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Scope of the material 

 

This material is mainly intended for students following lectures on Cryptography and 

Systems Security at Politehnica University of Timisoara (UPT), Romania. The main 

intention of these notes is to show that the theoretical objects discussed during lectures, 

besides their practical value which reasonably follows from relevance of information 

security today, are also present in a large variety of programming frameworks. 

 It was a main intention not to bind the content of the notes with a particular 

programming framework as cryptography is platform independent. For this reason, we 

make use of C programming under Linux (Section 1), .NET (Sections 2-5) and Java 

(Sections 6 and 7).  

These notes are intended for engineers and are not focused on the design of 

cryptographic primitives which is a more demanding task, the material requires no 

background in cryptography.    
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 THE UNIX PASSWORD BASED 

AUTHENTICATION SYSTEM 

 

This chapter is centred on a simple but relevant subject: password based 

authentication (PBA). Regardless of the system, be it UNIX based, Windows, or even a 

remote system requiring PBA, e.g., on-line networks such as Facebook, LinkedIn, the 

paradigm is almost always the same: the users enters a password which is verified 

against an encrypted version of the password that is stored locally on the system. This 

encrypted version of the password is not always the result of applying an encryption 

function on the password, but rather applying some cryptographic one-way function 

(OWF). An OWF is a function that is easy to apply on the password but from which it is 

computationally infeasible to find the password, i.e., computing from input to output 

is easy while from output to input infeasible. Any cryptographic primitive can be used: 

hash functions, encryption functions, etc., since all these cryptographic primitives are 

OWFs. These functions will allow only for a random looking sequence to be stored in 

the password file, from which it should not be easy (or hopefully impossible) to guess 

the password of the user. Since usually hash functions (not encryption functions) are 

used for this purpose, we will refer to this encrypted value of the password as hashed 

password (note however that an encryption function such as DES or Blowfish can be 

used for the same purpose, in fact these are ready to use alternatives in most Linux 

distributions despite the more common use of MD5 or SHA2). If you are not yet familiar 

with hash functions, all that you should know for the moment is that they are OWFs 

that takes as input a string of any length and turns it into a value of fixed size, e.g., 128 

bits in case of MD5, 160 bits in case of SHA1, 256 bits in case of SHA256, etc. that is 

usually referred as tag or hash. 

The necessity for encrypting the passwords before storing them comes from 

the need of protecting one user from another (usually from admins or super-users) that 

can snitch on the password file (this is usually the case for super-users). Indeed this 

protection is not perfect, one can plant a key-logger and record all user input, install a 

Trojan that records activity at login, etc. However, if we assume that the system is clean 

from such malicious objects (and this is a reasonable assumption in many situations), 

then the best one could do is to read the file in which the passwords are stored. 

Consequently, encrypting the passwords is a good security decision.  
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Figure 1. Password based authentication in Ubuntu 

The way in which passwords are encrypted varies from one system to another, 

here we focus on how this is done under UNIX (and in particular the Ubuntu OS which 

we assume to be installed on your computer). The user authentication works in a 

straight-forward way: when the user enters his password at the login screen, the 

password is passed through a one-way function (the same which was used when it was 

stored) and the output is verified against the value stored in this passwords file. If the 

values are identical the users gains access, otherwise it is rejected (usually there is only 

a limited number of attempts and there is some delay after entering a wrong password 

in order to prevent attacks). This mechanism is suggested in Figure 1.  

1.1 THE PASSWD AND SHADOW FILES  

Traditionally, in UNIX based operating systems the hashed passwords were 

stored in the file /etc/passwd (a text file). On almost all recent distributions (including 

Ubuntu 13 which we assume to be deployed on your computer) the passwd file 

contains only some user related information while the hashed passwords are not here 

but in the /etc/shadow file (also a text file, but with limited access, e.g., it cannot be 

accessed by regular users). This is done in order to increase security by disallowing 

regular users from reading it. The passwd file can be accessed by all users in read mode, 

however the shadow file is accessible only to super-users. 

ubuntu_13_vm OWF(pw_ubuntu)

alice OWF(pwAlice)

eve OWF(pwEve)

bob OWF(pwBob)

username Hashed password

password file (e.g., etc/shadow)

......

=OWF

?
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Adding users and passwords. To play a bit with the password and shadow files 

we first add some users, say tom, alice and bob. To add users use the command sudo 

useradd –m username (-m creates the home directory of the user) then to set the 

password use sudo passwd username (sudo allows you to run the usearadd and passwd 

commands with super-user privileges). If you need help on any of this commands use 

man useradd or man passwd.   

 
ubuntu@ubuntu:~$ sudo useradd -m tom 
ubuntu@ubuntu:~$ sudo passwd tom 
Enter new UNIX password:  
Retype new UNIX password: 

 

Table 1. Creating a user named tom and setting his password 

Accessing the shadow file. To access the shadow file you also need super-user 

privileges, for this, in the terminal run sudo gedit and open the file from gedit. If you 

successfully managed to create these accounts then the passwd and shadow files 

should look similar to what you can see in Tables 2 and 3 (note the user names and 

their hashed passwords). 

 
ubuntu:x:1000:1000:ubuntu_13_vm,,,:/home/ubuntu:/bin/bash 
tom:x:1001:1001::/home/tom:/bin/sh 
alice:x:1002:1002::/home/alice:/bin/sh 
bob:x:1003:1003::/home/bob:/bin/sh 

 

Table 2. Example of passwd file with 4 users: ubuntu, tom, alice and bob 

 
ubuntu:$1$js9ai3VX$iFbR5uTfv3JMmFCladdcn1:16459:0:99999:7::: 
tom:$6$vIkXOyrz$CMiFB8meMfTANianaS7z5f8yMfplk/TtncZs/7b0es65XZSIyz3k
aiSwN/61sBdrPhT9B0RulJ9tWEnE7kpJC/:16470:0:99999:7::: 
alice:$6$gpOJXcSy$AVrdUKBdSM8NlGmrbexoyetS2LhRgg3qkaTbZdMh4mj.Yps3
UxIkrtGDQfEGA.yNDhlIPG3m1hupX3b0I0Vs3.:16470:0:99999:7::: 
bob:$6$5IPGOooA$J6rZ74NUpCVx9C2mpesKKr0iBjkHNCxz8Io3aPj5W6mwVKKv
nhWIbq0H91T9bDcWmDE3/6Ageoa3olcVe2nKY0:16470:0:99999:7::: 

 

Table 3. Example of shadow file with 4 users: ubuntu, tom, alice and bob 

Structure of the passwd and shadow files.  In the passwd file, the first field is 

the user name, while the x indicates that the passwords are not here but in the shadow 
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file. Subsequently you can see the user identifier, group identifier, the user full name 

(and other potential information such as phone number, contact details, etc.), the 

home directory and the program that is started at login. The shadow file contains the 

information that is more relevant to us. Note the “$” sign in this file. Following the user 

name, in the shadow file, we have a $id$ field which identifies the particular algorithm 

used to encrypt/hash the passwords. The following options are supported in your 

Ubuntu distribution: 

 $1$ -  a version based on MD5 which is a hash function with 128 bit output that 

is no longer cryptographically secure (more details available in the lectures) but 

can still be somewhat safely used for this purpose, 

 $2a$ - Blowfish, a symmetric encryption algorithm, but not a usual option for 

this purpose, 

 $5$ - SHA-256 a hash function with 256 bit output, 

 $6$ - SHA-512 a hash function with 512 bit output which should give the 

maximum level of security. 

After the algorithm identifier a random value $salt$ follows. This value is called 

salt and is a randomly generated value, non-secret, that is used to prevent pre-

computed attacks, i.e., you cannot compute the hash over a dictionary of passwords in 

an off-line manner since you do not know the salt and all your off-line computations 

will be of no use for a distinct salt value (it also prevents two users with the same 

password from having the same hash value in the shadow file). Finally, the $hash$ value 

is the actual hash of the password. Other fields follow but not of much importance for 

this work: days since last change, days until change allow, days before change required, 

days warning for expiration, days before account inactive, days since epoch when 

account expires. 

1.2 VERIFYING PASSWORDS PROGRAMMATICALLY 

To generate the hash of a password, the crypt() function must be used. This 

function takes the password and the salt as character arrays, i.e., char *, and returns a 

character array which is the hash of the password. The $id$ in the salt dictates the 

particular algorithm that is to be used. This function can be called from any C/C++ 

program, but usually you will have to include crypt.h in order to work. 
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char *crypt(const char *key, const char *salt); 

 

Table 4. The UNIX crypt function 

 

Programs that use this function must be linked with the –lcrypt option, the 

sequence for compiling and running the program is in Table 5. Note that we assume 

the program test.cpp to be in the current directory and we specify the output file as 

test then run this file with ./test. 

 
ubuntu@ubuntu:/mnt/hgfs/VM_Shared$ g++ -o test test.cpp –lcrypt 
ubuntu@ubuntu:/mnt/hgfs/VM_Shared$ ./test 
 

Table 5. Compiling and running the program  

1.3 EXHAUSTIVE SEARCH, A TRIVIAL ATTEMPT 

Various programs for cracking passwords exist, but the purpose of this 

assignment is to help you in building your own. The program in Table 6 performs an 

exhaustive search for passwords of length at most MAX_LEN where the characters are 

chosen from a predefined set char* charset. How the code works should easily follow 

from the comments. The main idea is that we test each password that is generated by 

passing it through crypt, see int check_password(char* pw, char* salt, char* hash). To 

generate all possible passwords from the predefined character set, i.e., charset, we 

take passwords of 1 character at the beginning and gradually apply to them each 

possible character, etc. All this is done inside char* exhaustive_search(char* charset, 

char* salt, char* target). 

