
Augmenting a webmail application with
cryptographic puzzles to deflect spam

Marius Cristea

Faculty of Automatics and Computers
Department of Automation and Applied Informatics

”Politehnica” University of Timisoara, Romania
Email: cristea12@gmail.com

Bogdan Groza

Faculty of Automatics and Computers
Department of Automation and Applied Informatics

”Politehnica” University of Timisoara, Romania
Email: bogdan.groza@aut.upt.ro

Abstract—In order to increase the resilience against spam,
we design and implement a protocol based on cryptographic
puzzles for an open-source web based e-mail client. Our proposal
is compatible with existing e-mail infrastructure and does not
require modifications on the server side. The only add-on is a
stand-alone ticketing server that is used to deliver the current
cost to each sender. The puzzles that we use are time-lock puzzles
which have the benefit that they cannot be subject to a parallel
attack due to their intrinsic sequential nature. Thus an adversary
that gains control over multiple hosts cannot use them to solve a
puzzle, the risk of a directed attack against some receiver being
reduced. Also, the protocol allows the sender of the e-mail to
generate the puzzle himself, releasing the e-mail server from an
additional computational task. We analyze the efficiency of the
proposed solutions in terms of computational costs and the results
are satisfactory.

Index Terms—spam, DoS, cryptographic puzzle

I. INTRODUCTION AND RELATED WORK

Cryptographic puzzles, or client puzzles, are a commonly
proposed mechanism for combating various resource depletion
attacks. This is because they can be used as a proof that a
certain amount of computational effort was done and thus
resources can be allocated more rationally between clients
based on proofs-of-work. Thus, in practice, puzzles encoun-
tered various uses against packet flooding [1], TCP SYN
flooding [2], protecting the TLS [3], creating DoS resistant
authentication [4] or protecting web servers [5]. The idea to
trade computational power for the ability to send e-mails was
introduced by Dwork and Naor [7]. Later it was independently
proposed by Back in the hash cash system [6]. In [7] the initial
idea of trading computational power from [8] is improved
by using memory-bounded functions, previously addressed by
Abadi et al. [9], in order to alleviate differences between cpu
speeds (as memory access time does not vary so much between
machines).

Still, applications that protect against spam by the use of
cryptographic puzzles are not wide spread yet in practice. In
this paper we develop a protocol and an implementation for the
Yawebmail open source webmail client. There are two main
goals in the proposed application: first is to use cryptographic
puzzles to limit the ability of the spammer to send more spam
e-mails by associating computational costs to each e-mail,

second is to make no modifications on the server side since
we can’t depend on the fact that e-mail providers will adopt
any modification. For this second issue we will use a retrofit
proof-of-work mechanism in which the sender of an e-mail
will pay computational time to a ticketing server, his costs for
sending a new e-mail is also based on the history of the e-
mails he previously send. All these goals should be achieved
in such a manner that we can keep the compatibility with
existing e-mail protocols such as POP3, IMAP and SMTP.

Practical implementations to combat spam can be found in
[10], [11] and [12]. The first paper does not use cryptographic
puzzles, although the authors point out that the application
could be easily extended with puzzles. The last two papers
use cryptographic puzzles but they require modifications on
the server side. Also, our solution differs both at the protocol
level as well as in the implementation layers that are addressed.
In the proposed protocol, the server does not need to spend
time to build the puzzles as they are built and solved by the
sender itself. Also the SMTP protocol is not modified, the
puzzle is just added as an appendix to the original e-mail.

As for the construction of the puzzles, many variants were
proposed in the last decade, based on symmetric functions
as well as on simple or more sophisticated number theoretic
problems. The most commonly used constructions are based
on hash functions, namely either by inverting the hash function
for some low entropy input or by finding the input for which
the image of the function has a particular pattern. In our
protocol we will use the discrete squaring function that gives
non-parallelizable time-lock puzzles [13], [14]. This kind of
puzzle has the advantage that searching for its solution is not
a parallelizable procedure, due to the intrinsic recurrent nature
of the modular exponentiation. Thus, an adversary that gains
control on multiple hosts cannot use all of them to solve a
puzzle faster. In this sense, a directed attack on a particular
receiver will not be so effective. A second advantage, for
which we used it in our protocol, is that it allows the sender
of the e-mail to build the puzzle himself, thus releasing the
e-mail server from the computational task of generating the
puzzles.

