
The Journal of Systems and Software 156 (2019) 204–216

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

New Trends and Ideas

Towards mixe d criticality task sche duling in cyb er physical systems:

Challenges and perspectives

Eugenia Ana Capota

a , Cristina Sorina Stangaciu

a , Mihai Victor Micea

a ,
Daniel-Ioan Curiac

b , ∗

a Computer and Information Technology Department, Politehnica University, Vasile Parvan 2, 300223, Timisoara, Romania
b Automation and Applied Information Department, Politehnica University, Vasile Parvan 2, 300223, Timisoara, Romania

a r t i c l e i n f o

Article history:

Received 13 January 2019

Revised 3 June 2019

Accepted 27 June 2019

Available online 27 June 2019

Keywords:

Cyber physical systems

Real-time scheduling

Mixed criticality systems

Multiple processing units

a b s t r a c t

Cyber physical systems (CPSs) are a fast-evolving technology based on a strong synergy between hetero-

geneous sensing, networking, computation and control modules. When coping with critical applications

that require real-time performance and autonomous operation in uncertain conditions, the design of such

complex systems is still facing significant difficulties. A particular challenge in this respect derives from

the software intensive nature of these systems - the need to develop flexible and specifically tailored task

scheduling techniques. In our view, an appropriate line of thinking is to take advantage of mixed criti-

cality concepts following the lessons learned from avionics and automotive domains, where complexity,

safety, determinism and real-time constraints are extreme. From this perspective, our work aims at facili-

tating the integration of mixed criticality systems-based strategy in cyber physical systems by identifying

the particularities of the latter and their influence on scheduling mechanisms, by describing the standard

mixed-criticality task model in the cyber physical systems context, and by analyzing and proposing the

most suitable scheduling algorithms to be implemented in cyber physical systems. Moreover, the per-

spectives on future developments in this area are discussed, as new horizons in research arise with the

integration of mixed criticality concepts in the cyber physical systems context.

© 2019 Elsevier Inc. All rights reserved.

l

t

w

s

m

k

c

n

t

M

t

o

s

e

p
1. Introduction

Integrated circuits have rapidly evolved in terms of perfor-

mance, while reducing their size, cost and power consumption.

This evolution has led to an accelerated spreading of embedded

systems in all human activity fields: ranging from military to do-

mestic applications. Nevertheless, in special fields like automotive

and avionics, where complexity, safety, determinism and real-time

constraints are extreme, or in fields where hardware constraints

are not to be neglected, there still is a stringent need for adequate

scheduling mechanisms tailored to the specific needs of these ap-

plications.

Cyber physical systems (CPSs) are special systems, with an ex-

plosive development in the last years. These systems include a logic

function in their design such that either the state of the logic function

could be altered by a change in the state of the real world, or the state

of the real world could be modified by a change in the state of the
∗ Corresponding author.

E-mail addresses: eugenia.capota@cs.upt.ro (E.A. Capota),

cristina.stangaciu@cs.upt.ro (C.S. Stangaciu), mihai.micea@cs.upt.ro (M.V. Micea),

daniel.curiac@aut.upt.ro (D.-I. Curiac).

2

2

t

p

https://doi.org/10.1016/j.jss.2019.06.099

0164-1212/© 2019 Elsevier Inc. All rights reserved.
ogic function, or both (Laplante, 2004). Basically, they include sys-

ems with different performances, hardware and time constraints

hich have a direct interaction with the environment, like control

ystems, robotic systems, transportation systems etc. Each require-

ent comes from different types of applications and thus, various

inds of scheduling mechanisms may be needed.

Having a flexible scheduling policy which can be tailored ac-

ording to diverse requirements can represent a desideratum in

umerous cases. Dealing with these complex challenges has led to

he development of a new concept and a new class of systems: the

ixed Criticality Systems (MCSs). The MCS concept basically refers

o “an embedded computing platform in which application functions

f different criticality share computation and/or communication re-

ources ” (Ernst and Di Natale, 2016).

Even though MCSs originate from automotive and avionics ar-

as, their applicability extends these domains, such systems being

resent also in fields like the Internet of Things (Kamienski et al.,

017; Carpenter et al., 2017), medical devices (Carpenter et al.,

017), industrial systems (Xia et al., 2017) and cyber physical sys-

ems in general.

The use of MCSs within CPSs requires a special kind of ap-

roach, because of the different requirements, which may seem

https://doi.org/10.1016/j.jss.2019.06.099
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2019.06.099&domain=pdf
mailto:eugenia.capota@cs.upt.ro
mailto:cristina.stangaciu@cs.upt.ro
mailto:mihai.micea@cs.upt.ro
mailto:daniel.curiac@aut.upt.ro
https://doi.org/10.1016/j.jss.2019.06.099

E.A. Capota, C.S. Stangaciu and M.V. Micea et al. / The Journal of Systems and Software 156 (2019) 204–216 205

c

r

p

p

b

l

(

p

a

t

o

i

s

S

o

M

n

s

h

w

C

2

u

a

a

c

a

(

s

2

w

r

e

2

c

i

i

(

2

w

a

e

a

2

j

w

c

o

i

2

c

s

l

2

a

o

t

b

p

t

s

2

s

a

f

t

2

l

a

c

p

t

o

2

c

o

i

c

a

i

l

3

e

m
ontradictory sometimes. In many cases, the safety and real-time

equirements must be matched with the restricted resources, low

ower and low cost constraints, which increase the level of com-

lexity in the CPS case.

The approach of using mixed criticality scheduling in CPSs has

een mainly application related, leading to a variety of particu-

ar task models with a multitude of system behavior constraints

 Burns and Davis, 2017). Such methods, even while featuring a high

ractical relevance, have shortcomings when it comes to scalability

nd interaction with an unpredictable environment.

This paper proposes a systematization of the mixed criticality

ask scheduling algorithms, trying to narrow the gap between the-

ry and practice and between the approaches from different fields,

n order to ease the integration of more general mixed criticality

ystem concepts and techniques into cyber physical systems.

The main contributions of this paper are:

• An overview of the state-of-the-art mixed criticality scheduling

algorithms, both for single and multiple processing units.
• A comparison of the most notable scheduling algorithms, with

a focus on the ones suitable for CPSs.
• Emphasizing the necessity to incorporate MCSs in CPSs.
• A discussion about the advantages and disadvantages of using

mixed criticality scheduling algorithms in CPSs.
• Identifying the challenges and future perspectives of mixed crit-

icality scheduling in CPSs.

The remainder of this paper is structured as follows:

ection 2 describes the particularities of CPSs and their influence

n scheduling mechanisms, while Section 3 presents the standard

CS task model. Then, Section 4 reviews and compares the most

otable scheduling algorithms in the field. In Section 5 , the re-

earch gaps for applying MC scheduling algorithms to CPSs are

ighlighted and future perspectives are discussed. The paper ends

ith conclusions in Section 6 and some proposed approaches for

PS areas of research.

. Constructive and functional features of CPSs as processing

nits

Our work aims to facilitate the integration of MC scheduling

pproaches in CPSs by providing an analysis of the state-of-the-

rt mixed criticality scheduling algorithms. Even though CPSs in-

lude a wide range of systems, very different from the architectural

nd functional perspective, one can identify common attributes

 Rodriguez et al., 2013). Each of these features, further listed in this

ection, have a certain influence on the scheduling mechanism.

.1. Heterogeneity

In the context of CPSs, heterogeneity refers to different hard-

are specifications, different application and power consumption

equirements. All these aspects can be modeled by various param-

ters, as reflected in the mixed criticality scheduling theory.

.2. Power management

Because numerous components in CPSs are mobile, special

are must be provided to the power management aspect, result-

ng in the development of many specific power aware schedul-

ng algorithms, both for classical real-time systems and for MCSs

 Rodriguez et al., 2013; Fakih et al., 2017; Taherin et al., 2018).

.3. Dynamism and self-adaptability

Due to the direct interaction with the physical environment,

hich is often dynamic and unpredictable, the system must be
ble to face changes in a real-time manner (Gerostathopoulos

t al., 2016; Micea et al., 2017). Using only static scheduling mech-

nisms can be insufficient in this case.

.4. Robustness

Since the environment in which CPSs operate is usually sub-

ect to several uncertainties in terms of run-time behavior (net-

ork unavailability, hardware failures, etc.), it is also desirable that

ritical applications are not affected by the failures or computation

verload caused by any other application. This aspect is reflected

n the need of adding hypervisor mechanisms or monitors.

.5. Redundancy

In order to avoid single point of failure, both hardware and

omputational redundancies are desirable and, therefore, dynamic

cheduling policies are needed, to adapt to different computation

oads and reschedule newly arrived applications.

.6. Distribution

CPSs usually have different components which communicate

nd interact with each other (for example in the case of robotic

r wireless sensor network applications). Depending on the loca-

ion of the components and on the communication environment

etween them, one must consider scheduling algorithms for multi-

le processing units. Hierarchical design, with one or more arbiters

hat will coordinate different subsystems, might also be required in

ome cases.

.7. Scalability

When considering systems with multiple processing units, their

calability in terms of hardware components, application design,

nalysis, coding and testing is of relatively great concern. There-

ore, scalability of the task models, scheduling mechanisms and of

he scheduling analysis must also be provided.

.8. Security

As all computational systems, CPSs can be also subject to ma-

icious attacks. Moreover, a complex system with various function-

lities of different criticality levels will be harder to protect. In-

reased caution must be given especially regarding the critical ap-

lications, thus, a direct implication on the scheduling policy is

hat the critical applications must be isolated from the less critical

nes, from which arises the isolation concern, essential in MCSs.

.9. Isolation

In a complex system, containing different functionalities, critical

omponents must be isolated from the non-critical ones in terms

f temporal behavior and resource usage.

