Arhitectura calculatoarelor

Laboratorul 3.

3.1. Simulatorul Multisim

Aplicația Multisim este destinată editării grafice a schemelor conținând circuite integrate logice și analogice, precum și a simulării funcționării acestora. Această aplicație a fost concepută inițial pentru uz didactic sub denumirea Electronics Workbench, ulterior fiind preluată de Național Instruments care i-a schimbat denumirea în Mutisim.

🔁 Eile Edit View Place MCU Simulate Trapifer Jools Reports Options Window Help			5	_ & ×
□ 😰 📽 🗒 叠飞 太陽龍 約 (4) 📓 🗐 池 · 圖 为 先 🕏 — In Use List — → 🗸 🗸 💩 - 魚 ? 🕨 H 🔳 ● 短尾 短 性 合 魚 🕱 地 房 品 素 第		Q Q Q Q I		
◆◇◆◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇				
DesignToolbox 0 1 2 3 4 5 6 7 8 0 10 11 12 13 14	15	10		^
			>	× I
Heardy [Vibility Project View] B Design1			•	192
Multisim - Sunday, October 21, 2018, 151422 PM Results [Nets.] Components [Cooper layers] Smulaton]				
For Halo name F1				

Fig. 3.1. Captură de ecran cu mediul Multisim.

În Fig. 3.1 avem o ilustrare a ferestrei de lucru a aplicației Multisim. În partea superioară a ferestrei găsim o serie de pictograme care ne permit adăugarea componentelor noi pe planșa de lucru. În partea stângă sunt indicate fișierele cu schemele aferente proiectului actual. În partea centrală găsim planșa pe care vom așeza componentele și unde se realizează circuitul. În partea dreaptă găsim un meniu în care avem diferite instrumente de măsură sau instrumente care permit generarea semnalelor. În partea inferioară, regăsim zona de mesaje și informații care sunt oferite de către simulator.

În cadrul acestui laborator vom folosi următoarele:

1. Bara cu componentele generale.

│ ÷ ┈ ᠰ Ҟ ⊅ Ҽ҇ Ҽ҄ ӈ҄ ѝ ◙ ಈ ┉ 扁 Ү ๗ Ҟ҈ 0│ ដឹ ҍ ╻

- 2. Bara cu componente de măsură.

Pentru începerea simularii unui circuit este necesară apăsarea comutatorului sau . De asemenea, pentru a pune pe pauză simularea se poate apăsa butonul .

Pentru adăugarea unei componente este necesar să apăsați pe o pictogramă, de exemplu care ne permite să adăugăm circuite digitale TTL. După apăsare, se deschide o fereastră de selecție de unde se alege componenta dorită, Fig. 3.2. Pentru selectarea componentei se apasă butonul OK pentru a așeza componenta pe planșa de lucru.

Database:		Component:		Symbol (ANSI)	ОК
Master Database	\sim	7408N	v .		Close
Group:	[7400N	~		Const
10 m	\sim	740 1N			Search
Family:		7402N			Detail report
All <all families=""></all>		7403N			View model
2 74STD		7404N			
10- 74510 74		7405N			Help
D 74STD_IC		7406N		A B C D	7
5 74S		7407N		<u>^</u>	
74S_IC		7408J		Function:	
74L\$ → 74LS		7408N		QUAD 2-INPUT AND	^
74LS TALS IC		7409N			
산 74F		74100J			~
744LS 744LC		74100N		Model manufacturer/ID:	
D- 74ALS		74107N		IIT / 7408	
D 74AS		74109N			
		7410N			
		74116N			
		74125N		Footprint manufacturer/type:	
		74126N		IPC-2221A/2222 / NO14	
		7412N			
		74132N		Hyperlink:	
		74136N			
		7413N	\sim		

Fig. 3.2 Fereastra de selecție a unei componente

3.2. Exerciții

- 1. Creați un circuit care conține o sursă, un comutator și o sondă luminoasă.
- 2. Creați un circuit care reproduce funcțiile logice (sau, și, sau-exclusiv).
- 3. Creați un circuit care conține un generator de tact ca sursă de alimentare pentru o sondă luminoasă. Configurați generatorul astfel încât frecvența să fie 4Hz. Adăugați un osciloscop pentru a urmării semnalul generatorului de tact.
- 4. Creați un afișaj hexazecimal cu ajutorul a patru comutatoare care pot fi controlate cu tastelor A, S, D, F.
- 5. Creați un circuit care conține două bistabil de tipul D astfel încât să permită memorarea stării unui comutator pentru ultimele două perioade ale unui semnal de tact. Frecvența generatorului de tact va fi 2 Hz. Pentru verificarea rezultatelor se vor folosi sonde luminoase și un osciloscop cu 4 canale.