 

 
#include <iostream> 
#include <list> 
#include <cstring> 
#include <crypt.h> 
 
using namespace std; 
 
//this is an example line from the shadow file: 
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//$6$Iy/hHRfM$gC.Fw7CbqG.Qc9p9X59Tmo5uEHCf0ZAKCsPZuiYUKcejrsGu
ZtES1VQiusSTen0NRUPYN0v1z76PwX2G2.v1l1:15001:0:99999:7::: 
// the salt and password values are extracted as 
 
string target_salt = "$6$Iy/hHRfM$"; 
string target_pw_hash = 
"$6$Iy/hHRfM$gC.Fw7CbqG.Qc9p9X59Tmo5uEHCf0ZAKCsPZui 
YUKcejrsGuZtES1VQiusSTen0NRUPYN0v1z76PwX2G2.v1l1"; 
 
// define a null string which is returned in case of failure to find the password 
char null[] = {'\0'}; 
 
// define the maximum length for the password to be searched 
#define MAX_LEN 6 
 
list<char*> pwlist; 
 
// check if the pw and salt are matching the hash 
int check_password(char* pw, char* salt, char* hash) 
{ 
char* res = crypt(pw, salt); 
cout << "password " << pw << "\n"; 
cout << "hashes to " << res << "\n"; 
for (int i = 0; i<strlen(hash); i++) 
 if (res[i]!=hash[i]) return 0; 
cout << "match !!!" << "\n"; 
return 1; 
} 
 
// builds passwords from the given character set  
// and verifies if they match the target  
char* exhaustive_search(char* charset, char* salt, char* target) 
{ 
char* current_password; 
char* new_password; 
int i, current_len; 
 
// begin by adding each character as a potential 1 character password 
for (i = 0; i<strlen(charset); i++){  
        new_password = new char[2]; 
 new_password[0] = charset[i]; 
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 new_password[1] = '\0'; 
 pwlist.push_back(new_password);  
} 
 
while(true){    
 
// test if queue is not empty and return null if so 
if (pwlist.empty()) return null; 
 
// get the current current_password from queue 
current_password = pwlist.front(); 
current_len = strlen(current_password); 
 
// check if current password is the target password, if yes return the 
current_password 
if (check_password(current_password, salt, target)) return 
current_password; 
 
// else generates new passwords from the current one by appending each 
character from the charlist 
// only if the current length is less than the maxlength 
if(current_len < MAX_LEN){ 
 for (i = 0; i < strlen(charset); i++){ 
         new_password = new char[current_len + 2]; 
  memcpy(new_password, current_password, current_len); 
  new_password[current_len] = charset[i];  
  new_password[current_len+1] = '\0';  
  pwlist.push_back(new_password); 
 } 
} 
// now remove the front element as it didn't match the password 
pwlist.pop_front(); 
} 
} 
 
main() 
{ 
 char* salt; 
 char* target; 
 char* password; 
 // define the character set from which the password will be built 
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 char charset[] = {'b', 'o', 'g', 'd', 'a', 'n', '\0'}; 
 //convert the salt from string to char* 
 salt = new char[target_salt.length()+1]; 
 copy(target_salt.begin(), target_salt.end(), salt); 
 //convert the hash from string to char* 
 target = new char[target_pw_hash.length()+1]; 
 copy(target_pw_hash.begin(), target_pw_hash.end(), target); 
 //start the search 
 password = exhaustive_search(charset, salt, target); 
 if (strlen(password)!= 0) cout << "Password successfuly recovered: " << 
password << "  \n"; 
 else cout << "Failure to find password, try distinct character set of size \n"; 
} 
 

Table 5. An exhaustive search algorithm for finding the password. 

 

1.4 EXERCISES 

 

1. Consider passwords of 20 characters and that they are hashed through MD5 

which outputs 128 bits. How many passwords of 20 characters are there for a 

single 128 bit output? How many users should be expected until a collision 

occurs with probability ½ ? (note that since hash functions are collision 

resistant, it is actually computationally infeasible to find such passwords, but it 

is good to understand that they do exist) 

 

2. Find the password that corresponds to the following shadows entry, having in 

mind that the character set is {a, b, c, 1, 2, !, @, #} and the non-alphanumerical 

symbols occur only at the end of the password 

 

 
tom:$6$SvT3dVpN$lwb3GViLl0J0ntNk5BAWe2WtkbjSBMXtSkDCtZUkVhVPiz5
X37WflWL4k3ZUusdoyh7IOUlSXE1jUHxIrg29p.:16471:0:99999:7::: 
 

 

3. Consider a 14 character password that ranges over all possible ASCII symbols. 

On your current computer, how much time will you need to break such a 

password? 
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4. Consider the same context as previously, but this time we are concerned with 

memory usage. Could you provide a rough estimation of the amount of 

memory that is used to break the password in the previous example? Can you 

implement a solution that improves on this amount?  

 

5. The following shadow entry was generated by a password formed by an 

arbitrary arrangement of the following words: red, green, blue, orange, pink. 

Find the password. 

 

 
tom:$6$9kfonWC7$gzqmM9xD7V3zzZDo.3Fb5mAdM0GbIR2DYTtjYpcGkXVWat
TC0pa/XVvKTXLb1ZP0NG9cinGRZF7gPLdhJsHDM/:16471:0:99999:7::: 

 

 

6. Now a more demanding exercise. All of the following passwords start with 

)):@$*!:(( and the rules defined below for each user apply only for the 

predefined character set: 

Alpha = { a, b, c …, x, y, z } 1 

Num = {0, 1, 2, …, 9} 

Sym = {!,@,#,$,%,^,&,*,(,)} 

a. tom_easy has a password from all characters in Alpha, Num and Sym, which 

gives a total of: 26 letters, 10 numbers and 10 symbols, summing up to 46 

characters. The password contains at most 4 such characters, i.e., 46^4 = 

4,477,456. 2 

b. tom_harder has a password constructed from the same set Alpha x Num x 

Sym except that after the starting characters “)):@$*!:((” it has an additional 

number from 1..10. Suggestion: to solve this, you may consider running 10 

instances of the previous program with passwords starting with 

“)):@$*!:((1”, “)):@$*!:((2”, “)):@$*!:((3”, “)):@$*!:((4” and “)):@$*!:((5”, 

                                                           
1  Note that there are no upper-case letters 
2  You should be able to crack this in ~12 hours (assuming that your computer can perform 
5x10^6 passwords/day, check the exact running time with the time command) 
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etc. Since only the first solver gets the points, you may consider running 

these on distinct computers. 

c. tom_split – has the first 4 characters from Alpha and the last 2 from Num & 

Sym. Suggestion, you should search separately for the first 4 and last 2 chars.  

d. tom_wordy – has a concatenation in some random order of the following 8 

words {the, big, brown, fox, or, small, grey, elephant}. Words may repeat 

but there are only 8 words. 

e. tom_wordy_harder – has a concatenation in some random order of the 

following 10 words {the, big, brown, fox, or, small, gray, elephant, 

yesterday, today}. Words do not repeat. 

f. tom_math – has a password of the form “)):@$*!:((N1N2N3N4“ where Ni is a 

number generated Ni = Ni-1 + seed mod 255 where N0 and seed are random 

values in {0, 255}. The numbers are written as characters, i.e., if N1 = 234 

then password is “)):@$*!:((234 … “ 

g. tom_more_math – same as previously but the operation is performed 

modulo 4096, as well as the seed and N0 and seed are random values in {0, 

4096}  

 

 
Note: remember passwords start with: )):@$*!:(( 

 
tom_easy:$6$JcQryNT4$Nydvd9w9kpwwkTTU93uMulS9noTyiLmheUnyNrVaNoVjA
yyFAAXAXP1.EePMdYlohOyVAxcuplfZMQD7VixY7/:16497:0:99999:7::: 
 
tom_hard:$6$tamx8Uvr$tMfa8QsdrJnDa6n40tVVy7kRaFbbgevr4rFz/rFNDTmaUcKn
ZiiBSGVkO/uS1/M513Z0BVuBELrhDrwr9EJRY0:16497:0:99999:7::: 
 
tom_split:$6$Z9VfBmUG$MhG7XlzZnBxdgRjDf1utb7fJZSc8hvzPJhCjcBd.lN.HoMvsG
T1.wn0ACl.AydYq5oVw9uFCTtpH4oOa1s/bT1:16497:0:99999:7::: 
 
tom_wordy:$6$GHuikUus$T8/C1Ed6QLBkHhMWJB/nFPgY/tujpMqkpy8tmG.ovijy96
0HrWSkPQWU8h062SuR/NIDIJhCbszMIycdILr7p1:16497:0:99999:7::: 
 
tom_wordy_harder:$6$p0sCvjGG$ZH9..sdjHFaWux9lgVWm44USpVawFheB8I4PJcA
7ep9nj6ISwcCbO7/SvuTS9LdreyMO./zFPKyE06zR5G/Bw1:16497:0:99999:7::: 
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tom_math:$6$SMF7niTS$HuLhlRyIAnhLhNRtqqd/OSkye3fEsnd9i2trxx53Mji/hYZQ8
ywnIiUMa6hgSax/SOeCYTootE649Zzblt4Fq1:16497:0:99999:7::: 
 
tom_math_harder:$6$/agnX0ga$kY0EejIuThPUH/DeTYJZIAPzxMA3WXYZjHOF/YKQ
a6jEM9lHNAKt9fRyVWGntpG/BPH3sZCZkKmFCHx1lZX8k0:16497:0:99999:7::: 

 

 

 

Remarks. To view memory usage use the command free –m, the free command 

displays the amount of free and used memory, -m displays this in megabytes.  If you 

want to repeat it each second use watch –n 1 free –m, the watch command executes 

periodically what follows, in this case –n means that repetition time is given in seconds. 