Designing scheduling mechanisms which have these attributes

s a challenging problem. Even though a common technique that

an solve these issues cannot be found, mainly because of the vast

pplicability of CPSs in different fields, this paper aims to assist

n choosing the best scheduling algorithm to minimize these prob-

ems and achieve high performance and schedulability.

. MCS task model

One noticeable difference between CPSs applied in different ar-

as is the way the software components or the functionalities are

odeled. In some areas, there are processes running in continuous

206 E.A. Capota, C.S. Stangaciu and M.V. Micea et al. / The Journal of Systems and Software 156 (2019) 204–216

s

s

b

t

o

s

4

4

a

c

t

a

i

4

c

p

s

4

b

t

o

t

o

i

s

fashion, while in others, multiple functionalities run as different

software entities on the same hardware or even software as a ser-

vice (Lee and Shin, 2017).

In mixed criticality systems, as in real-time systems, the basic

level of an application is represented by the task. A task is an ab-

stract concept representing the basic unit of software execution.

One of the most important aspects modeled by the tasks in real-

time and MCSs is the temporal behavior. While in real-time and

MCSs there are different task models, still some of the parameters

are common (Schneider et al., 2013):

• Period T i - the (minimum) arrival interval between two consec-

utive jobs of the same task i .
• Deadline D i - the time by which any job execution needs to

complete, relatively to its arrival time.
• Computation time C i - the worst case execution time for any

job of task i .
• Release time r i – the earliest time when a job can start its exe-

cution, expressed relatively to the start time of the system.

The temporal behavior of a task is always modeled by discreet

values, even if the controlled process is a physical one, having a

continuous behavior. As stated in Stigge and Yi (2015) , perform-

ing control loop operations in a continuous fashion is not feasi-

ble, thus all the operations are performed at discrete time inter-

vals. How to translate the characteristics from continuous functions

into discrete time parameters is explained extensively in Stigge and

Yi (2015) .

If the application components have precedence requirements,

beside the task temporal parameters there is a precedence graph

associated with the task set. A survey of the most used models of

such task sets is available in Stigge and Yi (2015) . Thus, these types

of models are more complex and reach another level of the appli-

cation.

At a higher level of the application there can be sets of tasks

or meta-tasks (Braun et al., 1999), with or without precedence or

temporal requirements at the task set level.

On top of the task model, presented above, Vestal proposes in

Vestal (2007) a task model for MCSs, basically extending the gen-

eral task model, by adding a new parameter reflecting the critical-

ity level of each task. The extension leads to the following set of

parameters:

• Criticality level L i
• Period (minimum arrival interval) T i
• Deadline D i

• Computation time C i (vector of values – one per criticality level,

for levels lower or equal to the criticality level L i , expressing the

worst case execution time for each criticality level).

Based on this task model and on other extensions of it, numer-

ous task scheduling algorithms have been developed. Some of the

most relevant algorithms are synthesized in the following section.

4. MCS scheduling

In cyber-physical systems, especially in real-time systems, task

scheduling is the key mechanism to ensure the imposed perfor-

mance of the system regarding temporal behavior. In the case of

the mixed criticality applications, things get more complicated as

the number of variables which need to be taken into consideration

increases (Asyaban and Kargahi, 2017).

As in the case of the real-time systems, the scheduling algo-

rithms can be classified into single processing unit and multiple

processing units, depending on the targeted platform. On the other

hand, the scheduling algorithms can be classified into static al-

gorithms, if the scheduling decisions are done offline (before the
ystem starts running), dynamic algorithms, if the scheduling deci-

ions are made during runtime at different time moments, or hy-

rid, if the scheduling decision is partially taken offline and par-

ially online.

Next, we will discuss some of the scheduling algorithms devel-

ped for single and multiple processing units in mixed criticality

ystems.

.1. Processing unit level scheduling algorithms

.1.1. Classification

Regarding the algorithms running on a single processing unit or

t the unit level in a system with multiple processing units, they

an be classified according to the way the priority is assigned to

he task instances (jobs) (Crespo et al., 2014).

• Fixed Task-Priority (FTP) class - All the jobs generated by a

given task are assigned the same priority.
• Fixed Job-Priority (FJP) class - Different jobs of the same task

may have different priorities. However, the priority of each job

may not change between its arrival time and its completion

time.
• Dynamic Priority (DP) class - Priorities of jobs may change be-

tween their release times and their completion times.
• Hybrid Priority (HP) class – The scheduling policies incorporate

features of multiple scheduling algorithm classes.

FJP scheduling represents a generalization of FTP scheduling,

nd DP scheduling represents a generalization of FJP scheduling.

These scheduling algorithms have different approaches for deal-

ng with the following challenges:

.1.2. Task/job priority assignment

Assigning priorities to different task instances must take into

onsideration, beside the temporal parameters such as deadline or

eriod, also the criticality level of the task. In order to achieve this,

everal solutions have been proposed (Baruah et al., 2011 a):

• To use the criticality levels for priority assignment: criticality

monotonic priority assignment or Own Criticality Based Prior-

ity (OCBP) (Crespo et al., 2014; Baruah et al., 2011 a). With this

approach all jobs of high criticality have a higher priority than

all jobs of any lower criticality level. Within a criticality level,

priorities are assigned according to a standard optimal scheme

such as the deadline rate monotonic priority assignment.
• To make use of a technique, whose concept originated in the

classical real-time systems, called Period Transformation (PT).

This technique basically transforms the original period of the

task, to reflect both the temporal behavior and the criticality of

that task. In this way priorities of different criticality jobs are

interleaved, e.g. EDF-VD (Arlock and Linderoth-Olson, 2014) and

EDF-DB (Baruah et al., 2011 a).
• To make use of Static/Adaptive Mixed Criticality (SMC/AMC)

algorithms based on Audsley’s priority assignment algorithm

(Crespo et al., 2014).
• To make use of heuristic algorithms for priority assignment

(Asyaban and Kargahi, 2017).

.1.3. Schedulability tests

Regarding the schedulability tests, most of the algorithms, for

oth static and adaptive MCSs, were tested by applying response

ime analysis (RTA) (Burns and Davis, 2017), especially in the case

f static priority assignment and, based on demand bound func-

ion (DBF) (Rodriguez et al., 2013), in the case of dynamic pri-

rity assignment. An exact schedulability test is also available

n Asyaban and Kargahi (2017) for the fixed priority preemptive

cheduling algorithms running on a single processing unit.

E.A. Capota, C.S. Stangaciu and M.V. Micea et al. / The Journal of Systems and Software 156 (2019) 204–216 207

Fig. 1. A classification of the scheduling algorithms for single processing units.

s

i

c

W

r

a

c

p

a

b

l

s

T

4

4

p

(

(

u

B

r

n

b

M

T

u

L

(

e

i

E

(

S

t

t

a

F

"

s

a

d

c

t

i

The schedulability tests mentioned in this article analyze the

chedulability in different criticality modes, but not during the crit-

cality mode change.

Fig. 1 illustrates a graphical representation of the algorithms

lassified in Table 1 , following the one proposed in Müller and

erner (2011) for classical real-time systems. In the figure, the ar-

ow pointing towards an algorithm specifies that it is based on an

lready existing scheduling technique. Yellow symbolizes a classi-

al scheduling algorithm, while green refers to mixed criticality ap-

roaches.

Because of the lack of benchmarks and common metrics suit-

ble for all the algorithms presented so far, an exact comparison

etween them is infeasible. Considering the CPSs attributes out-

ined in Section 2 , next, we define a series of compliance levels.

Table 3 presents the evaluation for single processing unit

cheduling algorithms based on the attribute levels introduced in

able 2 .

.2. Multiple processing units scheduling algorithms

.2.1. Class P: partitioned schedulers

In partitioned scheduling each task is assigned to a single

rocessing unit. Some advantages of this scheduling method are

 Crespo et al., 2014):

• Deadline violations can only affect tasks that are on the same

processing unit.
• There is no migration penalty.
• Each processing unit uses a separate run queue which helps re-

duce overhead.

Partitioned scheduling has a few disadvantages as well

 Crespo et al., 2014):

• Some task sets are only schedulable if migration (between pro-

cessing units) is present.
• Every task set needs a new optimal allocation to the processing

unit.
• Processing units are often idle. They cannot be used by tasks

that are allocated to a different processing unit.

A large area of research has addressed partitioned sched-

lers for mixed criticality systems (Capota et al., 2018).

aruah et al. (2014) described and evaluated a set of algo-

ithms for partitioned scheduling on multiple processing units,

amely MC-PARTITION. Some pragmatic improvements have also

een developed: MC-PARTITION-UT-0.75, MC-PARTITION-UT-1 and

C-PARTITION-UT-INC. The latter version dominates the first two.

his algorithm and its improvements use EDF-VD as processing

nit level scheduler.

Two real-time partitioned schedulers are also presented in

u (2016) , namely the Time Triggered Scheduler with Mode Change

TTS-MC) and the Event Scheduler in Multi-Core. For the TTS-MC,

ach core has its own Time Triggered Scheduler, which is only

n charge of scheduling the tasks assigned to it. Similarly, for the

vent Scheduler-MC, every core has its own Event Scheduler.

Another partitioned scheduler is described in Giannopoulou

2017), Huang et al. (2015) and Giannopoulou et al. (2017) . MC-IS-

erver extends the IS-Server strategy presented in the same papers,

o mixed criticality systems. The algorithm can be applied to sys-

ems with two or more criticality levels. A joint task partitioning

nd deadline shortening heuristic called Mixed-Critical EY Worst

it (MC-EY-WF) is used. Two global servers are considered: one for

HI" criticality tasks and one for "LO" criticality tasks. When the

ystem is in LO mode, tasks are scheduled within each server in

 manner corresponding to partitioned EDF, using the shortened

eadlines for HI criticality tasks. When a switch to HI mode oc-

urs, the LO server is disabled, while the remaining HI criticality

asks are scheduled according to partitioned EDF, using their orig-

nal deadlines.