The paper is organized as follows. In section 2 we provide
details on the protocol and the puzzles that we used. Section



Fig. 1. Protocol setting

3 gives the implementation details and holds the experimental
results. Section 4 holds the conclusion and future work.

II. THE PROPOSED PROTOCOL

A. Protocol description

The participants in the protocol setting are depicted in
Figure 1. E-mail senders are requested to perform the com-
putational task of solving a puzzle for each e-mail they send
based on the score obtained on previously sent e-mails. This
score is continuously updated by the receiver on the ticketing
server each time he connects with his webmail browser, details
on the filter used to compute scores are given in the next
section dedicated to implementation details. Initially, solving
the puzzle may take less than a second, but the cost drastically
increases if more e-mails from the same sender are classified
as spam (in particular, in the implemented application the
difficulty doubles each time). Indeed the sender has the choice
of not solving the puzzle, but in this case the webmail
application will simply mark such an e-mail as spam. The
ticketing server TS is responsible for various functions such
as providing information from the receiver of the e-mail
(puzzle details, score, etc., all the information that is needed
in order to solve the puzzle corresponding to each e-mail) and
to assure time synchronization between protocol participants.
The e-mail server, i.e., MS, has no other function but the
usual one: to receive and store e-mails. We assume that all
digital certificates of the clients and servers (when needed) are
signed by some trusted authority. In the concrete application
setting, e-mail senders and receivers need to use the webmail
application that we developed while the ticketing server is a
stand-alone application, the rest is unchanged.

The puzzle that is appended to the e-mail must depend on
a fresh and unpredictable value. This is because we want to
avoid a replay attack as well as off-line computations, where
some malicious senders can start to solve the puzzles long
before the e-mail is send. However, as in our scenario we
want to avoid the involvement of the e-mail server in this
process while the receiver of the e-mail may be absent at this
time, for this purpose we will use as fresh and unpredictable
value in each puzzle the signed time value provided by the
ticketing-server. Indeed an adversary cannot predict the value
of this signature so he cannot start to create puzzles before a

particular time-stamp was issued. To avoid the replay of some
already used puzzles for e-mails send by the same sender in
the same time interval with the same time-stamp (we assume
that the ticketing server issues time stamps at regular intervals,
for example several seconds), the easiest way will be to ask
the sender to insert a distinct nonce in each puzzle and the
receivers to store all puzzles received from some sender to
check for uniqueness.

Thus, the puzzle construction that we use
when A wants to send an e-mail to B is
h({tTS}SigTS , Ni, emaili, B,A)ϵmodnB , where nB is
the modulus of receiver B, Ni is the nonce produced for
the ith e-mail, {tTS}SigTS is the time-stamp signed by the
ticketing server and ϵ is an exponent of the form 2k where
k is the difficulty level of the puzzle. Indeed this solution
will not require too much space, because the puzzle is small,
and identifying whether a puzzle was or not sent before is
fast because one can perform a binary search. However, this
straight forward solution is not portable if one considers
that the inbox can be cleared, or moved from a server to
another one. For this purpose, old puzzles can be cleared
after a certain amount of time. For example, each receiver
chooses a delay, ∆B in the case of sender B, which denotes
the time period for which he stores the nonces for some
sender (in particular this can be in the order of hours or
days). In particular, for honest senders, the value of ∆B has
no importance as they will honestly generate a new nonce
every time an e-mail is sent.

Now, in order to deem a particular e-mail as spam, there
are two conditions that can be separately met: i) the e-mail
does not have the correct puzzle solution ii) the e-mail is not
associated with the correct time interval. The check for the
correct time is based on two criteria: first the e-mail must
contain a correct time-stamp and second the time-stamp must
not point to a time value previous to the most recent sign in
of the receiver (to overcome potential delays between sending
and receiving a safe margin can be set to minutes, hours, etc.).
We underline that each time the client connects to the e-mail
server it is desirable to perform a new time synchronization
to avoid wrong spam classifications due to clock drifts.