To get the running time of a program use the time command, e.g., time ./test. 
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 SYMMETRIC ENCRYPTION IN .NET 

 

This section presents the symmetric cryptographic primitives supported by the 

.NET framework. All classes related to cryptography are contained within the 

System.Security.Cryptography namespace. The history of cryptography in Microsoft 

development environments starts in 1996 with the Win32 Cryptography API 

(Application Programming Interface) also known as Microsoft CryptoAPI. Currently in 

.NET you will see classes that have names ending in CryptoServiceProvider and these 

classes are in fact wrappers over existing code from the Win32 Cryptography API (using 

them leads to calling code from this older API). Other class names end in Managed and 

these are managed code written specifically for the .NET framework. The cryptography 

support in .NET is mature in the sense that you have all the basic building blocks that 

should be needed for real-world applications. However, for more dedicated 

applications were you need less standard primitives or additional control over the 

implementation, you may want to choose a distinct environment as .NET is quite 

limited in this respect. Just for the sake of a rough overview, in .NET you get out-of-the-

box and easy to use implementations for symmetric encryption functions (DES, 3DES, 

AES), hash functions (MD5, SHA1, SHA256, SHA384, SHA512, RIPEMD160), keyed hash 

functions (HMAC with any of the previous hash functions), public-key encryptions or 

signatures (RSA, DSA, EC-Diffie-Hellman-Merkle, ECDSA) and PRNGs. 

 

2.1 SYMMETRIC ALGORITHMS, PROPERTIES AND METHODS 

All of the symmetric cryptographic primitives derive from the 

SymmetricAlgorithm class, which is an abstract class, i.e., you cannot instantiate 

objects from it, rather you will work with derived concrete classes. These derived 

classes are: DESCryptoServiceProvider, TripleDESCryptoServiceProvider, 

RC2CryptoServiceProvider, RijndaelManaged, AESManaged and 

AESCryptoServiceProvider. 
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Figure 1. Symmetric encryption algorithms in .NET 

Table 1 shows the properties for symmetric cryptographic algorithms in .NET. 

With this property list, as well as with the methods list that follows, we do not want to 

be exhaustive, we only try to outline what is relevant for this line of work. You must 

refer to MSDN for more details.  

 Get/Set Type Brief Description 

BlockSize g/s Int Block size in bits 

FeedbackSize g/s Int 
Feedback size in bits (when needed, 
e.g., CBC, this cannot be greater than 
BlockSize) 

IV g/s Byte[] 
Initialization vector (IV) non-secret 
(must be random) 

Key g/s Byte[] Secret key (must be random) 

KeySize g/s Int Key size in bits 

LegalBlockSizes g KeySizes[] 
Block sizes in bits supported by the 
algorithm 

LegalKeySizes g KeySizes[] 
Key sizes in bits supported by the 
algorithm 

Mode g/s CipherMode 
Mode of operation (CBC is the 
default, the following may be 
supported CFB, CTS, ECB, OFB) 

Padding g/s PaddingMode 
Padding mode to fill the last block 
(e.g., usually none, 0xFF or zeros) 

Table 1. Properties related to symmetric cryptographic algorithms in .NET  

 Table 2 now shows how you can assign an object that instantiates a particular 

symmetric implementation (DES, 3DES or Rijndael in this example) to a variable of the 

SymmetricAlgorithm

TripleDESDES Rijndael

TripleDESCrypto

ServiceProvider

DESCryptoService

Provider
RijndaelManaged

RC2

RC2CryptoService

Provider

Abstract

Concrete

AES

AESCryptoService

Provider
AESManaged
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abstract type SymmetricAlgorithm. The instantiation is done by switching over a string 

that contains the name of the algorithm. 

Table 2. Example for instantiating an abstract object with a concrete implementation 

Cryptographic streams in .NET. Before using these primitives, we have to take 

a brief look to another concept that is core to .NET crypto implementations: 

cryptographic streams. The .NET framework has a stream-oriented design for 

cryptographic primitives, an engineering idea which is beneficial because you can 

stream the output from one object to another and in this way the output of a crypto-

stream can be directed into a file stream, memory stream, network stream, etc. Vice-

versa, you can direct the output from any of the previous into a cryptographic stream. 

Concretely, whenever writing into a crypto-stream you will encrypt the data that is 

written, and vice-versa, whenever reading from the crypto stream, you will decrypt the 

data.  

Table 3 now gives a brief overview of the methods related to symmetric 

cryptographic algorithms that are relevant for our scope here. Table 4 gives an example 

on how to encrypt an array of bytes and return the encrypted output, and similarly for 

decryption. The CreateEncryptor and CreateDecryptor methods return an object of type 

ICryptoTransform which can be then passed to the stream reader/writer.  In Table 5 we 

give a more educated example that comes from the AES managed example in MSDN 

 
SymmetricAlgorithm mySymmetricAlg; 
 
 
public void Generate(string cipher) 
{ 
   switch (cipher) 
   { 
     case "DES": 
           mySymmetricAlg = DES.Create(); 
           break; 
     case "3DES": 
           mySymmetricAlg = TripleDES.Create(); 
           break; 
     case "Rijndael": 
           mySymmetricAlg = Rijndael.Create(); 
           break; 
    } 
     mySymmetricAlg.GenerateIV(); 
     mySymmetricAlg.GenerateKey(); 
} 
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library (https://msdn.microsoft.com/en-

us/library/system.security.cryptography.aesmanaged(v=vs.110).aspx ). Note how each 

parameter is checked and then the using statement ensures that resources are 

disposed if an exception occurs (you can do the same with a try block). The using is 

typical for .NET style programming, so if you are keen to become an industry 

professional make sure to use it. Finally, the ciphertext is turned to a byte array in the 

following line of code: encrypted = msEncrypt.ToArray().  

 Return type Brief Description 

Clear void 

Zeros out all data before the object 
is released (relevant for security 
when you finished the work with 
the cryptographic object) 

Create() SymmetricAlgorithm Creates the object 

Create(String) SymmetricAlgorithm 
Creates the object with the string 
specifying the name of the 
particular implementation 

CreateDecryptor() ICryptoTransform Creates a decryptor object 

CreateDecryptor(Byte[], 
Byte[]) 

ICryptoTransform 
Creates a decryptor object with 
given Key and IV 

CreateEncryptor() ICryptoTransform Creates an encryptor object  

CreateEncryptor(Byte[], 
Byte[])  

ICryptoTransform 
Creates an encryptor object with 
given Key and IV 

Dispose()  void 
Releases all resources used by the 
object 

Dispose(Boolean) void 
Releases unmanaged and 
optionally managed resources 
used by the object 

GenerateIV void 

Generates a random IV (note that 
this is already generated by 
CreateEncryptor and should be 
used only if you need a new IV) 

GenerateKey void 

Generates a random Key (note that 
this is already generated by 
CreateEncryptor and should be 
used only if you need a new Key) 

ValidKeySize bool Checks if a given key size is valid  

https://msdn.microsoft.com/en-us/library/system.security.cryptography.aesmanaged(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.security.cryptography.aesmanaged(v=vs.110).aspx
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Table 3. Some relevant methods for symmetric cryptographic algorithms in .NET 

 

 

Table 4. A rather quick way for building encryption and decryption functions 

 
public byte[] Encrypt(byte[] mess, byte[] key, byte[] iv) 
{ 
  mySymmetricAlg.Key = key; 
  mySymmetricAlg.IV = iv; 
  MemoryStream ms = new MemoryStream(); 
  CryptoStream cs = new CryptoStream(ms, 

mySymmetricAlg.CreateEncryptor(), 
CryptoStreamMode.Write); 

  cs.Write(mess, 0, mess.Length); 
  cs.Close(); 
  return ms.ToArray(); 
} 
 
public byte[] Decrypt(byte[] mess, byte[] key, byte[] iv) 
{ 
  byte[] plaintext = new byte[mess.Length]; 
  mySymmetricAlg.Key = key; 
  mySymmetricAlg.IV = iv; 
  MemoryStream ms = new MemoryStream(mess); 
  CryptoStream cs = new CryptoStream(ms, 

mySymmetricAlg.CreateDecryptor(), 
CryptoStreamMode.Read); 

  cs.Read(plaintext, 0, mess.Length); 
  cs.Close(); 
  return plaintext; 
} 

 