208 E.A. Capota, C.S. Stangaciu and M.V. Micea et al. / The Journal of Systems and Software 156 (2019) 204–216

Table 1

Scheduling algorithms for single processing units.

Scheduling Algorithm Class Priority

assign-ment

process

Priority

assignment

policy

Reference

implemen-

tation

Schedulability

Test

Schedulability

Test Type

Ref.

Fixed Task-Priority Static

Mixed-Criticality

(FTP-SMC)

FTP static Audsley

Simulator/Linux

RTA based:

SMC-NO

sufficient (Burns and Davis, 2017),

(Arlock and

Linderoth-Olson, 2014),

(Baruah et al., 2011 b)

Fixed Task-Priority

Adaptive

Mixed-Criticality

(FTP-AMC)

FTP static Audsley

Simulator/Linux

RTA based:

AMC-RT

AMC-MAX

sufficient (Burns and Davis, 2017),

(Arlock and

Linderoth-Olson, 2014),

(Baruah et al., 2011 b)

Fixed Task-Priority

preemptive

(FTP-preemptive)

FTP static heuristic Simulator SB-RTA exact (Asyaban and

Kargahi, 2017)

Zero-Slack Scheduling

(ZSS)

FTP static RM

Simulator/Linux

RTA/Slack

based

sufficient (Arlock and

Linderoth-Olson, 2014),

(Lakshmanan et al., 2011)

Fixed Job-Priority Own

Criticality Based Priority

(FJP-OCBP)

FJP static Audsley Theoretical DBF based sufficient (Arlock and

Linderoth-Olson, 2014),

(Santy et al., 2012),

(Baruah and Guo, 2015),

(Völp et al., 2014)

Earliest Deadline

First-Virtual Deadlines

(EDF-VD)

FJP dynamic EDF

Simulator/Linux

DBF based sufficient (Burns and Davis, 2017),

(Arlock and

Linderoth-Olson, 2014),

(Baruah et al., 2012),

(Burns, 2015), (Ali et al.,

2015), (Huang et al.,

October)

Earliest Deadline

First-Demand Bound

(EDF-DB)

FJP dynamic EDF Simulator DBF based sufficient (Arlock and

Linderoth-Olson, 2014),

(Ekberg and Yi, 2014)

Earliest Deadline

First-Adaptive Task

Dropping (EDF-AD)

FJP dynamic EDF Simulator DBF based sufficient (Lee et al., 2017)

Earliest Deadline

First-Adaptive Task

Dropping-Enhanced

(EDF-AD-E)

FJP dynamic EDF Simulator DBF based sufficient (Lee et al., 2017)

Criticality Based Earliest

Deadline First (CBEDF)

DP dynamic EDF Simulator DBF based sufficient (Park and Kim, 2011,

October)

Priority List Reuse

Scheduling (PLRS)

FJP hybrid OCBP Simulator DBF based sufficient (Arlock and

Linderoth-Olson, 2014),

(Guan et al., 2011)

Table 2

Levels of compliance.

Attribute Levels Level description

Heterogeneity At task level Handles different task set types

At device level Handles different architectures

Power management – Does not consider power management

Low Considers static power consumption

Moderate Considers dynamic power consumption

High Considers static and dynamic power consumption

Dynamism and self-adaptability Low Does not accept dynamic task loading

Moderate Accepts limited dynamic task loading

High Task sets can be loaded dynamically during run time

Robustness Low Does not handle overload

Moderate Handles overload only for high criticality levels

High Handles overload for both low and high criticality levels

Distribution Yes/No Algorithms for distributed systems/Other algorithms

Scalability Yes/No Scalable with respect to the number of criticality levels/Not scalable

Security and Isolation Low Only temporal isolation between criticality levels

Moderate Temporal and spatial isolation only for high criticality levels

High Temporal and spatial isolation between different criticality levels

4.2.2. Class G: global schedulers

Under this class, tasks can migrate from one processing

unit to another. The main advantages of global scheduling are

(Crespo et al., 2014):

• Fewer context switches, because a preemption will occur only

when there are no idle processing units.
• There is no need for allocation algorithms when the set of tasks

changes.
• The processing units are better utilized as tasks can migrate

from one processing unit to another.

The most significant problems are (Crespo et al., 2014):

E.A. Capota, C.S. Stangaciu and M.V. Micea et al. / The Journal of Systems and Software 156 (2019) 204–216 209

Table 3

Attribute levels of scheduling algorithms in single processing units.

Scheduling Algorithm Power management Dynamism and self-adaptability Robustness Distribution Scalability Security

Fixed Task-Priority Static Mixed-Criticality

(FTP-SMC)

– Low Low No Yes Low

Fixed Task-Priority Adaptive Mixed-Criticality

(FTP-AMC)

– Low Moderate No Yes Low

Fixed Task-Priority preemptive (FTP-preemptive) – Low Moderate No Yes Low

Zero-Slack Scheduling (ZSS) – Low Moderate No Yes Low

Fixed Job-Priority Own Criticality Based Priority

(FJP-OCBP)

High Low Low No Yes Low

Earliest Deadline First-Virtual Deadlines (EDF-VD) High High Moderate No Yes Low

Earliest Deadline First-Demand Bound (EDF-DB) – High Moderate No Yes Low

Earliest Deadline First-Adaptive Task Dropping

(EDF-AD)

– High Moderate No Unspecified Low

Earliest Deadline First-Adaptive Task

Dropping-Enhanced (EDF-AD-E)

– High Moderate No Unspecified Low

Criticality Based Earliest Deadline First (CBEDF) – High High No No Low

Priority List Reuse Scheduling (PLRS) – Moderate Low No Yes Low

a

p

b

(

t

s

u

p

S

e

i

a

M

t

e

4

t

u

h

2

s

m

(

m

c

c

s

c

i

t

d

t

4

c

t

c

c

t

l

u

p

t

t

c

m

m

h

a

e
• Migration of tasks to another processing unit is permitted. This

causes a high overhead in the system.
• It might involve the use of shared memory and communication

channels because global scheduling increases the communica-

tion flow between processing units.
• It uses a single queue for all processing units.
• Low predictability.
• Poor performance for some particular task sets.

The research published by Baruah et al. (2014) introduces an

lgorithm which extends the approach for single processing units

resented in Baruah and Guo (2015) to multiple processing units,

y applying the global scheduling algorithm fpEDF (Baruah, 2004)

for non MC) to mixed criticality systems. An improved version of

he algorithm has also been described, GLOBAL-PRAGMATIC in the

ame paper. The tasks assigned to each processing unit are sched-

led by EDF-VD in both cases.

Lee et al. (2014) proposed a scheduling technique in multiple

rocessing units for dual-criticality task systems called MC-Fluid.

imilar to EDF-VD, MC-Fluid takes into consideration only two lev-

ls of criticality (HI and LO), where the deadlines of its HI critical-

ty tasks are shortened in LO mode. In both LO and HI modes, tasks

re scheduled by another technique, DP-Fair (Funk et al., 2011).

C-IS-Fluid (Huang et al., 2015; Giannopoulou et al., 2017) extends

he MC-Fluid algorithm to include isolation between criticality lev-

ls. It also provides support for more than two criticality levels.

.2.3. Class C: clustered/semi-partitioned schedulers

A clustered scheduler is a hybrid approach between the parti-

ioned and global schedulers which refers to a group of processing

nits where each cluster is divided into sub-clusters. This method

as the following benefits (Awan et al., 2017 ; Ali and Kim, 2017):

• Basic tasks are grouped into subsets that are assigned to pro-

cessing units and executed sequentially, resulting in zero intra-

cluster overhead.
• Reduces the parallel execution time.
• Different global scheduling algorithms can be used to schedule

the tasks in a cluster.
• Reduces migration costs, as most tasks are partitioned under

semi-partitioned scheduling and the rest may migrate in a well

managed manner.
• Improves processor utilization compared to the partitioned ap-

proach.
• Favors large scale platforms with multiple processing units.

On the other hand, it presents some difficulties (Awan et al.,

017; Ali and Kim, 2017):
• Small cluster sizes can suffer from bin-packing limitations in

high criticality modes.
• Relatively high computational complexity.

Ali and Kim (2017) were the first to propose a cluster-based

cheduling scheme for real-time mixed criticality systems with

ultiple processing units. The approach uses smaller cluster sizes

sub-cluster) in low criticality mode because the utilization of each

ixed criticality task is smaller, and larger cluster sizes in high

riticality mode, due to the increase in the utilization of each high-

riticality task. Low-criticality tasks stop executing when a mode

witch takes place from low to high criticality. All the low and high

riticality tasks in sub-clusters are initially scheduled in low crit-

cality mode using a global fixed-priority algorithm. Furthermore,

he mixed criticality task set is arranged in decreasing criticality -

ecreasing utilization (DCDU) order, while allocating tasks to clus-

ers is done by using the Worst Fit heuristic (Burke et al., 2006).

.2.4. Class D: distributed schedulers

Scalability is an important feature to consider in CPSs, which

onsequently leads towards a distributed approach, due to the fact

hat centralized scheduling is not feasible for coordinating multiple

omponents in a dynamic environment.

Because the environment is dynamic and the system can be

omposed of multiple processing units, distributed schedulers have

he highest potential in CPSs (Zhao et al., 2018). They encapsu-

ate scheduling techniques for both single and multiple processing

nits, thus distributed algorithms can be seen as complex but more

ractical for integrating physical and computational capabilities on

he same platform.

Distributed schedulers (Zhan et al., 2018) are developed for sys-

ems in which the components are spread out over multiple pro-

essing units, using mixed criticality communication networks. The

ain feature of a distributed scheduler is that it uses distributed

iddleware in order to interconnect partitions. A partition can

ave one or multiple processing units.