In brief, the protocol works in the following way: a client
who wants to send an e-mail to another client has to solve
a puzzle according to the specifications from the certificate
of the the receiver (using the prescribed modulus, difficulty
level and delay) and to his current score, all this information
is provided by TS. The solution to the puzzle is appended to
the e-mail and the receiver checks for its correctness at the
time when he receives it.

We now describe in brief these protocol steps. The two
headed arrow in the protocol description implies that the
channel is authentic and confidential, this can be easily im-
plemented under SSL/TLS. This channel assumption must
hold for all communications with TS first because we must
ensure the authenticity of the exchanged values. Also, in the
protocol description, the use of aliasX as the alias of principal
X was preferred for confidentiality issues in the case when



participants do not want TS to be able to monitor principals
with which they communicate. For this case, participants
can simply choose a random alias and register on TS, in
our implementation this is done as default by the webmail
application. The only channel in which there are no restrictions
is the regular e-mail channel.

Communication with TS when sending an e-mail

1. A � TS : aliasB
2. TS � A : CertB , scoreAB, {tTS}SigTS

Sending the ith e-mail at time interval δ

1. A → MS: emaili, {tTS}SigTS , Ni,

puz = h({tTS}SigTS , Ni, emaili, B,A)ϵmodnB

2. A � TS: aliasB , puz

Communication with TS after receiving an e-mail

1. B � TS: aliasA, scoreAB(puz),puz

The certificate CertB includes the values of the modulus
nB and the exponent ϵB . After the synchronization procedure
the following inequality must be verified: ∆Err << ∆B

where ∆Err is the synchronization error, i.e. the round trip
time from A to TS. In practice this inequality should always
hold, as it is natural to expect that the synchronization error
will be smaller than the time-to-live of the timestamps chosen
by some client. These values are of different magnitudes, the
value of ∆B can be set to hours, days or weeks, depending
on how much the user will want to store the nonces while the
synchronization delay should be in the order of milliseconds.

An informal discussion on the security of the protocol may
be useful. We considered that the communication channels
between participants and TS are confidential and authentic
(this is induced by the two headed arrow notation). There are
many ways to achieve this in practice and it was not our point
here to define how. The only channel that is not secure, is the
communication between the sender and the e-mail server, this
is in order to cover the usual scenario of sending and receiving
e-mails. Since this channel has no security an adversary can
take any malicious action on it. However, the adversary cannot
reuse the proof-of-work because it is bind to the content of
the e-mail and to the identity of the sender and receiver. Of
course, if the adversary alters the information in any way the
e-mail will be marked as spam, which indeed is.

B. Cost evaluation

We now consider to evaluate the performance of the pro-
posed proof-of-work based protocol. In order to evaluate the
profit of a spammer we consider the following parameters:

• n - number of targets for the spammer
• csend - cost for a spammer to send an e-mail
• cpuz - cost for a puzzle of difficulty level 0

• α - difficulty increase factor for spam
• r - revenue of a spammer for sending one e-mail
• p - probability that the a spam is correctly classified
The spammer profit should be computed over k send ses-

sions. In the first session, the cost will be n·(r−(csend+cpuz)).
In the second session the adversary will have to pay a double
computational price for clients that successfully classified the
spam in the first receive session and no computational cost for
the others. This follows the binomial distribution and thus for
the kth sending session we have:

Profit =
k∑

i=0

n·(r−(csend+2i·cpuz))·pi·(1−p)k−i· k!

i! · (k − i)!

(1)
This is for the particular case of α = 2, i.e., when the

difficulty doubles each time a potential spam is send. Using
precise values for the previous parameters to make a concrete
estimation is not easy as they vary from context to context.
We will use the values from the seminal work of Laurie and
Clayton as a reference [15]. In their estimation the cost for
sending one e-mail is around 0.005 cents considering the cost
of electricity (8.5 cents), the cost of the computer (50 cents)
and the number of e-mails (15,000) that can be send per day.
If these results may be outdate, even if we consider Moore’s
law, the cost per e-mail today is reduced with about one order
of magnitude at around 0.0006 cents, i.e., csend = 0.0006.
In order to estimate the cost of a puzzle we can assume the
same price for a computer (75 cents per day) which leads to
3 cents per hour. If some e-mail operator will want to send
10000 non-spam e-mails every hour or so then the cost should
be set at cpuz = 0.0003. As for the value of p we can use
the results from [16], according to their work the detection
rate is over 60% with all filters and gets around 90% with
the best ones, thus it is fair to take p = 0.6. Additionally
we must also measure the computational waste due to wrong
classifications. For this we will denote by p′ the false positive
rates and considering that in this case the time to solve a puzzle
is wasted time we get:

Waste =

k∑
i=0

n · 2i · cpuz · p′i · (1− p′)k−i · k!

i! · (k − i)!
(2)

Using these relations we draw the plots in figure 2 for the
case of a spammer with 100, 000 target e-mails addresses. As
can be seen, after sending an average of 10 e-mails to each
user the profit of the spammer falls below 0. If we assume
a polynomial increase rate, i.e., i4/3, in the puzzle difficulty
with an initial cost of the puzzle set to one order of magnitude
higher, i.e., 10×, the profit of the spammer is less, but the
waste due to false positives is higher.

One potential limitation of this protocol resides in the fact
that a spammer will have to pay only next time he decides
to send an e-mail. To avoid this, one can use an on-line cost
procedure in which the e-mail is send for evaluation to the
ticketing server which sends back the score for the particular



2 4 6 8 10

500

1000

1500

2000

2500
exp. profit

pol. profit

exp. waste
pol. waste

$

emails

Fig. 2. Spammer profit and computational waste with exponential and
polynomial increase factor of puzzle complexity

e-mail, or else the ticketing procedure can be implemented on
the e-mail server as well. Nevertheless, we are more interested
in spammers that go for a long term income (such as spam
companies) which are likely to return.

III. IMPLEMENTATION DETAILS AND RESULTS

A. Design of the application

The use of electronic mail (e-mail) is based on two protocols
for receiving e-mail (IMAP and POP3) and one protocol
for sending e-mail (SMTP). The difference between IMAP
and POP3 is that an e-mail client using POP3 protocol will
download the e-mails on the local host. If IMAP is used the
e-mails are kept on the server and only the selected mail is
downloaded on the client host for reading (off-line capabilities
are also available in IMAP clients as well). As we used a
webmail based application IMAP was the protocol of choice.
In order to filter spam e-mail we are enforcing the sender
to generate a puzzle based on the receivers requirements. To
achieve this we are adding two new e-mail headers: puzzle
which is the solution to the puzzle generated by the sender
and random a which represents a random number used to
generate the puzzle. The process of sending and receiving e-
mails will look as in Figure 3. The e-mail server doesn’t need
to be modified as it will only forward the e-mails from the
sender to the receiver. The receiver will decide if a particular
e-mail should be marked as spam or not, based on the puzzle
solution it receives together with the e-mail. The message will
be marked as spam if the puzzle is not correct or if there are
timing problems as discussed previously.

Fig. 3. The sending/receiving process of e-mails with puzzles

As the introduction of time-lock puzzles is transparent for
the e-mail server, to implement the proposed solution we need
two things:

• An e-mail client that is able to compute and verify time
lock puzzles. This will be achieved by extending an
existing e-mail client, i.e. Yawebmail

• A ticketing server such that the clients can make their
information publicly available. This solutions needs to
be distributed so that any client can obtain his score and
puzzle details from anyone that he wants to communicate
via e-mail.

The client can be any e-mail client that can be extended
so that it will support time lock puzzles. We have chosen
Yawebmail, because it is an open source webmail client
and supports a lot of existing e-mail protocols. Yawebmail
is written in Java as web application and is developed by
Openwebtools. To be able to support spam filtering by using
time lock puzzles, Yawebmail was extended with 2 packages
security and data.

The security package is responsible for generating and
verifying time lock puzzles. This is basically done in the
PuzzleUtils class, which is included in applet. The gen-
eration and solving of the puzzles is done in the Puz-
zleUtils.generatePuzzle() method and it works in the usual
way: generates the random value a; computes puzzle =
hash(tδ+a+mess+adrrec+adrsend)

2k by using k iterations,
where: k represents the number of iterations required to
compute the puzzle, n represents the receivers modulus,
mess represents the message content, tδ represents the time-
stamp received from the ticketing server, adrrec/adrsend is the
receiver’s/sender’s e-mail address.