 
Note: example reproduced from MSDN library (https://msdn.microsoft.com/en-
us/library/system.security.cryptography.aesmanaged(v=vs.110).aspx ) 
 
// Check arguments.  
if (plainText == null || plainText.Length <= 0) 
                throw new ArgumentNullException("plainText"); 
if (Key == null || Key.Length <= 0) 
                throw new ArgumentNullException("Key"); 
if (IV == null || IV.Length <= 0) 

https://msdn.microsoft.com/en-us/library/system.security.cryptography.aesmanaged(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.security.cryptography.aesmanaged(v=vs.110).aspx
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Table 5. A more educated example from Microsoft’s MSDN library (note how the 

arguments are checked and the using directive) 

 

2.2 EXERCISES 

 

                throw new ArgumentNullException("Key"); 
byte[] encrypted; 
// Create an AesManaged object  
// with the specified key and IV.  
using (AesManaged aesAlg = new AesManaged()){ 
 
      aesAlg.Key = Key; 
      aesAlg.IV = IV; 
 
      // Create a decrytor to perform the stream transform. 
      ICryptoTransform encryptor = aesAlg.CreateEncryptor(aesAlg.Key, 
aesAlg.IV); 
 
      // Create the streams used for encryption.  
      using (MemoryStream msEncrypt = new MemoryStream()) 
      { 
            using (CryptoStream csEncrypt = new CryptoStream(msEncrypt, 

encryptor, CryptoStreamMode.Write)) 
            { 
                  using (StreamWriter swEncrypt = new 
StreamWriter(csEncrypt)) 
                  { 
 
                      //Write all data to the stream. 
                      swEncrypt.Write(plainText); 
                  } 
                  encrypted = msEncrypt.ToArray(); 
            } 
     } 
} 
// Return the encrypted bytes from the memory stream.  
return encrypted; 
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1. Write a C# application that allows a user to select an encryption algorithm from a 

Combo Box, generate keys, encrypt and decrypt messages. Display the plain text and 

cipher text both in ASCII and HEX and similarly the Keys and IVs; also display the time 

required by the encryption and decryption operations. A suggested interface is below, 

but feel free to modify it at will.  

 

 

 

2. You are required to evaluate the computational costs of symmetric cryptographic primitives in 

.NET. Results have to be presented in a tabular form as shown below and measured in 

seconds/block then bytes/second considering both streams from memory and from the local hard-

drive.  
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Table 6. Computational cost for symmetric cryptographic primitives 

 

3. Exhaustive search for the key. You are required to adapt the code from Section 1 for 

cracking passwords (feel free to write your own code if you want) in order to break the 

following DES ciphertext knowing that the plaintext starts with the ‘asdf’ letters and 

the key has the last 6 bytes set to 0 (that is, you have to perform an exhaustive search 

over the first 2 bytes). By breaking the ciphertext, we understand here finding the 

encryption key and the message.  

 

 
IV in Hex: 01092C61619EE95E 
 
Ciphertext in Hex: 
CD56D268F00D5CABE4A649A3028F4EC34BA8C23CA26ADD8A5BBAE934C8B286DF 
 

 

Remarks. For Exercise 1 you can start by recycling some of the code below. 

 

 
using System.Security.Cryptography; 
using System.IO; 
 
namespace Example 
{ 
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    public partial class SymEnc : Form 
    { 
         
        ConversionHandler myConverter = new ConversionHandler(); 
 
        SymmetricAlgorithm mySymmetricAlg; 
 
 
        public SymEnc() 
        { 
            InitializeComponent(); 
        } 
 
        public void Generate(string cipher) 
        { 
            switch (cipher) 
            { 
                case "DES": 
                    mySymmetricAlg = DES.Create(); 
                    break; 
                case "3DES": 
                    mySymmetricAlg = TripleDES.Create(); 
                    break; 
                case "Rijndael": 
                    mySymmetricAlg = Rijndael.Create(); 
                    break; 
            } 
            mySymmetricAlg.GenerateIV(); 
            mySymmetricAlg.GenerateKey(); 
        } 
 
        public byte[] Encrypt(byte[] mess, byte[] key, byte[] iv) 
        { 
            mySymmetricAlg.Key = key; 
            mySymmetricAlg.IV = iv; 
            MemoryStream ms = new MemoryStream(); 
            CryptoStream cs = new CryptoStream(ms, 

mySymmetricAlg.Cre
ateEncryptor(), 
CryptoStreamMode.W
rite); 

            cs.Write(mess, 0, mess.Length); 
            cs.Close(); 
            return ms.ToArray(); 
        } 
 
        public byte[] Decrypt(byte[] mess, byte[] key, byte[] iv) 
        { 
            byte[] plaintext = new byte[mess.Length]; 
            mySymmetricAlg.Key = key; 
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            mySymmetricAlg.IV = iv; 
            MemoryStream ms = new MemoryStream(mess); 
            CryptoStream cs = new CryptoStream(ms, 

mySymmetricAlg.CreateDecryptor(), 
CryptoStreamMode.Read); 

            cs.Read(plaintext, 0, mess.Length); 
            cs.Close(); 
            return plaintext; 
        } 
 
        private void buttonEnc_Click(object sender, EventArgs e) 
        { 
            byte[] ciphertext = 

Encrypt(myConverter.StringToByteArray(textBoxPlain.Text),                        
myConverter.HexStringToByteArray(textBoxKey.Text),myConvert
er.HexStringToByteArray(textBoxIV.Text)); 

            textBoxCipher.Text = 
myConverter.ByteArrayToString(ciphertext); 
            textBoxCipherHex.Text = 
myConverter.ByteArrayToHexString(ciphertext); 
            textBoxPlainHex.Text = 

myConverter.ByteArrayToHexString(myConverter.StringToByteAr
ray(textBoxPlain.Text)); 

        } 
 
        private void buttonDec_Click(object sender, EventArgs e) 
        { 
            byte[] plaintext  = 

Decrypt(myConverter.HexStringToByteArray(textBoxCipherHex.
Text),  

                 
myConverter.HexStringToByteArray(textBoxKey.Text),myConvert
er.HexStringToByteArray(textBoxIV.Text)); 

            textBoxPlain.Text = 
myConverter.ByteArrayToString(plaintext); 
            textBoxPlainHex.Text = 
myConverter.ByteArrayToHexString(plaintext); 
        } 
 
        private void buttonGen_Click(object sender, EventArgs e) 
        { 
            Generate(comboBoxCipher.Text); 
            textBoxKey.Text = 
myConverter.ByteArrayToHexString(mySymmetricAlg.Key); 
            textBoxIV.Text = 
myConverter.ByteArrayToHexString(mySymmetricAlg.IV); 
        } 
 
        private void buttonEncTime_Click(object sender, EventArgs e) 
        { 
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            mySymmetricAlg.GenerateIV(); // generates a fresh IV 
            mySymmetricAlg.GenerateKey(); // generates a fresh Key 
 
            MemoryStream ms = new MemoryStream(); 
            CryptoStream cs = new CryptoStream(ms, 

mySymmetricAlg.CreateEncryptor(), 
CryptoStreamMode.Write); 

            byte[] mes_block = new byte[8]; 
            long start_time = DateTime.Now.Ticks; 
            int count = 10000000; 
            for (int i = 0; i < count; i++) 
            { 
                cs.Write(mes_block, 0, mes_block.Length); 
            } 
            cs.Close(); 
            double operation_time = (DateTime.Now.Ticks - start_time); 
            operation_time = operation_time / (10*count); // 1 tick is 

100 ns, 
i.e., 1/10 
of 1 us 

            labelEncTime.Text = "Time for encryption of a message 
block: " + operation_time.ToString() + 
" us"; 

        } 
 
    } 
} 

 
 

 

 
    class ConversionHandler 
    { 
 
       public byte[] StringToByteArray(string s) 
        { 
            return CharArrayToByteArray(s.ToCharArray()); 
        } 
 
        public byte[] CharArrayToByteArray(char[] array) 
        { 
            return Encoding.ASCII.GetBytes(array, 0, array.Length); 
        } 
 
        public string ByteArrayToString(byte[] array) 
        { 
            return Encoding.ASCII.GetString(array); 
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        } 
 
        public string ByteArrayToHexString(byte[] array) 
        { 
            string s = ""; 
            int i; 
            for (i = 0; i < array.Length; i++) 
            { 
                s = s + NibbleToHexString((byte)((array[i] >> 4) & 

0x0F)) + NibbleToHexString((byte)(array[i] & 
0x0F)); 

            } 
            return s; 
        } 
 
        public byte[] HexStringToByteArray(string s) 
        { 
            byte[] array = new byte[s.Length / 2]; 
            char[] chararray = s.ToCharArray(); 
            int i; 
            for (i = 0; i < s.Length / 2; i++) 
            { 
                array[i] = (byte)(((HexCharToNibble(chararray[2 * i]) 

<< 4) & 0xF0) | ((HexCharToNibble(chararray[2 
* i + 1]) & 0x0F))); 

 
            } 
            return array; 
        } 
 
        public string NibbleToHexString(byte nib) 
        { 
            string s; 
            if (nib < 10) 
            { 
                s = nib.ToString(); 
            } 
            else 
            { 
                char c = (char)(nib + 55); 
                s = c.ToString(); 
            } 
            return s; 
        } 
 
        public byte HexCharToNibble(char c) 
        { 
            byte value = (byte)c; 
            if (value < 65) 
            { 
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                value = (byte)(value - 48); 
            } 
            else 
            { 
                value = (byte)(value - 55); 
            } 
            return value; 
        } 
    } 
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 HASH FUNCTIONS AND MAC CODES IN .NET 

 

This section presents the hash functions and their immediate derivative 

Message Authentication Codes (MAC) that are supported by the .NET framework. We 

also make use of random number generators.  