Main disadvantages regarding the distributed scheduler class

re:

• Increased complexity
• Additional resource allocation problems
• Requires spatial and temporal partitioning

The main advantages of distributed schedulers are:

• High performance, flexibility, adaptability and energy efficiency

Moreover, CPSs encapsulate multiple components with differ-

nt specifications, application system requirements and hardware

210 E.A. Capota, C.S. Stangaciu and M.V. Micea et al. / The Journal of Systems and Software 156 (2019) 204–216

h

h

s

s

m

a

b

s

I

d

t

p

r

s

p

o

t

p

t

s

v

s

o

m

t

s

r

d

i

t

i

t

r

b

t

s

t

i

5

a

f

w

e

m

t

p

r

e

C

m

t

i

s

w

c

l

p
configurations, therefore distributed schedulers on heterogeneous

systems render a substantial performance improvement compared

to a centralized approach. This type of scheduling is optimal for

CPSs, even though it presents limitations on resource sharing.

There are various forms of heterogeneity: configurational, which

involves different application and power consumption require-

ments; architectural, concerning system capabilities and lastly,

operating system heterogeneity, as different processing units have

different operating system configurations (Zhou et al., 1993).

A notable example of research for Cyber Physical Systems re-

garding this subject was made by Pérez et al. (2017) . The pa-

per describes a partitioned distributed real-time platform that in-

corporates hypervisor techniques and standard distributed middle-

ware. Furthermore, the proposed distributed architecture for mixed

criticality multi-core platforms uses the XtratuM (Crespo et al.,

2010) hypervisor and the DDS (Data Distribution Service) stan-

dard (Object Management Group 2007). The latter is a middle-

ware that relies on a publisher-subscriber communication pattern,

where data, defined by topics, can flow between publisher and

subscriber entities within a global data space. Subscribers must

specify their interest to receive a particular topic, and communica-

tion is allowed only between publishers and subscribers from the

same domain. The XtratuM (Crespo et al., 2010) hypervisor uses

para-virtualization techniques to provide virtual CPUs to the par-

titions and can assign the same scheduling policy to one or more

processing units.

Some cross-domain patterns for mixed criticality systems have

been presented in Larrucea et al. (2016) . The patterns are devel-

oped under the European project DREAMS. Its architecture is based

on nodes which are composed of application tiles. Furthermore,

each tile contains one or more partitions with different critical-

ity levels. The cross-domain patterns discussed, describe reusable

generic solutions for hypervisors, Commercial-Off-The-Shelf (COTS)

multi-core devices and mixed criticality networks.

A criticality-aware bin-packing algorithm, called Compress-on-

Overload Packing (COP), was introduced in Lakshmanan et al.

(2010) , as an extension to the zero-slack rate-monotonic (ZSRM)

scheduler (De Niz et al., 2009). This algorithm aims at maximiz-

ing the ductility metric in distributed mixed criticality cyber phys-

ical systems. Ductility characterizes the behavior of a system under

overload from the perspective of resource allocation. The metric

ensures that high criticality tasks meet their deadlines even under

system overload.

In a system where both critical and non-critical applications

coexist, it is important to enforce spatial and temporal separa-

tion. A simulated annealing-based technique (De Niz et al., 2009)

was proposed for optimizing time slots in mixed-critical real-time

heterogeneous embedded systems. The approach uses a partition-

ing scheme, so that each application runs on a different partition,

with an allocated number of time slots. The algorithm was applied

on a system where safety-critical applications are scheduled us-

ing static-cycling scheduling and the non-critical applications use

fixed-priority preemptive scheduling.

Xie et al. (2016) proposed another scheduling algorithm

for mixed-critical heterogeneous distributed embedded systems,

namely the deadline-span of multiple heterogeneous earliest finish

time (D_MHEFT). The goal in this case is for more high-criticality

functions to finish execution before their deadlines, resulting in a

low deadline miss ratio. The system’s criticality is modified in or-

der to schedule correctly functions that have higher or equal criti-

cality levels compared to the system.

Two efficient scheduling algorithms for automotive cyber-

physical systems (ACPS) are introduced by Xie et al. (2017) , namely

a fairness-based dynamic scheduling algorithm FDS_MIMF and an

adaptive dynamic scheduling algorithm ADS_MIMF. FDS_MIMF was

developed to minimize individual makespans of functions from a
igh performance perspective in order to meet the requirements of

eterogeneity, dynamics and parallelism in ACPS. ADS_MIMF brings

ome improvements by responding to additional challenges such as

afety and criticality. The algorithm allows achieving low deadline

iss ratio (DMR) values of high-criticality functions while keeping

n acceptable performance of ACPS.

Distributed scheduling algorithms can be partitioned or global

ased (D_MHEFT, F_MHEFT). There are two types of scheduling:

tatic (D_MHEST, F_MHEFT) and dynamic (FDS_MIMF, ADS_MIMF).

n static scheduling functions are released simultaneously while in

ynamic scheduling they are released at different time instances.

Fig. 2 and Table 4 illustrate the above specified scheduling

echniques for multiple processing units. In the figure, the arrow

ointing towards an algorithm specifies that it is based on an al-

eady existing scheduling technique. Orange symbolizes a classical

cheduling algorithm, while green refers to mixed criticality ap-

roaches.

Our next milestone is the analysis of how the main features

f CPSs (already presented in Section 2) can be covered by no-

able mixed criticality scheduling algorithms. Thus, Table 5 com-

aratively illustrates the adequacy of notable MCS algorithms in

he context of CPSs, using the levels defined in Table 2 for the

cheduling algorithms in multiple processing units described pre-

iously. The idea behind this analysis is to either help incorporate

ome of the already existing MC scheduling methods in CPS areas

r to use these scheduling schemes as a basis for developing other,

ore feasible algorithms.

As previously mentioned, distributed scheduling algorithms are

he most promising for CPSs due to their scalability, dynamism and

elf-adaptability, which are key aspects in an ever changing envi-

onment. F_MHEFT and D_MHEFT (Xie et al., 2016) were initially

eveloped for heterogeneous distributed embedded platforms but

n Xie et al. (2016) they are discussed from the perspective of au-

omotive systems. Nevertheless, both scheduling methods could be

ntegrated into other CPS areas as well, such as industrial sys-

ems or internet of things. The FDS_MIMF and ADS_MIMF algo-

ithms (Xie et al., 2017) were mainly developed for automotive cy-

er physical systems, in order to meet certain specific demands in

he field. FDS_MIMF can also be applied to avionics and industrial

ystems, while ADS_MIMF is suitable for domains with very strict

emporal constraints and security requirements (avionics and med-

cal devices).

. Integrating MCSs in CPSs: research challenges, advantages

nd future perspectives

The idea of integrating MCSs in CPSs has been considered be-

ore, however not on a large scale. Several scheduling algorithms

ere proposed, but there have not been any standardized mod-

ls thus far. As mentioned by Lee (2008) temporal behavior is the

ain issue when designing CPSs. This becomes harder to predict as

he complexity of the system increases and communication takes

lace between real-time and non-real-time components.

The CPS concept is still in its infant stages, as it faces some bar-

iers due to a large diversity in requirements and challenges for

ach area of development.

Fig. 3 highlights the growing interest for MC techniques in

PS domains. Certain fields such as automotive and avionics have

ore generic scheduling algorithms whereas for medical devices

hey are more application specific, thus integrating MC approaches

n such fields can prove to be challenging, requiring further re-

earch. The information extracted from the Web of Science (www.

ebofknowledge.com/) (searching the exact phrase “mixed criti-

ality” together with each of the domain names presented in the

egend of Fig. 3) covers two time spans. A column represents the

ercentage of papers which discuss mixed criticality techniques in

http://www.webofknowledge.com/

E.A. Capota, C.S. Stangaciu and M.V. Micea et al. / The Journal of Systems and Software 156 (2019) 204–216 211

Fig. 2. A classification of relevant scheduling algorithms for multiple processing units.

Fig. 3. The current interest in the research of mixed criticality concepts for cyber physical systems, with data extracted from the Web of Science.

212 E.A. Capota, C.S. Stangaciu and M.V. Micea et al. / The Journal of Systems and Software 156 (2019) 204–216

Table 4

Scheduling algorithms for multiple processing units.

Scheduling Algorithm Class Reference implementation Task migration Ref.

Mixed-Criticality-PARTITION (MC-PARTITION) P Simulator No (Baruah et al., 2014)

Mixed-Criticality PARTITION-Utilization-0.75

(MC-PARTITION-UT-0.75)

P Simulator No (Baruah et al., 2014)

Mixed-Criticality PARTITION-Utilization-1

(MC-PARTITION-UT-1)

P Simulator No (Baruah et al., 2014)

Mixed-Criticality PARTITION-INCREMENT

(MC-PARTITION-UT-INC)

P Simulator No (Baruah et al., 2014)

Time-Triggered Scheduler with Mode Change (TTS-MC) P Simulator/Linux No (Lu, 2016)

Event Scheduler in Multi-Core P Simulator/Linux No (Lu, 2016)

Mixed-Criticality Isolation Server (MC-IS-Server) P Simulator No (Giannopoulou et al., 2017)

Task Grouping-Partitioned Earliest Deadline First (TG-PEDF) P Simulator No (Ren and Phan, 2015)

Notional Processor Scheduling-Fractional Capacity-Integrated

Modular Avionics (NPS-F-IMA)

P Simulator No (Awan et al., 2017)

Partitioned-Eckberg (P-EKB) P Simulator No (Awan et al., 2017)

Partitioned Earliest Deadline First-Virtual Deadlines

(P-EDF-VD)

P Simulator/Linux No (Han et al., 2018)

Flexible Time-Triggered Scheduling (FTTS) P Simulator/Kalray MPPA-256 Andey

many-core platform

No (Ren and Phan, 2015)

Energy Minimized Mixed-Criticality (EM3) P Simulator No (Narayana et al., 2016)

Isolated Mixed-Criticality (IM3) P Simulator No (Narayana et al., 2016)