After the solution of the puzzle is computed the values a
and puzzle are appended to the e-mail message as e-mail
headers. The verification of the puzzle is done in PuzzleU-
tils.verifyPuzzle() method and it works as follows. First it
computes r = 2kmodϕ(n) , and then b=hash(tδ+a+mess+
adrrec + adrsend)

rmodn where ϕ(n) = (p− 1)(q− 1), p and
q being two large prime numbers and tδ represents the time-
stamp issued by the ticketing server. Then, if puzzle = b then
the received puzzle is correct otherwise the e-mail is marked
as spam.

A spam filter runs on the receiver side and it gives a score
for every incoming mail based on an Java spam filter (jASEN).
If the e-mail is identified as spam then the cost for the sender
will be increased with a factor of two.

The data package is responsible to hold the puzzle infor-
mation of all the clients that have an account on the webmail
server.

The ticketing server is used by clients to obtain the digital
certificate that stores the information needed to compute the
puzzles required by the clients they want to communicate with
as well as the their current cost. For testing purpose we have
created a Ticketing Servlet. This is a servlet that based on the
client’s request it responds with a digital certificate containing
the receiver’s puzzle information, which is stored in an xml file
(clients.xml), together with the client’s score and the timing



data. The servlet’s main source code can be found in the
servlet package and it works based on the values of the URL
parameters.

B. Experimental results

We now analyze the computational cost of the time lock
puzzles. The tests were made on four different machines: (1)
notebook with an 1.73 GHz Intel Centrino Processor having
1 GB of RAM and running Windows XP SP3 Professional
32 bit, (2) PC with an 2.4 GHz Intel Core 2 Quad Processor
having 4 GB of RAM and running Windows Vista Business
SP1 32bit, (3) PC with an 2.66 GHz Intel Core 2 Duo
Processor having 2 GB of RAM and running Windows XP SP2
Professional 32 bit, (4) Nokia N95 8GB with a Dual ARM 11
333 MHz processor giving 128 MB of RAM running Symbian
OS 9.2, S60 rel. 3.1.

The time required for one modular multiplication, i.e., for
a puzzle of difficulty level 0, is displayed in table 1. For
the mobile version a modified version of Bouncy Castle’s
BigInteger was used. The values represent the average time
of 1000 runs for each of the 4 different modulus sizes: 512,
1024, 2048 and 4096 bits. The 512 bit modulus is small and
is relevant just for comparison because the verification of the
1024 bit puzzle can be done on one 512 bit factor in order to
save computational time.

⌊n⌋ 512 BITS 1024 BITS 2048 BITS 4096 BITS
(1) 141 ∗ 10−6s 422 ∗ 10−6s 1573 ∗ 10−6s 6000 ∗ 10−6s
(2) 76 ∗ 10−6s 225 ∗ 10−6s 763 ∗ 10−6s 2950 ∗ 10−6s
(3) 78 ∗ 10−6s 208 ∗ 10−6s 703 ∗ 10−6s 2672 ∗ 10−6s
(4) 26 ∗ 10−3s 69 ∗ 10−3s 168 ∗ 10−3s 641 ∗ 10−3s

TABLE I
TIME SPENT FOR ONE MODULAR MULTIPLICATION

To correlate these results with the cost evaluation from
section 2 we could set the default difficulty of the puzzle at a
modulus of 1024 bit with 30 iterations. As we can see from
Table 1 sending an e-mail will require only modest amounts
of time for honest users. But a spammer who usually sends
thousand of e-mail at once will be strongly delayed by solving
many puzzles since the puzzle size increases by a factor of 2
for each e-mail detected as spam. If the spammer refuses to
solve the puzzles than his e-mails will be marked as spam by
default.