The .NET framework supports the now deprecated but still largely used MD5 

(128 bit) and SHA1 (160 bit). Besides these, there is also support for the (soon to be 

replaced) current standard SHA2 in all three output sizes 256, 384 and 512 bit and the 

less frequent RIPEMD (160 bit).  

MACs (Message Authentication Codes) are also named keyed hash functions 

since they are built from a hash function with the use of a secret key. But there are also 

exceptions to this rule and it happens for MAC codes to be built from symmetric 

encryption functions rather than hash functions. The .NET framework contains one 

such exception which is the MACTripleDES, a MAC code build on 3DES. The other MAC 

code that is supported by .NET is HMAC, which is indeed a keyed hash function and the 

preferred alternative, it can be built on any of the hash functions available in the 

framework: MD5, SHA1, SHA2 or RIPEMD. Figure 1 shows the class organization for 

hash algorithms and MAC codes, we can see again the distinction between abstract and 

concrete classes. 
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Figure 1. Hash functions and keyed hash functions in .NET 

3.1 HASH FUNCTIONS  

Hash functions are derived from the abstract class HashAlgorithm located in 

the aforementioned System.Security.Cryptography namespace. Some properties and 

methods are outlined in Tables 1 and  2.  

 Get/Set Type Brief Description 

InputBlockSize g Int 
Bit size of the input block, returns 1 

unless overwritten 

OutputBlockSize g Int 
Bit size of the output block, returns 1 

unless overwritten 

HashSize g Int Bit size of the hash 

Hash g Byte[] Value of the hash 

Table 1. Some properties for hash functions in .NET 

Hash Algorithm

MD5KeyedHashAlgorithm SHA1

MD5CryptoService

Provider

SHA1 

CryptoServiceProvider

/ Managed

RIPEMD160

RIPEMD160Crypto

ServiceProvider

Abstract

Concrete

SHA2

SHA2Managed

HMAC MACTripleDES

HMAC: MD5/

SHA1/SHA2/

RIPEMD160
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 Return type Brief Description 

Create() HashAlgorithm 
Creates the object (SHA1 is the 
default instance) 

Create(String) HashAlgorithm 

Creates the object with the string 
specifying the name of the 
particular implementation given as 
string (MD5, SHA1, etc.) 

ComputeHash(Byte[]) Byte[] 
Computes the hash from a byte 
array 

ComputeHash(Stream) Byte[] 
Computes the hash from a stream 
object 

ComputeHash(Byte[], 
Int32, Int32) 

Byte[] 
Computes the hash from a specific 
region of a byte array 

TransformBlock(byte[] 
inputBuffer, 
int inputOffset, 
int inputCount, 
byte[] outputBuffer, 
int outputOffset) 

Int 

Computes the hash of a specified 
region of a byte array and copies 
the region to the specified region of 
the output byte array. Return the 
number of bytes written. 

TransformFinalBlock(byte[] 
inputBuffer, 
int inputOffset, 
int inputCount) 

Byte[] 

Computes the hash of a specified 
region of a byte array, returns a 
copy a of the part of the input that 
is hashed 

Table 2. Some methods for hash functions in .NET 

 

To compute the hash of a byte array or stream you can simply call the 

ComputeHash method as outlined in Table 3. In this example we also used a 

RandomNumberGenerator object to generate some arbitrary values that are later 

hashed. To generate random values, you simply have to create a 

RandomNumberGenerator object and make a call to the GetBytes method on a specific 

byte array. 
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Table 3. Example for generating some random bytes and computing their 

hash 

In Table 4 we then show how to compute the hash of a given file, this is a 

frequently used procedure to check the integrity of files, or to compare if two files (or 

objects) are the same, as only identical objects can hash to the same value (assuming 

the hash function is collision free). 

Table 4. Example for computing the hash of a given file 

3.2 KEYED HASH FUNCTIONS  

 

The .NET framework provides an implementation for the HMAC keyed hash 

function. The properties and methods for KeyedHashAlgorithm objects are almost 

identical to that of HashAlgorithm (a class which they do inherit). The only additional 

property, is the one to get or set the key as outlined in Table 5. 

 

 Get/Set Type Brief Description 

Key g/s Byte[] Value of the key for the HMAC 

Table 5. The Key property of keyed hash algorithms in .NET 

 

MD5CryptoServiceProvider myMD5 = new MD5CryptoServiceProvider(); 
RandomNumberGenerator rnd = RandomNumberGenerator.Create(); 
byte[] input = new byte[20]; 
byte[] hashValue; 
//generates some random input 
rnd.GetBytes(input); 
//computes the hash 
hashValue = myMD5.ComputeHash(input); 

 

 
FileStream fileStream = new FileStream("C:\\TEMP\\x.pdf", 
FileMode.Open); 
fileStream.Position = 0; 
hashValue = myMD5.ComputeHash(fileStream); 
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In Tables 6 and 7 we show how to instantiate a HMAC with a particular hash 

function, how to generate the authentication tag with ComputeMAC(byte[] mes, byte[] 

key) and then verify it with CheckAuthenticity(byte[] mes, byte[] mac, byte[] key). 

 

Table 6. Creating a HMAC object with a particular hash function 

 

private HMAC myMAC; 
 
public MACHandler(string name) 
{ 
if (name.CompareTo("SHA1") == 0) { myMAC = new 

System.Security.Cryptography.HMACS
HA1(); } 

if (name.CompareTo("MD5") == 0) { myMAC = new 
System.Security.Cryptography.HMACM
D5(); } 

if (name.CompareTo("RIPEMD") == 0) { myMAC = new 
System.Security.Cryptography.HMACR
IPEMD160(); } 

if (name.CompareTo("SHA256") == 0) { myMAC = new 
System.Security.Cryptography.HMACS
HA256(); } 

if (name.CompareTo("SHA384") == 0) { myMAC = new 
System.Security.Cryptography.HMACS
HA384(); } 

if (name.CompareTo("SHA512") == 0) { myMAC = new 
System.Security.Cryptography.HMACS
HA512(); } 

} 

 

 

public bool CheckAuthenticity(byte[] mes, byte[] mac, byte[] key) 
{ 
  myMAC.Key = key; 
  if (CompareByteArrays(myMAC.ComputeHash(mes), mac, myMAC.HashSize / 
8) == true) 
   { 
      return true; 
   } 
  else 
   { 
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Table 7. Computing the HMAC and then verifying the authenticity of a message 

3.3 HASH FUNCTIONS AND MAC CODES AS CRYPTOSTREAMS 

A final trick that may be useful to know is that you can pass hash functions or 

HMACs as transformations embedded into CryptoStreams. In Table 8 we show such an 

example. The streams that we use will not store the data that is written into them, i.e., 

they receive Stream.Null at initialization. In order to retrieve the hash or HMAC value 

we then simply call the Hash property of the cryptographic objects, i.e., hmac.Hash and 

hash.Hash. 

      return false; 
   } 
} 
 
public byte[] ComputeMAC(byte[] mes, byte[] key) 
{ 
  myMAC.Key = key; 
  return myMAC.ComputeHash(mes); 
} 
 
public int MACByteLength() 
{ 
  return myMAC.HashSize / 8; 
} 
 
private bool CompareByteArrays(byte[] a, byte[] b, int len) 
{ 
  for (int i = 0; i < len; i++) 
    if (a[i] != b[i]) return false; 
  return true; 
} 
 

 

 

RandomNumberGenerator rnd = RandomNumberGenerator.Create(); 
byte[] key = new byte[16]; 
rnd.GetBytes(key); 
byte[] input = new byte[20]; 
rnd.GetBytes(input); 
 
HMACSHA256 hmac = new HMACSHA256(key); 
SHA256Managed hash = new SHA256Managed(); 
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Table 8. Example for HMACSHA256 and SHA256 used in CryptoStreams 

3.4 EXERCISES 

 

2. Write a C# application that allows a user to select a Hash or HMAC algorithm from 

a Combo Box, generate keys (in case of HMAC), hash messages and verify (in case of 

HMAC) their hashes. Display the plain text and hash both in ASCII and HEX; also display 

the time required by the hash and HMAC operations. A suggestion for starting the 

interface is below, but feel free to modify it at will. Results should be presented in a 

tabular form as shown below. 