Ali and Kim’s approach C Simulator Yes (Ali and Kim, 2017)

Notional Processor Scheduling-Fractional

Capacity-Mixed-Criticality (NPS-F-MC)

C Simulator Yes (Awan et al., 2017)

Semi-Partitioned-Eckberg (SP-EKB) C Simulator Yes (Awan et al., 2017)

Mixed-Criticality-Reduction to Uniprocessor (MxC-RUN) G Simulator Yes (Gratia et al., 2015)

GLOBAL G Simulator Yes (Baruah et al., 2014)

GLOBAL-PRAGMATIC G Simulator Yes (Baruah et al., 2014)

Mixed-Criticality-Fluid (MC-Fluid) G Simulator Yes (Lee et al., 2014)

Mixed-Criticality Isolation-Fluid (MC-IS-Fluid) G Simulator Yes (Giannopoulou et al., 2017)

Linear Programming Dynamic Power

Management-Mixed-Criticality (LPDPM-MC)

G Simulator Yes (Legout et al., 2013)

Fairness on Multiple Heterogeneous Earliest Finish Time

(F_MHEFT)

D Simulator Yes (Xie et al., 2016)

Deadline-span of Multiple Heterogeneous Earliest Finish Time

(D_MHEFT)

D Simulator Yes (Xie et al., 2016)

Fairness-based Dynamic Scheduling-Minimize Individual

Makespans of Functions (FDS_MIMF)

D Simulator Yes (Xie et al., 2017)

Adaptive Dynamic Scheduling-Minimize Individual

Makespans of Functions (ADS_MIMF)

D Simulator Yes (Xie et al., 2017)

p

C

each CPS area from the total amount of articles published during a

certain time span. Even though an increase in the number of pub-

lished articles is visible throughout the two time spans, it has a

slow ascension due to numerous challenges which we will discuss

next.

5.1. Challenges and open issues in mixed criticality systems

Because MCSs are in a continuous development and, currently,

there is insufficient research in the field, a set of important chal-

lenges exist:

• Isolation – this is the most important aspect in MCSs. Thus

far, research has focused mainly on application/system spe-

cific solutions. Contributions have been made in an attempt to

solve these challenges on different domains. Beside the appli-

cation/domain specific solutions discussed in Section 4 , a more

generic example is the LITMUS (Calandrino et al., 2006) real-

time extension for the Linux kernel which is used to evaluate

different scheduling algorithms from a research point of view.

An important requirement in MCS scheduling is that tasks of

lower criticality should not interfere with tasks of higher crit-

icality, which is known as temporal isolation . LITMUS ensures

temporal isolation between components, so that the timing re-

quirements can be validated independently. Isolated solutions

like LITMUS for Linux based systems can be further extended

to include other embedded or real-time operating systems.
• Unitary models – another concern appears from the lack of

unitary models in CPS domains such as task level and schedul-
ing level models. Some domains do not have a standardized

approach for scheduling, such as medical (Cavalcanti and Fre-

itas, 2005) or Internet of Things (Accettura et al., 2013). This

gives rise to problems when integrating MCSs in CPSs, because

a unitary approach requires well defined general scheduling al-

gorithms, which can be easily customized according to the ap-

plication environment.
• Task scheduling, in the context of criticality level isolation

and efficiency – as already stated, the core concept for devel-

oping a MCS is the demonstration of sufficient independence

between the criticality levels. Task scheduling in MCSs is a chal-

lenging issue due to several factors like: priority assignment,

considering both the criticality level and the time specifications,

criticality level isolation (an execution flow of a low critical-

ity task must not affect higher criticality tasks execution), con-

tention of shared resources and resource utilization efficiency.
• Real-time communication – in a complex system with real-

time and non-real-time components, real-time communication

must be ensured between all the components. This means that,

in order to have a real-time distributed system, all the compo-

nents must respect the real-time paradigm. Therefore, having a

real-time communication support is imperative.
• Resource sharing – this is harder to be achieved in the context

of time and functionality isolation. High criticality tasks gain

precedence in resource allocation over low criticality tasks.

Other challenges, which come from the specificity of the cyber-

hysical systems, may hinder the process of integrating MCSs in

PSs:

E.A. Capota, C.S. Stangaciu and M.V. Micea et al. / The Journal of Systems and Software 156 (2019) 204–216 213

Table 5

Attribute levels of different scheduling algorithms in multiple processing units.

Scheduling Algorithm Hetero-geneity Power

manage-

ment

Dynamism

and self-

adaptability

Robustness Distribu-

tion

Scalability Security

Mixed-Criticality-PARTITION (MC-PARTITION) At task level – Moderate Moderate No Unspecified Low

Mixed-Criticality PARTITION-Utilization-0.75

(MC-PARTITION-UT-0.75)

At task level – Moderate Moderate No Unspecified Low

Mixed-Criticality PARTITION-Utilization-1

(MC-PARTITION-UT-1)

At task level – Moderate Moderate No Unspecified Low

Mixed-Criticality PARTITION-INCREMENT

(MC-PARTITION-UT-INC)

At task level – Moderate Moderate No Unspecified Low

Time-Triggered Scheduler with Mode Change

(TTS-MC)

At task level – Moderate Moderate No Unspecified Low

Event Scheduler in Multi-Core At task level – Moderate Moderate No Unspecified Low

Mixed-Criticality Isolation Server

(MC-IS-Server)

At task level – Moderate Moderate No Yes Low

Task Grouping-Partitioned Earliest Deadline

First (TG-PEDF)

At task level – Moderate High No Yes Moderate

Notional Processor Scheduling-Fractional

Capacity-Integrated Modular Avionics

(NPS-F-IMA)

At task level – Moderate High No Unspecified High

Partitioned-Eckberg (P-EKB) At task level – Moderate Moderate No Unspecified Low

Partitioned Earliest Deadline First-Virtual

Deadlines (P-EDF-VD)

At task level – Moderate Moderate No Yes Low

Flexible Time-Triggered Scheduling (FTTS) At task level – Low Moderate No Yes Low

Energy Minimized Mixed-Criticality (EM3) At task level High Moderate Moderate No Unspecified Low

Isolated Mixed-Criticality (IM3) At task level High Moderate High No Unspecified High

Ali and Kim’s approach At task level – Moderate Moderate No Yes Low

Notional Processor Scheduling-Fractional

Capacity-Mixed-Criticality (NPS-F-MC)

At task level – High High No Unspecified High

Semi-Partitioned-Eckberg (SP-EKB) At task level – High Moderate No Unspecified Low

Mixed-Criticality-Reduction to Uniprocessor

(MxC-RUN)

At task level – High Moderate No Unspecified Low

Linear Programming Dynamic Power

Management-Mixed-Criticality (LPDPM-MC)

At task level Low Low High No Unspecified Low

GLOBAL At task level – High Moderate No Unspecified Low

GLOBAL-PRAGMATIC At task level – High Moderate No Unspecified Low

Mixed-Criticality-Fluid (MC-Fluid) At task level – High Moderate No Unspecified Low

Mixed-Criticality Isolation-Fluid (MC-IS-Fluid) At task level – High Moderate No Yes Low

Fairness on Multiple Heterogeneous Earliest

Finish Time (F_MHEFT)

At the device

level

– Low Low Yes Yes Unspecified

Deadline-span of Multiple Heterogeneous

Earliest Finish Time (D_MHEFT)

At device level – Low Moderate Yes Yes Unspecified

Fairness-based Dynamic Scheduling-Minimize

Individual Makespans of Functions

(FDS_MIMF)

At device level – High Moderate Yes Yes Unspecified

Adaptive Dynamic Scheduling-Minimize

Individual Makespans of Functions

(ADS_MIMF)

At device level – High Moderate Yes Yes Unspecified

i

t

s

i

e

a

c

d

A
• The need of energy efficiency – because collaborative cyber-

physical systems often contain components which are mobile

and, therefore, not powered directly from the electrical net-

work, the need of energy efficiency is crucial. As a result, spe-

cial scheduling algorithms must be developed in this sense.
• Heterogeneous hardware – since collaborative systems can

have different architectures and configurations and, on the

other hand, in the same collaborative systems there can be var-

ious components with different hardware support, a unitary ap-

proach regarding MCS implementation can hardly be reached.
• Different communication protocols – due to the use of dif-

ferent hardware components and possible layered architectures,

different communication protocols can be used between vari-

ous components (or levels of the system architecture), compli-

cating the system operation.

Since CPS is a broad concept which covers multiple areas, it is

mportant to outline the challenges that may occur with the in-

egration of MCSs. Two main concerns can be emphasized, that

hould be taken into account:

• Domain specific – some domains lack standardization, which

can be applied at the following levels:
◦ Task level – generic models for different levels of an appli-

cation, compatible with various scheduling algorithms.

◦ Scheduling level – standardized scheduling algorithms

which can be used in all CPS areas.

Using well defined standards provides consistency, quality and

mproves productivity. This involves a set of rules which should be

asily understood, constantly followed and continuously improved.

• Generality – there are no general scheduling mechanisms, most

of the approaches are application/system specific. Consequently,

solutions to the same problem might vary depending on the

application domain. Even though, specifically tailored solutions

can provide determinism, predictability, performance and time-

liness in certain scenarios, general solutions bring higher flex-

ibility, scalability and interconnectivity between different de-

vices.

These shortcomings can be solved by using a standardized

pproach applicable to all CPS domains. In this sense, the set of

ommon, constructive and functional features for each area of

evelopment previously illustrated should be taken into account.

dditionally, using a generic scheduling algorithm is far more

214 E.A. Capota, C.S. Stangaciu and M.V. Micea et al. / The Journal of Systems and Software 156 (2019) 204–216

t

5

M

v

s

a

advantageous over application specific methods, both in terms of

flexibility and cost.

Solving the previously mentioned challenges will certainly lead

to an efficient integration of MCSs in CPSs, with important advan-

tages to this approach on the long run.