IV. CONCLUSIONS AND FUTURE WORK

We proposed a solution that remains compatible with the
existing e-mail protocols and only a small change in the
existing parts of the e-mail services is needed: the introduction
of a ticketing server for distributing the information needed
to construct the puzzle. Our cost measurements showed that
the introduction of puzzles affects the profit of the spammer
much more severe than it affects honest senders. Of course,
further improvements could be added to the proposed protocol.
Our solution helps the client to determine spam e-mail, but
it doesn’t stop the traffic of unsolicited e-mail through the

Internet. Thus, solutions based on puzzles are only comple-
mentary and can be used together with other, existing, anti-
spam solutions to improve the performance of the e-mail
system in general. The use of cryptographic puzzles to combat
spam is not yet wide spread and is still debatable, but the
results obtained so far leave us optimistic over this matter.

ACKNOWLEDGEMENT

First author was partially supported by the strategic
grant POSDRU/88/1.5/S/50783, Project ID50783 (2009), co-
financed by the European Social Fund Investing in People,
within the Sectoral Operational Program Human Resources
Development 2007/2013. Second author was partially sup-
ported by national research grants POSDRU/21/1.5/G/13798
and PNCDI PN II 940/2009.

REFERENCES

[1] K. Lakshminarayanan, D. Adkins, and I. S. A. Perrig, “Taming ip packet
flooding attacks,” SIGCOMM Comput. Commun. Rev., vol. 34, pp. 45–
50, January 2004.

[2] A. Juels and J. Brainard, “Client puzzles: A cryptographic countermea-
sure against connection depletion attacks,” in Proceedings of NDSS ’99
(Networks and Distributed Security Systems), 1999, pp. 151–165.

[3] D. Dean and A. Stubblefield, “Using client puzzles to protect tls,” in
Proceedings of the 10th conference on USENIX Security Symposium -
Volume 10, ser. SSYM’01. Berkeley, CA, USA: USENIX Association,
2001, pp. 1–1.

[4] T. Aura, P. Nikander, and J. Leiwo, “Dos-resistant authentication with
client puzzles,” in Revised Papers from the 8th International Workshop
on Security Protocols. London, UK: Springer-Verlag, 2001, pp. 170–
177.

[5] E. Kaiser and W. Feng, “mod kapow: Protecting the web with transparent
proof-of-work,” in In Proceedings of INFOCOM 2008, 2008, pp. 1–6.

[6] A. Back, “Hashcash - a denial of service counter-measure,” Tech. Rep.,
2002.

[7] C. Dwork, A. Goldberg, and M. Naor, “On memory-bound functions
for fighting spam,” in Proceedings of the 23rd Annual International
Cryptology Conference. Springer-Verlag, 2003, pp. 426–444.

[8] C. Dwork and M. Naor., “Pricing via processing or combatting junk
mail,” in Proceedings of the 12th Annual International Cryptology
Conference on Advances in Cryptology. London, UK: Springer-Verlag,
1993, pp. 139–147.

[9] M. Abadi, M. Burrows, M. Manasse, and T. Wobber, “Moderately hard,
memory-bound functions,” ACM Transactions on Internet Technology,
vol. 5, pp. 299–327, May 2005.

[10] Z. Duan, Y. Dong, and K. Gopalan, “Dmtp: Controlling spam through
message delivery differentiation,” Computer Networks: The Inter-
national Journal of Computer and Telecommunications Networking,
vol. 51, pp. 2616–2630, July 2007.

[11] A. Jeckmans, “Computational puzzles for spam reduction in sip,” draft,
July 2007.

[12] Z. Zhong, “Throttling outgoing spam for webmail services,” in In
Conference on Email and Anti-Spam, 2005.

[13] R. Rivest, A. Shamir, and D. Wagner, “Time-lock puzzles and timed-
release crypto,” Cambridge, MA, USA, Tech. Rep., 1996.

[14] A. Jeckmans, “Practical client puzzle from repeated squaring,” Tech.
Rep., August 2009. [Online]. Available: http://essay.utwente.nl/59133/

[15] B. Laurie and R. Clayton, “”proof-of-work” proves not to work,” in
In Proceedings of the The Workshop on Economics and Information
Security, May 2004.

[16] R. Segala, J. Crawford, and B. L. J. Kephart, “Spamguru: An enterprise
anti-spam filtering system,” in In Proceedings of the First Conference
on E-mail and Anti-Spam (CEAS), 2004.