 

 

 
CryptoStream cs_hmac = new CryptoStream(Stream.Null, hmac, 
CryptoStreamMode.Write); 
CryptoStream cs_hash = new CryptoStream(Stream.Null, hash, 
CryptoStreamMode.Write); 
 
cs_hmac.Write(input, 0, input.Length); 
cs_hmac.Close(); 
 
cs_hash.Write(input, 0, input.Length); 
cs_hash.Close();            
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Table 9. Computational cost for hash functions 

2. Write a program that searches, by generating random values, for hashes that have 

all the last k bits set to 0 (k is given as parameter by the user). Give an estimation to 

find such values for a given k. 

Remark. You can recycle some of the code below for the interface of exercise 1. 

 

 
 
private void buttonCompute_Click(object sender, EventArgs e) 
{ 
  MACHandler mh = new MACHandler(comboBoxMAC.Text); 
  byte[] mac = 

mh.ComputeMAC(myConverter.StringToByteArray(textBoxPlain.
Text),myConverter.StringToByteArray(textBoxKey.Text)); 

  textBoxMAC.Text = myConverter.ByteArrayToString(mac); 
  textBoxMACHEX.Text = myConverter.ByteArrayToHexString(mac); 
} 
 
 
private void buttonVerify_Click(object sender, EventArgs e) 
{ 
   MACHandler mh = new MACHandler(comboBoxMAC.Text); 
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   if 
(mh.CheckAuthenticity(myConverter.StringToByteArray(textB
oxPlain.Text),             
myConverter.HexStringToByteArray(textBoxMACHEX.Text),myCo
nverter.StringToByteArray(textBoxKey.Text)) == true) 

   { 
      System.Windows.Forms.MessageBox.Show("MAC OK !!!"); 
   } 
   else 
   { 
      System.Windows.Forms.MessageBox.Show("MAC NOT OK !!!"); 
   } 
} 
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 THE RSA PUBLIC-KEY CRYPTOSYSTEM IN .NET 

 

This section presents the RSA cryptosystem based on its embodiment from the 

.NET framework. The name RSA stems from the name of the three inventors: Rivest, 

Shamir and Adleman, who published the cryptosystem in 1978. RSA can be used to 

perform public key encryptions as well as digital signatures. The applicative target is 

quite distinct for the two operations: public key encryptions are generally used to 

encrypt keys for symmetric cryptosystem (you can use public keys to encrypt messages 

or files, but this would be highly inefficient) while digital signatures are used to prove 

that a piece of data originates from a particular entity. For example, you use Google’s 

public certificate to retrieve its public key and then encrypt a smaller AES key with the 

public key in order to create an encrypted tunnel between your e-mail client and 

Gmail’s server. The reason for encrypting a small session key with the RSA, rather than 

encrypting messages that are exchanged between parties is simple: efficiency. Indeed, 

RSA has the benefit of not requiring a secret key shared between parties, but it is in 

several orders of magnitude less efficient than symmetric algorithms such as AES. For 

this reason, RSA encryption is generally used for exchanging small secret keys for AES, 

3DES, etc. To develop our example further, the piece of data from Google that you used 

as a public key needs to be signed by a trusted party, recognized by your browser, in 

order to make sure that indeed it belongs to Google (otherwise a man-in-the-middle 

attack can be mounted). Figure 1 shows parts of such a certificate. 
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Figure 1. Portion of an RSA certificate issued for Google, note issuer on the left 

and part of the public key on the right 

 

4.1 BRIEF THEORETICAL BACKGROUND 

You are referred to the lecture material for more details on the RSA. However, 

to make things clearer, we make a brief recap on how RSA works. 

How text-book RSA encryption works. As any public key cryptosystem, the RSA 

is a collection of three algorithms: 

 Key generation: generate two random primes 𝑝, 𝑞   then compute: 𝑛 =

𝑝𝑞, 𝜑(𝑛) = (𝑝 − 1)(𝑞 − 1)  fix a public exponent 𝑒 such that 

gcd (𝑒, 𝜑(𝑛)) = 1 then compute 𝑑 =  𝑒−1 mod 𝜑(𝑛). 

 Encrypt: given the message 𝑚 and the public key 𝑃𝑏 = (𝑛, 𝑒), encrypt the 

message as  𝑐 = 𝑚𝑒mod 𝑛. 

 Decypt: given the ciphertext c and the private key 𝑃𝑣 = (𝑛, 𝑑), decrypt 

the message as 𝑚 = 𝑐𝑑mod 𝑛. 

How text-book RSA signature works. The key generation procedure is identical 

to the RSA encryption scheme, the same parameters can be used for 

signing/verification as well as for decryption/encryption. The keys however are 

reversed, the public key is used to verify a signature and the private key to sign the 

message. In what follows we assume that a hash function is fixed for the signing and 

verification operations. 

 Signing: given the message 𝑚 and the private key 𝑃𝑣 = (𝑛, 𝑑), use the 

hash function to compute the hash of the message 𝑚 as 𝐻(𝑚), then 

compute the signature as: 𝑠 = 𝐻(𝑚)𝑑  mod 𝑛. 

 Verification: given the message 𝑚, the signature 𝑠 and the public key 𝑃𝑏 =

(𝑛, 𝑒), use the hash function to compute the hash of the message 𝑚 as 

𝐻(𝑚) then verify that 𝐻(𝑚) = 𝑠𝑒mod 𝑛. 

RSA speed-up via CRT. In practical applications, computations are rarely 

performed modulo 𝑛, instead, they are done modulo the divisors of the modulus. This 

is achieved by following a result known as the Chinese Remaindering Theorem (CRT). 

Fix 𝑑𝑝, 𝑑𝑞 by reducing the private exponent modulo 𝑝 − 1 and 𝑞 − 1. If we compute: 
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{
𝑚′ = 𝑐𝑑𝑝mod 𝑝

𝑚′′ = 𝑐𝑑𝑞mod 𝑞
 

then the message 𝑚 can be uniquely recovered modulo 𝑛 by merging the two 

parts 𝑚′, 𝑚′′  as  𝑚 = (𝑚′𝑞(𝑞−1𝑚𝑜𝑑 𝑝) +  𝑚′′𝑝(𝑝−1𝑚𝑜𝑑 𝑞))mod 𝑛. This straight-

forward solution was given by Gauss. It implies that exponentiation, which is the most 

intensive computational step, is done modulo the factors of the modulus which are 

usually half the bit-length of the modulus (e.g., for a 2048 bit modulus, you perform 

exponentiation over its 1024 factors). Another way to extract the message is by 

computing 𝑚 = 𝑚′′ + 𝑞(𝑞−1𝑚𝑜𝑑 𝑝)(𝑚′ − 𝑚′′)mod 𝑝 which eliminates even the final 

computation modulo 𝑛 (this final computation is in fact cheap compared to 

exponentiation). This trick is also used in .NET, a reason for which the private keys 

contain more than the modulus, public and private exponents. The full structure of the 

key will be detailed in a forthcoming section.   

CCA security with padding. RSA is never used in practice without some padding 

of the plaintext. The padding assures that the cryptosystem is actually secure against 

active adversaries. The details for the padding scheme are too complex for this section 

(details should be given in a lecture that introduces some theoretical background). All 

you should know is that the padding adds a fixed form to the message which will 

disallow an adversary to manipulate a ciphertext such that it will correctly decrypt. In 

the simplest form, padding consists of simply appending some fixed 0x00 and 0xFF 

bytes to the message before encrypting it, e.g, encrypt the message as 𝑐 =

(0xFF||0xFF||0xFF||𝑚)mod 𝑛  (here || denotes concatenation). In .NET two padding 

schemes are available, one is the secure OAEP padding (recommended) the other is a 

deprecated PKCS padding. How to set on of these will be discussed in the next section, 

details on the padding schemes are available in the lecture material. 

4.2 RSACRYPTOSERVICEPROVIDER: PROPERTIES AND METHODS 

 

The RSA implementation in .NET supports keys from 384 to 16384 bits in 8 bit 

increments. The key size can be specified via the constructor of the 

RSACryptoServiceProvider class which will generate a random RSA key. The constructor 

also allows initialization with an existing key given as CspParameters object. In the 

forthcoming section we give more details on the key structure, now we will focus on 

the properties and methods exposed by the RSACryptoServiceProvider class, these are 

summarized in Tables 1 and 2. Figure 2 shows the class hierarchy for RSA and DSA in 

.NET. 



 

 

Figure 2. The RSA and DSA clases in .NET 

 

 Get/Set Type Brief Description 

PublicOnly g Boolean 
Return true if the object contains just the 
public key 

KeySize g Int Key size in bits 

LegalKeySizes g KeySizes[] 
Key sizes in bits supported by the 
algorithm 

SignatureAlgor
ithm 

g String 
The name of the signature algorithm, in 
.NET signing is always performed as RSA 
with SHA1 

 

Table 1. Properties from the RSACryptoServiceProvider class  

 

 Return type Brief Description 

Decrypt (byte[] data, bool 
fOAEP) 

byte[] 

Decrypts data given as byte and 
returns the decrypted value as 
byte. The Boolean indicates if the 
OAEP padding is used, if false, then 
PKCS# v.15 padding is used instead. 