5.2. Advantages of integrating MCSs in CPSs

Despite the numerous challenges, incorporating MCSs in CPSs

brings some important advantages which are further listed below:

• Real-time functionalities – CPSs involve features such as

adaptability and safety, which require meeting strict timing

constraints when it comes to monitoring the environmental

changes, processing data, sharing information and executing

certain actions. In some domains such as medical, if a system is

not real-time compliant, the consequences can be irreversible.

Even though MCSs initially addressed real-time systems, they

can also be integrated in systems with both real-time and non-

real-time requirements, when different functionalities and com-

ponents with and without real-time constraints share the same

hardware (Mollison et al., 2010).
• Multiple functionalities on the same platform – it is advanta-

geous to implement multiple functionalities on the same plat-

form. This means that some components will be more "critical"

than others, thus the concept of mixed criticality is slowly com-

ing to be considered in CPSs.
• Hierarchical scheduling – a vast majority of the scheduling al-

gorithms are developed at the basic level of an application, i.e.

at task level, but in the context of complex distributed systems,

where applications from different providers must function to-

gether, this approach is insufficient. Additionally, interconnect-

ing scheduling objectives between different computational lay-

ers in a complex system ensures transparency and helps meet

temporal requirements. Adopting unitary abstraction models for

the different layers of an application (task level, meta-task level

or system level) may be a huge step forward allowing inter-

connection of different CPSs regardless of their application field

and pushing things closer to standardization between different

areas.
• Standardized approaches – currently, each CPS domain has its

own algorithmic solutions depending on certain requirements

and real-time behaviors. This creates inconsistencies when try-

ing to apply the same scheduling technique in different CPS ar-

eas. The idea is to reach a unified solution by integrating MCSs

in CPSs, which will provide a basis for further development in

each domain and better interconnections between critical and

non-critical components.
• Temporal and resource isolation – important research re-

sults in the field of mixed criticality systems have been pre-

sented in the last decade, especially in the scheduling the-

ory field. One of the main consequences of this research is

that safety-critical systems are no longer restricted to a sin-

gle type of processing units, fact reflected in the development

of a great variety of heterogeneous systems, with different

computational and power performances. The temporal and re-

source isolation mechanism makes possible the use of advanced

modern processing units with higher computational capabili-

ties but less predictability in mixed and safety critical systems

(Cavalcanti and Freitas, 2005).
• Adaptability – another direct implication coming from using

the MCS approach is that, by using a model with different pa-

rameter values for different running modes, one could make a

priori predictions about the evolution of various performance

parameters, beside the CPU usage (e.g. run-time energy us-

age, memory usage, communication bandwidth, etc.) in dif-
ferent running modes (Cavalcanti and Freitas, 2005). This as-

pect can be of particular interest for the CPS, where the direct

environment-system interaction may impose that the system

dynamically adapts to different running conditions, depending

on variations in the system environment, thus formalizations

and methodologies for modeling and off-line testing of the sys-

tem behavior represent important progress, which must not be

neglected.
• Robustness – hypervisor techniques and standard distributed

middleware can represent general solutions for imposing ro-

bustness in terms of run-time behavior, which exceed the fields

of automotive and avionics.

The advantages presented above offer new research perspec-

ives in the field.

.3. Future perspectives

Beside the previously mentioned advantages of integrating

CSs in CPSs, which are more relevant from a practical point of

iew, new areas of research have been opened:

• Mixed criticality scheduling in IoT systems; The IoT systems are

rapidly evolving towards real-time IoT systems (Malik et al.,

2019) where tasks with different time constraints and differ-

ent criticality levels coexist. In these circumstances, a hierar-

chical mixed criticality scheduling approach, which can be ex-

tended to include different IoT scheduling layers such as IoT

device scheduling, fog scheduling and cloud service scheduling,

becomes a new and significant challenge.
• Fog scheduling – Fog computing (Vaquero and Rodero-

Merino, 2014) is an emerging new paradigm where a large

number of heterogeneous, ubiquitous and decentralized pro-

cessing units communicate and cooperate with each other.

Thus, beside the need for standardization, integrating MCS ap-

proaches in fog computing must meet additional requirements

such as: synchronization, security, liability and programmabil-

ity. This results in the concept of fog scheduling, which is a re-

search subject of high potential.
• Multi-Agent Systems (MAS) mixed criticality task scheduling –

a similar set of challenges as the ones presented in our paper

have been highlighted by Calvaresi et al. (2017) , when it comes

to interconnecting MAS to other CPS domains: the lack of

standardization, real-time requirements (communication, shar-

ing information, adapting to environmental changes, etc.) and

the lack of a task model that includes temporal behavior. Thus,

solving some of the issues presented in this paper would have

an important impact in the development of other areas like

MAS and IoT.
• MCS implementations in CPSs have the potential to bring ma-

jor improvements in security by integrating the temporal and

spatial isolation concept.

From the perspective of the previously mentioned areas of re-

earch, new opportunities regarding MCS scheduling algorithms

re arising:

• IoT systems – Introducing a mixed criticality approach to IoT

would improve the reliability, safety, scalability and transmis-

sion efficiency of the systems by extending the message sched-

ulers to handle different criticalities and real-time constraints.

Because common web technologies are inefficient for mes-

sage scheduling when interfacing real-time IoT systems, a dis-

tributed heterogeneous approach, like D_MHEFT, F_MHEFT is

preferable offering flexibility and adaptability for coordinating

multiple components in a dynamic environment.
• Fog scheduling – The same concept is also applicable at the

Fog computing level. In this case scheduling algorithms for

E.A. Capota, C.S. Stangaciu and M.V. Micea et al. / The Journal of Systems and Software 156 (2019) 204–216 215

6

w

i

w

r

a

c

t

m

w

d

c

i

i

s

a

g

s

s

R

A

A

A

A

A

A

B

B

B

B

B

B

B

B

B

B

C

C

C

C

C

C

C

D

E

E

F

F

G

G

G

G

G

H

H

H

K

both single and multiple processing units can be used, depend-

ing on the complexity of the hardware, ranging from single

processing unit scheduling algorithms to clustered schedulers.

From the single processing unit class, EDF based algorithms

such as EDF_VD, CBEDF have a greater potential, being dynamic

and energy efficient. Some well-known scheduling methods for

multiple processing units that can also be used in Fog com-

puting: P-EDF-VD, P-EKB for partitioned scheduling, MxC-RUN,

MC-Fluid for global scheduling and NPS-F-MC, SP-EKB for clus-

tered scheduling.
• Multi-Agent Systems (MAS) – Because MAS is a complex field,

the introduction of mixed criticality concepts must be done at

different layers. Thus, a hierarchical and decentralized design

is suitable, which integrates multiple classes of scheduling al-

gorithms. For example, considering a fleet of robots: a single

processing unit scheduling technique based on algorithms like

EDF-VD, EDF-DB could be implemented at the component level,

partitioned methods such as TTS-MC, MC-PARTITION-UT-INC at

the agent level and a distributed approach at the system level.

. Conclusions

In this paper we have outlined the challenges and potential re-

ards of integrating MCSs in CPSs. MCSs are expected to play an

mportant role in the design and implementation of future CPSs

ith capabilities that will exceed today’s levels of reliability, secu-

ity and functionality. Such an approach has a high potential as it

llows multiple functionalities on the same platform, thus different

omponents can be interconnected for safe and adaptable systems.

Even though there is no scheduling algorithm suitable for all

he cyber physical systems application fields, some algorithms are

ore appropriate considering certain attributes. As future work,

e will focus on finding different classes of applications and vali-

ate suitable algorithms for each class.

A topic of future work is to move away from an application spe-

ific approach and to focus on more general, standardized schedul-

ng techniques. The standardization of the application and schedul-

ng techniques will ease the development of different operating

ystems, of different distributed applications interconnecting wide

reas like IoT, automotive, medical and even military into sin-

le complex systems running complex applications, like real-time

urveillance and image recognition, remote control for different

ystem parts like robots, actuators etc.

eferences

ccettura, N. , Palattella, M.R. , Boggia, G. , Grieco, L.A. , Dohler, M. , 2013. Decentralized
traffic aware scheduling for multi-hop low power lossy networks in the internet

of things. In: World of Wireless, Mobile and Multimedia Networks (WoWMoM),
2013 IEEE 14th International Symposium and Workshops on a. IEEE, pp. 1–6 .

li, A. , Kim, K.H. , 2017. Cluster-based multicore real-time mixed-criticality schedul-

ing. J. Syst. Archit. 79, 45–58 .
li, I. , Seo, J.H. , Kim, K.H. , 2015. A dynamic power-aware scheduling of mixed-crit-

icality real-time systems. In: 2015 IEEE International Conference on Computer
and Information Technology; Ubiquitous Computing and Communications; De-

pendable, Autonomic and Secure Computing; Pervasive Intelligence and Com-
puting. IEEE, pp. 438–445 .

rlock, C.C. , Linderoth-Olson, E. , 2014. A practical comparison of scheduling algo-

rithms for mixed criticality embedded systems. Department of Automatic Con-
trol, Lund University, Sweden, pp. 1–48 .

syaban, S. , Kargahi, M. , 2017. An exact schedulability test for fixed-priority pre-
emptive mixed-criticality real-time systems. Real-Time Syst. 1–59 .

wan, M.A. , Bletsas, K. , Souto, P.F. , Tovar, E. , 2017. Semi-partitioned mixed-criticality
scheduling. In: International Conference on Architecture of Computing Systems.

