facade.RemoveFlight(expectedFlightDto.GetFlightNumber());

/IAssert
mockLog.verify();

Test Doubles. Fake Ob;j

TO BE CONTINUED...

TEMA

Test Doubles. How to implement?

C# Code examples

> Dummy Object

> Test Stub

> Test Spy (Internal & Dependency)
» Mock Object

» Fake Object

Test Doubles. Dependency injection

Production code

public void TransferFundsFromEurAmount(Account destination,
float amountInEur)

{
var convertor = new CurrencyConvertor();
var amountInRon = convertor.EurToRon(amountInEur);
destination.Deposit(amountInRon);
Withdraw(amountInRon);

}

How do we domain test this SUT?

How do we test this SUT for different Eur/Ron rates?

Is this code designed for testability?

We inject the DOC (CurrencyConverter) into the SUT

Test Doubles. Dependency injection

A testable version of the production code

public void TransferFundsFromEurAmount (
Account destination, /f§§%
float amountInEur, 2
ICurrencyConvertor convertor) -z

var amountInRon = convertor.EurToRon(amountInEur);

destination.Deposit(amountInRon);
Withdraw(amountInRon);

Test Doubles. Dependency injection

The client provides the DOC to the SUT

client)
\;"'# ~—Creation — DOC
! -
Usage
Setup — \ Creation » Test
Exercise —~—a Double
.l".."r'!.:."l.if}'. Exar-:ls&H Jsage _»
Teardown S U T

Test Doubles. Dependency injection types

> Constructor Injection

> Setter Injection

» Parameter Injection

Test Doubles. Dependency lookup

The SUT asks another object to return the DOC before using it.

Configuration
/'ﬂim Test Double
Setup
Exercise AN FindOrCreate " Creation
Verify | Exercse . ™ DOC
Teardown | Creation
.__-—-'-r
. SUT) \ Test
SAE
_ Double
client e ——)

Test Doubles. Dependency lookup types

» Object Factory

the TestMethod tells (set) the Object Factory to create a

TestDouble instead of DOC whenever a specific method is called

> Service Locator

the TestMethod configures the Service Locator to return the

TestDouble instead of DOC whenever the SUT requests it

Mocking Frameworks (C#)

> NSubstitute

> Moq

» FakeltEasy