AsymmetricAlgorithm

DSARSA

RSACryptoServiceProvider DSACryptoServiceProvider

Abstract

Concrete
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Encrypt (byte[] data, bool 
fOAEP) 

byte[] 

Encrypts data given as byte and 
returns the encrypted value as 
byte. The Boolean indicates if the 
OAEP padding is used, if false, then 
PKCS# v.15 padding is used instead. 

ExportParameters  
(bool 
includePrivateParameters) 

RSAParameters 

Gets the RSA key as RSAParameters 
object. The Boolean specifies if the 
private part of the key is or not 
included. 

ImportParameters 
(RSAParameters 
parameters) 

void 
Sets the RSA key from 
RSAParameters object 

ToXmlString   
(bool 
includePrivateParameters) 

string 

Gets the RSA key as string in XML 
format. The Boolean specifies if the 
private part of the key is or not 
included. 

FromXmlString  
(bool 
includePrivateParameters) 

void 
Sets the RSA key from a string in 
XML format. 

SignData 
(byte[] buffer, Object 
halg) 

byte[] 

Signs the given array of bytes with 
the specified hash algorithm, 
returns the signature as array of 
bytes 

SignData(Stream 
inputStream, Object halg) 

byte[] 
Same as previously, but this time 
the data is given as stream 

SignData(byte[] buffer, int 
offset, int count, Object 
halg) 

byte[] 
Signs the byte array starting from 
offset for count bytes 

SignHash(byte[] hash, 
string str) 

byte[] 
Signs the hash of the data, the 
string is the name of the algorithm 
that was used to hash the data 

VerifyData(byte[] buffer, 
Object halg, byte[] 
signature) 

bool 
Verifies the signature given a hash 
algorithm as object, the signature 
and message as byte arrays 
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VerifyHash (byte[] Hash, 
string str, byte[] Signature) 

bool 
Verifies the signature given the 
hash of the message and the name 
of the hash algorithm 

 

Table 2. Methods from the RSACryptoServiceProvider class  

 

Encryption and signing with RSA in .NET. Encryption and decryption with RSA 

should now be straight-forward. There are only two steps that you need to follow: i) 

create the RSA object (easiest way is by specifying the size of the key) and ii) call the 

encrypt method on the data specified as byte array and a Boolean which indicates if 

OAEP is to be used (recommended). 

 

 
RSACryptoServiceProvider myRSA = new RSACryptoServiceProvider(2048); 
AesManaged myAES = new AesManaged(); 
byte[] RSAciphertext; 
byte[] plaintext; 
//generate an AES key 
myAES.GenerateKey(); 
//encrypt an AES key with RSA 
RSAciphertext = myRSA.Encrypt(myAES.Key, true); 
//decrypt and recover the AES key 
plaintext = myRSA.Decrypt(RSAciphertext, true); 

 

 

Table 3. Example of RSA encryption and decryption in .NET 

 

 
SHA256Managed myHash = new SHA256Managed(); 
string some_text = "this is an important message"; 
//sign the message 
byte[] signature; 
signature = 
myRSA.SignData(System.Text.Encoding.ASCII.GetBytes(some_text), myHash); 
//verified a signature on a given message 
bool verified; 
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verified = 
myRSA.VerifyData(System.Text.Encoding.ASCII.GetBytes(some_text), 
myHash, signature);  

 

 

Table 4. Example of RSA signing and verification in .NET 

 

4.3 THE STRUCTURE OF THE PUBLIC AND PRIVATE KEY  

The structure of the RSA key in .NET follows the PKCS #1 (Public Key 

Cryptography Standards) description.  In contrast to the text-book description of the 

RSA scheme, the key includes parameters that are used to provide speed-ups with the 

Chinese Remaindering Theorem as discussed previously. The following parameters are 

present in the key: 

 Modulus – the modulus, i.e., 𝑛, 

 Exponent – the public exponent, i.e., 𝑒, 

 P – the first prime factor of the modulus, i.e., 𝑝, 

 Q – the second prime factor of the modulus, i.e., 𝑞, 

 DP – the private exponent modulo p-1, i.e., 𝑑 mod 𝑝 − 1, 

 DQ – the private exponent modulo q-1, i.e., 𝑑 mod 𝑞 − 1, 

 InverseQ – the inverse of q modulo p, i.e., 𝑞−1 modp, 

 D – the private exponent, i.e., 𝑑. 

Exporting and importing keys as XML strings. The key can be exported to XML 

Strings with the methods ToXMLString (bool includePrivateParameters) which take a 

Boolean input specifying if the private part of the key is or not included in the returned 

string. In Tables 5 and 6 we show an RSA key exported from .NET with and without the 

private part.  A key can also be imported from such a string via the FromXmlString(string 

xmlString) method. 

 

 
<RSAKeyValue> 
<Modulus> 
uPmqM3pzkazPZAVC0pCA+unlLorxuxcwZb/AwcOE64qAIUZuLjRCKc0HFyJSwp38qw
y2JWNm7vQQmsm9xVECcBTUqTVR17hviNwof6qJ1BlpFbNqS5IXPM1oj2spVKVvaiC
nE+RPegQ2AZACxEOkoGZBxQFupfbbuzuoMNEt3qs= 
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</Modulus> 
<Exponent> 
AQAB 
</Exponent> 
<P> 
/BP+eh9ZiAw5PXjniNzEEZ8+5+q12lYQ5peCJDUHNkzA7yyhWo9ayg+ZRt2yJ7tFvgF4t
RLF0nCBrJDQvSWTUw== 
</P> 
<Q> 
u9pn4Ph7MDEAgwSk6lVrOe8mH3XW7f54l57LwklcBc7tzzB3DHsQ6UEJUfmTTE4ed5
ogX52F7hPVcXW86w40SQ== 
</Q> 
<DP> 
KVBJk9BRhyehtf57zAWKqOy1jaL9HQSgDnrkXHTIctDPiiOBams2UQmPcHrjOPnLa2G
oW9zwyRWhWxv86hMfew== 
</DP> 
<DQ> 
PQoPvPMgnB0gDHKC373XtKB3o7tXlkecia/Ih53sr9p4PV2DIWQPr6s5SxCsgxvTHIvRP
yBhN2XscgyO0VXxOQ== 
</DQ> 
<InverseQ> 
pr2OyNnCyceTOWWPGn3x9yCHyPaAYiHyP/dLFNKqGmgWLkShtBbuVO8t97dtNPNd
sgHeS8mxnpZV0hxoYVJodQ== 
</InverseQ> 
<D> 
qYzv3c/YLydf0iagYbHjCBts34Ssnvlae2mQngtBw0VovRd51xA/tWEhpqrngUyfVYqJSy
waJd3BeqCBOmRO/ipZRd4SXr3HX4vU3qtTwtSOKHMJW8BEn2dwgW3B4xbQkWo+t
i7VJZIxLSMS02IowLs3FfwjXz2ATVx71LqywoE= 
</D> 
</RSAKeyValue> 

Table 5. RSA key exported as XML string with private parameters 

 

 
<RSAKeyValue> 
<Modulus>uPmqM3pzkazPZAVC0pCA+unlLorxuxcwZb/AwcOE64qAIUZuLjRCKc0HFy
JSwp38qwy2JWNm7vQQmsm9xVECcBTUqTVR17hviNwof6qJ1BlpFbNqS5IXPM1oj2s
pVKVvaiCnE+RPegQ2AZACxEOkoGZBxQFupfbbuzuoMNEt3qs= 
</Modulus> 
<Exponent> 
AQAB 
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</Exponent> 
</RSAKeyValue> 

 

Table 6. RSA key exported as XML string without private parameters (just the 

public key) 

 

Exporting and importing keys as byte arrays. Similarly, keys can be imported 

and exported as System.Security.Cryptography.RSAParameters which is a structure 

containing a byte array for each of the previously described parameters. This 

import/export method is needed when you want to import/export the key between 

distinct platforms, e.g., to a C++ or Java implementation. Figure 3 shows a screen 

capture from the .NET environment exposing the structure of a key. 

 

 

Figure 3. Fields of an RSAParameters structure 

 

 

4.4 EXERCISES 

1. Evaluate the computational cost of RSA cryptosystem in .NET in terms of: key 

generation, encryption, decryption, signing and verification time. Results have to be 

presented in a tabular form as shown below. 

1024 bit 2048 bit 3072 bit 4096 bit 

    

 



50   The RSA Public-Key Cryptosystem in .NET - 4 

Table 1. Cost of RSA key generation 

1024 bit 2048 bit 3072 bit 4096 bit 

    

 

Table 3. Cost of RSA encryption 

1024 bit 2048 bit 3072 bit 4096 bit 

    

 

Table 4. Cost of RSA dencryption 

1024 bit 2048 bit 3072 bit 4096 bit 

    

 

Table 5. Cost of RSA signing 

 

1024 bit 2048 bit 3072 bit 4096 bit 

    

 

Table 6. Cost of RSA verification 

2.  Given the data in the Table below, columns a) and b) are the modulus and private 

exponent for an RSA in .NET. The public exponent is the standard value 65537. Find the 

factorization of the modulus. In columns c) and d) are the modulus and dp parameter 

of an RSA object in .NET. Find the factorization of this modulus. Note that all values are 

specified as byte arrays. 