Springer, Cham, pp. 205–218 .
aruah, S. , Guo, Z. , 2015. Mixed-criticality job models: a comparison. In: Proceed-

ings of the Workshop on Mixed-Criticality Systems (WMC’15) .

aruah, S.K. , Burns, A. , Davis, R.I. , 2011a. Response-time analysis for mixed critical-
ity systems. In: Real-Time Systems Symposium (RTSS), 2011 IEEE 32nd. IEEE,

pp. 34–43 .
aruah, S.K. , Burns, A. , Davis, R.I. , 2011b. Response-time analysis for mixed criticality

systems. In: 2011 IEEE 32nd Real-Time Systems Symposium. IEEE, pp. 34–43 .
aruah , S., Bonifaci , V., D’Angelo , G., Li , H., Spaccamela , A., M. , 2012. The preemptive
uniprocessor scheduling of mixed-criticality implicit-deadline sporadic task sys-

tems. In: 24th Euromicro Conference on Real-Time Systems (ECRTS12), Jul 2012,
Pisa, Italy. IEEE, pp. 145–154 .

aruah , S. , Chattopadhyay, B. , Li, H. , Shin, I. , 2014. Mixed-criticality scheduling on
multiprocessors. Real-Time Syst. 50 (1), 142–177 .

aruah, S.K. , 2004. Optimal utilization bounds for the fixed-priority scheduling of
periodic task systems on identical multiprocessors. IEEE Trans. Comput. 53 (6),

781–784 .

raun, T.D. , Siegal, H.J. , Beck, N. , Boloni, L.L. , Maheswaran, M. , Reuther, A.I. , Fre-
und, R.F. , 1999. A comparison study of static mapping heuristics for a class of

meta-tasks on heterogeneous computing systems. In: Heterogeneous Computing
Workshop, 1999.(HCW’99) Proceedings. Eighth. IEEE, pp. 15–29 .

urke, E.K. , Hyde, M.R. , Kendall, G. , 2006. Evolving bin packing heuristics with ge-
netic programming. In: Parallel Problem Solving from Nature-PPSN IX. Springer,

Berlin, Heidelberg, pp. 860–869 .

urns, A. , Davis, R.I. , 2017. A survey of research into mixed criticality systems. ACM
Comput. Surv. (CSUR) 50 (6), 82 .

urns, A. , 2015. An augmented model for mixed criticality. In: Baruah, S.K., Cucu–
Grosjean, L., Davis, R.I., Maiza, C. (Eds.). Mixed Criticality on Multicore/Manycore

Platforms (Dagstuhl Seminar 15121), 5, editors. SchlossDagstuhl–Leibniz-Zen-
trumfuerInformatik, Dagstuhl, Germany .

alandrino, J.M. , Leontyev, H. , Block, A. , Devi, U.C. , Anderson, J.H. , 2006. LITMUS ̂

RT: a testbed for empirically comparing real-time multiprocessor schedulers.
In: Real-Time Systems Symposium, 2006. RTSS’06. 27th IEEE International. IEEE,

pp. 111–126 .
alvaresi, D. , Marinoni, M. , Sturm, A. , Schumacher, M. , Buttazzo, G. , 2017. The

challenge of real-time multi-agent systems for enabling IoT and CPS. In: Pro-
ceedings of the International Conference on Web Intelligence. ACM, pp. 356–

364 .

apota, E.A. , Stangaciu, C.S. , Micea, M.V. , Cretu, V.I. , 2018. P_FENP: a multiproces-
sor real-time scheduling algorithm. In: 2018 IEEE 12th International Sympo-

sium on Applied Computational Intelligence and Informatics (SACI), Timisoara,
pp. 509–514 .

arpenter, T. , Hatcliff, J. , Vasserman, E.Y. , 2017. A reference separation architecture
for mixed-criticality medical and IoT devices. In: Proceedings of the 1st ACM

Workshop on the Internet of Safe Things. ACM, pp. 14–19 .

avalcanti, A. , Freitas, R.A. , 2005. Nanorobotics control design: a collective behavior
approach for medicine. IEEE Trans. Nanobiosci. 4 (2), 133–140 .

respo, A. , Ripoll, I. , Masmano, M. , Peiró, S. , 2010. Partitioned embedded archi-
tecture based on hypervisor: the XtratuM approach. In: European Dependable

Computing Conference (EDCC), pp. 67–72 .
respo, A. , Alonso, A. , Marcos, M. , Juan, A. , Balbastre, P. , 2014. Mixed criticality in

control systems. IFAC Proc. Vol. 47 (3), 12261–12271 .

e Niz, D. , Lakshmanan, K. , Rajkumar, R. , 2009. On the scheduling of mixed-criti-
cality real-time task sets. In: Real-Time Systems Symposium, 2009, RTSS 2009.

30th IEEE. IEEE, pp. 291–300 .
kberg, P. , Yi, W. , 2014. Bounding and shaping the demand of generalized mixed–

criticality sporadic task systems. Real-Time Syst. 50 (1), 48–86 .
rnst, R. , Di Natale, M. , 2016. Mixed criticality systems—a history of misconcep-

tions? IEEE Des. Test 33 (5), 65–74 .
akih, M. , Lenz, A. , Azkarate-Askasua, M. , Coronel, J. , Crespo, A. , David-

mann, S. , Seyyedi, R. , 2017. SAFEPOWER project: architecture for safe and

power-efficient mixed-criticality systems. Microprocess. Microsyst. 52, 89–
105 .

unk, S. , Levin, G. , Sadowski, C. , Pye, I. , Brandt, S. , 2011. DP-fair: a unifying theory
for optimal hard real-time multiprocessor scheduling. Real-Time Syst. 47 (5),

389 .
erostathopoulos, I. , Bures, T. , Hnetynka, P. , Keznikl, J. , Kit, M. , Plasil, F. ,

Plouzeau, N. , 2016. Self-adaptation in software-intensive cyber–physical sys-

tems: from system goals to architecture configurations. J. Syst. Softw. 122, 378–
397 .

iannopoulou, G. , Huang, P. , Ahmed, R. , Bartolini, D.B. , Thiele, L. , 2017. Isolation
scheduling on multicores: model and scheduling approaches. Real-Time Syst. 53

(4), 614–667 .
iannopoulou, G. , 2017. Implementation of Mixed-Criticality Applications on Multi–

Core Architectures. ETH Zurich .

ratia, R. , Robert, T. , Pautet, L. , 2015. Scheduling of mixed-criticality systems with
RUN. In: 2015 IEEE 20th Conferenceon Emerging Technologies & Factory Au-

tomation (ETFA), 2015, pp. 1–8 .
uan, N. , Ekberg, P. , Stigge, M. , Yi, W. , 2011. Effective and efficient schedul-

ing of certifiable mixed-criticality sporadic task systems. In: RTSS, pp. 13–
23 .

an, J.-J. , Tao, X. , Zhu, D. , Aydin, H. , Shao, Z. , Yang, L. , 2018. Multicore mixed-criti-

cality systems: partitioned scheduling and utilization bound. IEEE Trans. Com-
put.-Aided Des. Integr. Circuits Syst. 37 (1) Jan .

uang, P. , Kumar, P. , Giannopoulou, G. , Thiele, L. , 2014. Energy efficient dvfs schedul-
ing for mixed-criticality systems. In: Proceedings of the 14th International Con-

ference on Embedded Software. ACM, p. 11 .
uang , P. , Giannopoulou, G. , Ahmed, R. , Bartolini, D.B. , Thiele, L. , 2015. An isolation

scheduling model for multicores. In: 2015 IEEE Real-Time Systems Symposium.

IEEE, pp. 141–152 .
amienski, C. , Jentsch, M. , Eisenhauer, M. , Kiljander, J. , Ferrera, E. , Rosengren, P. ,

Sadok, D. , 2017. Application development for the internet of things: a con-
text-aware mixed criticality systems development platform. Comput. Commun.

104, 1–16 .

http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0064
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0064
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0064
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0064
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0064
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0064
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0044
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0044
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0044
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0017a
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0017a
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0017a
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0043
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0043
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0043
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0043
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0043
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0035
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0035
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0035
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0035
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0035
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0035
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0040
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0040
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0045
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0045
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0045
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0045
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0062
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0062
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0062
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0062
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0062
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0062
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0068
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0068
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0068
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0068
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0068
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0068
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0034
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0034
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0034
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0034
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0034
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0063
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0063
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0063
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0050
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0050
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0050
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0050
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0050
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0053
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0053
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0053
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0053
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0029
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0029
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0029
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0042
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0042
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0042
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0042
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0042
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0042
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0039
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0039
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0039
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0039
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0039
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0039
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0037
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0037
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0059
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0059
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0059
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0059
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0057
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0057
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0057
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0057
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0057
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0057
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0057
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0038
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0038
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0038
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0038
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0038
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0038
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0038
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0003

216 E.A. Capota, C.S. Stangaciu and M.V. Micea et al. / The Journal of Systems and Software 156 (2019) 204–216

S

S

S

V

V

X

X

Z

Z

Z

E

s

l

e

b

I

i

D

t

D

I

t

a

Lakshmanan, K. , De Niz, D. , Rajkumar, R. , Moreno, G. , 2010. Resource allocation in
distributed mixed-criticality cyber-physical systems. In: Distributed Computing

Systems (ICDCS), 2010 IEEE 30th International Conference on. IEEE, pp. 169–
178 .

Lakshmanan, K. , de Niz, D. , Rajkumar, R. , 2011. Mixed-criticality task synchroniza-
tion in zero-slack scheduling. In: 2011 17th IEEE Real-Time and Embedded Tech-

nology and Applications Symposium. IEEE, pp. 47–56 .
Laplante, P.A. , 2004. Real-Time Systems Design and Analysis . Wiley, New York p.

Xxi .

Larrucea, A. , Martinez, I. , Brocal, V. , Peirò, S. , Ahmadian, H. , Perez, J. , Ober-
maisser, R. , 2016. DREAMS: cross-domain mixed-criticality patterns. In: Work-

shop on Mixed-Criticality Systems, p. 6 .
Lee, J. , Shin, K.G. , 2017. Development and use of a new task model for cyber-physical

systems: a real-time scheduling perspective. J. Syst. Softw. 126, 45–56 .
Lee, J. , Phan, K.-M. , Gu, X. , Lee, J. , Easwaran, A. , Shin, I. , Lee, I. , 2014. MC-fluid:

fluid model-based mixed-criticality scheduling on multiprocessors. In: RTSS,

pp. 41–52 .
Lee, J. , Chwa, H. , Phan, S. , Shin, L., T.X. , Lee, I. , 2017. MC-ADAPT: adaptive task

dropping in mixed-criticality scheduling. International Conference on Embed-
ded Software (EMSOFT 2017), 16 163:1–163:21October .

Lee, E.A. , 2008. Cyber physical systems: design challenges. In: 11th IEEE Sym-
posium on Object Oriented Real-Time Distributed Computing (ISORC). IEEE,

pp. 363–369 .

Legout, V. , Jan, M. , Pautet, L. , 2013. Mixed-criticality multiprocessor real-time sys-
tems: energy consumption vs deadline misses. In: First Workshop on Real-Time

Mixed Criticality Systems (ReTiMiCS), pp. 1–6 .
Lu, C. , 2016. Mixed-Criticality Scheduling of an Autonomous Driving Car. Master’s

Thesis in Institute for Integrated Systems. Technische Universität München, De-
partment of Electrical and Computer Engineering .

Müller, D. , Werner, M. , 2011. Genealogy of hard real-time preemptive scheduling

algorithms for identical multiprocessors. Open Comput. Sci. 1 (3), 253–265 .
Malik, S. , Ahmad, S. , Ullah, I. , Park, D.H. , Kim, D. , 2019. An adaptive emergency first

intelligent scheduling algorithm for efficient task management and scheduling
in hybrid of hard real-time and soft real-time embedded IoT systems. Sustain-

ability 11 (8), 2192 .
Micea, M.V. , Stangaciu, C.S. , Stangaciu, V. , Curiac, D.I. , 2017. Novel hybrid schedul-

ing technique for sensor nodes with mixed criticality tasks. Sensors 17 (7),

1504 .
Mollison, M.S. , Erickson, J.P. , Anderson, J.H. , Baruah, S.K. , Scoredos, J.A. , 2010.

Mixed-criticality real-time scheduling for multicore systems. In: 2010 10th
IEEE international conference on computer and information technology. IEEE,

pp. 1864–1871 .
Narayana, S. , Huang, P. , Giannopoulou, G. , Thiele, L. , Prasad, R.V. , 2016. Exploring

energy saving for mixed-criticality systems on multi-cores. In: 2016 IEEE Re-

al-Time and Embedded Technology and Applications Symposium (RTAS). IEEE,
pp. 1–12 .

Object Management Group, 2007. Data distribution service for real-time System-
sOMG document, v1.2, formal/07-01-01.

Pérez, H. , Gutiérrez, J.J. , Peiró, S. , Crespo, A. , 2017. Distributed architecture for de-
veloping mixed-criticality systems in multi-core platforms. J. Syst. Softw. 123,

145–159 .
Park, T. , Kim, S. , 2011. Dynamic scheduling algorithm and its schedulability analysis

for certifiable dual-criticality systems. In: Embedded Software (EMSOFT), 2011

Proceedings of the International Conference on. IEEE, pp. 253–262 .
Ren, J. , Phan, L., T., X. , 2015. Mixed-criticality scheduling on multiprocessors using

task grouping. In: 2015 27th Euromicro Conference on Real-Time Systems, 2015,
pp. 25–34 .

Rodriguez, P. , George, L. , Abdeddaïm, Y. , Goossens, J. , 2013. Multicriteria evaluation
of partitioned EDF-VD for mixed-criticality systems upon identical processors.

Workshop on Mixed Criticality Systems .
anty, F. , George, L. , Thierry, P. , Goossens, J. , 2012. Relaxing mixed-criticality
scheduling strictness for task sets scheduled with fp. In: Real-Time Systems

(ECRTS), 2012 24th Euromicro Conference on. IEEE, pp. 155–165 .
chneider , R. , Goswami, D. , Masrur, A. , Becker, M. , Chakraborty, S. , 2013. Multi-lay-

ered scheduling of mixed-criticality cyber-physical systems. J. Syst. Archit. 59
(10), 1215–1230 .

tigge, M. , Yi, W. , 2015. Graph-based models for real-time workload: a survey. Re-
al-Time Syst. 51 (5), 602–636 .

Taherin, A. , Salehi, M. , Ejlali, A. , 2018. Reliability-aware energy management in

mixed-criticality systems. IEEE Trans. Sustain. Comput. 3 (3), 195–208 .
ölp, M. , Hähnel, M. , Lackorzynski, A. , 2014. Has energy surpassed timeliness?

Scheduling energy-constrained mixed-criticality systems. In: 2014 IEEE 19th Re-
al-Time and Embedded Technology and Applications Symposium (RTAS). IEEE,

pp. 275–284 .
Vaquero, L.M. , Rodero-Merino, L. , 2014. Finding your way in the fog: towards a com-

prehensive definition of fog computing. ACM SIGCOMM Comput. Commun. Rev.

44 (5), 27–32 .
estal, S. , 2007. Preemptive scheduling of multi-criticality systems with varying de-

grees of execution time assurance. In: Proceedings of the Real-Time Systems
Symposium. IEEE Computer Society Press, Tucson, AZ, pp. 239–243. December .

ia, C. , Jin, X. , Kong, L. , Wang, J. , Zeng, P. , 2017. Transmission scheduling for mixed–
critical multi-user multiple-input and multiple-output industrial cyber-physical

systems. Int. J. Distrib. Sens. Netw. 13 (12), 1–13 .

Xie, G. , Zeng, G. , Liu, L. , Li, R. , Li, K. , 2016. High performance real-time scheduling
of multiple mixed-criticality functions in heterogeneous distributed embedded

systems. J. Syst. Archit. 70, 3–14 .
ie, G. , Zeng, G. , Li, Z. , Li, R. , Li, K. , 2017. Adaptive dynamic scheduling on multi-

functional mixed-criticality automotive cyber-physical systems. IEEE Trans. Veh.
Technol. 66 (8), 6676–6692 .

han, J. , Zhang, X. , Jiang, W. , Ma, Y. , Jiang, K. , 2018. Energy optimization of secu-

rity-sensitive mixed-criticality applications for distributed real-time systems. J.
Parallel Distrib. Comput. 117, 115–126 .

hao, Q. , Gu, Z. , Zeng, H. , Zheng, N. , 2018. Schedulability analysis and stack size min-
imization with preemption thresholds and mixed-criticality scheduling. J. Syst.

Archit. 83, 57–74 .
hou, S. , Zheng, X. , Wang, J. , Delisle, P. , 1993. Utopia: a load sharing facility for large,

heterogeneous distributed computer systems. Software 23 (12), 1305–1336 .

ugenia Ana Capota is a Ph.D. student in Computer and Information Technology at
the Politehnica University of Timisoara, Romania. Her current research interests in-

clude cyber-physical systems, real-time task scheduling and schedulability analysis
of mixed-criticality systems.

Cristina Sorina Stângaciu (born Cristina Sorina Certejan) is a lecturer and a re-
earch engineer at the Department of Computer and Information Technology, Po-

itehnica University of Timisoara, Romania. Her research areas and interests include:

mbedded and real-time hardware-software systems; power management in em-
edded devices, real-time scheduling techniques.

Mihai Victor Micea is a professor and Chair of the Department of Computer and
nformation Technology, Politehnica University of Timisoara, Romania. His research

nterests include real-time/embedded multiprocessing systems with applications in
AQ and DSP, robotic collectives, intelligent sensor networks and multimedia sys-

ems.

aniel-Ioan Curiac is a professor in the Department of Automation and Applied
nformatics, Politehnica University of Timisoara, Romania. His current research in-

erests include cyber physical systems, robotic systems, real-time adaptive systems

nd information security.

http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0052
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0052
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0052
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0052
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0052
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0051
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0051
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0051
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0051
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0051
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0051
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0051
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0051
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0041
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0041
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0041
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0041
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0041
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0041
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0041
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0041
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0061
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0061
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0060
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0060
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0060
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0060
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0036
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0036
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0033
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0033
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0033
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0066
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0066
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0066
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0066
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0066
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0066
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0065
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0065
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0065
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0065
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0065
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0065
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0058
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0058
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0058
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0058
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0058
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0058
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0049
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0049
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0049
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0049
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0049
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0056
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0056
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0056
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0067
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0067
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0067
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0054
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0054
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0054
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0054
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0054
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0054
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0055
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0055
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0055
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0055
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0055
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0055
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0047
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0047
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0047
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0047
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0047
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0047
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0046
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0046
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0046
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0046
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0046
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0048
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0048
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0048
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0048
http://refhub.elsevier.com/S0164-1212(19)30142-6/sbref0048

	Towards mixed criticality task scheduling in cyber physical systems: Challenges and perspectives
	1 Introduction
	2 Constructive and functional features of CPSs as processing units
	2.1 Heterogeneity
	2.2 Power management
	2.3 Dynamism and self-adaptability
	2.4 Robustness
	2.5 Redundancy
	2.6 Distribution
	2.7 Scalability
	2.8 Security
	2.9 Isolation

	3 MCS task model
	4 MCS scheduling
	4.1 Processing unit level scheduling algorithms
	4.1.1 Classification
	4.1.2 Task/job priority assignment
	4.1.3 Schedulability tests

	4.2 Multiple processing units scheduling algorithms
	4.2.1 Class P: partitioned schedulers
	4.2.2 Class G: global schedulers
	4.2.3 Class C: clustered/semi-partitioned schedulers
	4.2.4 Class D: distributed schedulers

	5 Integrating MCSs in CPSs: research challenges, advantages and future perspectives
	5.1 Challenges and open issues in mixed criticality systems
	5.2 Advantages of integrating MCSs in CPSs
	5.3 Future perspectives

	6 Conclusions
	References