 

(a) (b) (c) (d) 

m[0]=220; 

m[1]=94; 

m[2]=85; 

m[3]=235; 

d[0]=16; 

d[1]=158; 

d[2]=240; 

d[3]=222; 

m[0]=184; 

m[1]=180; 

m[2]=103; 

m[3]=69; 

dp[0]=66; 

dp[1]=59; 

dp[2]=152; 

dp[3]=232; 



4.4 – Exercises   51 

 

m[4]=39; 

m[5]=74; 

m[6]=145; 

m[7]=228; 

m[8]=229; 

m[9]=175; 

m[10]=179; 

m[11]=77; 

m[12]=99; 

m[13]=158; 

m[14]=229; 

m[15]=79; 

m[16]=165; 

m[17]=70; 

m[18]=68; 

m[19]=238; 

m[20]=144; 

m[21]=203; 

m[22]=0; 

m[23]=1; 

m[24]=128; 

m[25]=140; 

m[26]=219; 

m[27]=107; 

m[28]=129; 

m[29]=46; 

m[30]=203; 

m[31]=3; 

d[4]=6; 

d[5]=157; 

d[6]=162; 

d[7]=57; 

d[8]=96; 

d[9]=117; 

d[10]=139; 

d[11]=17; 

d[12]=136; 

d[13]=53; 

d[14]=0; 

d[15]=216; 

d[16]=171; 

d[17]=255; 

d[18]=139; 

d[19]=205; 

d[20]=110; 

d[21]=144; 

d[22]=81; 

d[23]=20; 

d[24]=203; 

d[25]=236; 

d[26]=83; 

d[27]=212; 

d[28]=92; 

d[29]=238; 

d[30]=249; 

d[31]=146; 

m[4]=37; 

m[5]=247; 

m[6]=146; 

m[7]=23; 

m[8]=244; 

m[9]=94; 

m[10]=170; 

m[11]=104; 

m[12]=248; 

m[13]=128; 

m[14]=10; 

m[15]=221; 

m[16]=77; 

m[17]=32; 

m[18]=26; 

m[19]=31; 

m[20]=69; 

m[21]=153; 

m[22]=134; 

m[23]=148; 

m[24]=62; 

m[25]=43; 

m[26]=85; 

m[27]=241; 

m[28]=76; 

m[29]=12; 

m[30]=86; 

m[31]=178; 

dp[4]=217; 

dp[5]=214; 

dp[6]=230; 

dp[7]=70; 

dp[8]=190; 

dp[9]=80; 

dp[10]=43; 

dp[11]=249; 

dp[12]=24; 

dp[13]=113; 

dp[14]=93; 

dp[15]=218; 

dp[16]=69; 

dp[17]=102; 

dp[18]=135; 

dp[19]=244; 

dp[20]=252; 

dp[21]=36; 

dp[22]=161; 

dp[23]=48; 

dp[24]=179; 

dp[25]=96; 

dp[26]=172; 

dp[27]=14; 

dp[28]=136; 

dp[29]=191; 

dp[30]=23; 

dp[31]=96; 
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m[32]=116; 

m[33]=99; 

m[34]=74; 

m[35]=45; 

m[36]=148; 

m[37]=89; 

m[38]=187; 

m[39]=113; 

m[40]=209; 

m[41]=50; 

m[42]=124; 

m[43]=34; 

m[44]=143; 

m[45]=173; 

m[46]=248; 

m[47]=137; 

m[48]=69; 

m[49]=229; 

m[50]=3; 

m[51]=114; 

m[52]=121; 

m[53]=67; 

m[54]=207; 

m[55]=85; 

m[56]=57; 

m[57]=252; 

m[58]=222; 

m[59]=148; 

d[32]=238; 

d[33]=33; 

d[34]=91; 

d[35]=3; 

d[36]=235; 

d[37]=15; 

d[38]=133; 

d[39]=138; 

d[40]=197; 

d[41]=27; 

d[42]=136; 

d[43]=175; 

d[44]=86; 

d[45]=164; 

d[46]=233; 

d[47]=124; 

d[48]=249; 

d[49]=15; 

d[50]=151; 

d[51]=221; 

d[52]=247; 

d[53]=117; 

d[54]=124; 

d[55]=218; 

d[56]=209; 

d[57]=191; 

d[58]=215; 

d[59]=205; 

m[32]=185; 

m[33]=160; 

m[34]=105; 

m[35]=45; 

m[36]=138; 

m[37]=239; 

m[38]=153; 

m[39]=224; 

m[40]=79; 

m[41]=122; 

m[42]=100; 

m[43]=205; 

m[44]=218; 

m[45]=253; 

m[46]=120; 

m[47]=16; 

m[48]=201; 

m[49]=83; 

m[50]=187; 

m[51]=8; 

m[52]=91; 

m[53]=31; 

m[54]=175; 

m[55]=8; 

m[56]=36; 

m[57]=217; 

m[58]=104; 

m[59]=18; 

dp[32]=33; 

dp[33]=186; 

dp[34]=226; 

dp[35]=247; 

dp[36]=78; 

dp[37]=9; 

dp[38]=24; 

dp[39]=172; 

dp[40]=143; 

dp[41]=55; 

dp[42]=238; 

dp[43]=97; 

dp[44]=247; 

dp[45]=44; 

dp[46]=251; 

dp[47]=235; 

dp[48]=237; 

dp[49]=86; 

dp[50]=165; 

dp[51]=252; 

dp[52]=58; 

dp[53]=187; 

dp[54]=77; 

dp[55]=247; 

dp[56]=254; 

dp[57]=128; 

dp[58]=98; 

dp[59]=88; 
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m[60]=56; 

m[61]=188; 

m[62]=167; 

m[63]=127; 

m[64]=109; 

m[65]=174; 

m[66]=208; 

m[67]=247; 

m[68]=63; 

m[69]=201; 

m[70]=145; 

m[71]=150; 

m[72]=188; 

m[73]=99; 

m[74]=162; 

m[75]=246; 

m[76]=54; 

m[77]=72; 

m[78]=51; 

m[79]=219; 

m[80]=198; 

m[81]=43; 

m[82]=186; 

m[83]=166; 

m[84]=162; 

m[85]=7; 

m[86]=115; 

m[87]=137; 

d[60]=216; 

d[61]=37; 

d[62]=170; 

d[63]=128; 

d[64]=87; 

d[65]=22; 

d[66]=90; 

d[67]=156; 

d[68]=150; 

d[69]=185; 

d[70]=12; 

d[71]=105; 

d[72]=247; 

d[73]=207; 

d[74]=244; 

d[75]=226; 

d[76]=154; 

d[77]=247; 

d[78]=179; 

d[79]=186; 

d[80]=162; 

d[81]=18; 

d[82]=162; 

d[83]=232; 

d[84]=175; 

d[85]=169; 

d[86]=72; 

d[87]=50; 

m[60]=201; 

m[61]=84; 

m[62]=118; 

m[63]=60; 

m[64]=178; 

m[65]=120; 

m[66]=147; 

m[67]=150; 

m[68]=55; 

m[69]=110; 

m[70]=14; 

m[71]=185; 

m[72]=237; 

m[73]=127; 

m[74]=212; 

m[75]=204; 

m[76]=8; 

m[77]=72; 

m[78]=92; 

m[79]=191; 

m[80]=136; 

m[81]=34; 

m[82]=74; 

m[83]=232; 

m[84]=130; 

m[85]=123; 

m[86]=10; 

m[87]=91; 

dp[60]=10; 

dp[61]=86; 

dp[62]=190; 

dp[63]=245; 
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m[88]=105; 

m[89]=164; 

m[90]=248; 

m[91]=20; 

m[92]=201; 

m[93]=164; 

m[94]=159; 

m[95]=140; 

m[96]=4; 

m[97]=202; 

m[98]=52; 

m[99]=106; 

m[100]=126; 

m[101]=94; 

m[102]=87; 

m[103]=55; 

m[104]=168; 

m[105]=176; 

m[106]=137; 

m[107]=114; 

m[108]=157; 

m[109]=3; 

m[110]=111; 

m[111]=213; 

m[112]=134; 

m[113]=40; 

m[114]=155; 

m[115]=74; 

d[88]=64; 

d[89]=7; 

d[90]=232; 

d[91]=92; 

d[92]=117; 

d[93]=99; 

d[94]=8; 

d[95]=118; 

d[96]=32; 

d[97]=108; 

d[98]=133; 

d[99]=164; 

d[100]=23; 

d[101]=174; 

d[102]=111; 

d[103]=100; 

d[104]=94; 

d[105]=225; 

d[106]=202; 

d[107]=182; 

d[108]=59; 

d[109]=116; 

d[110]=6; 

d[111]=16; 

d[112]=112; 

d[113]=53; 

d[114]=215; 

d[115]=173; 

m[88]=123; 

m[89]=229; 

m[90]=254; 

m[91]=231; 

m[92]=209; 

m[93]=67; 

m[94]=231; 

m[95]=74; 

m[96]=220; 

m[97]=137; 

m[98]=195; 

m[99]=169; 

m[100]=186; 

m[101]=35; 

m[102]=139; 

m[103]=32; 

m[104]=222; 

m[105]=137; 

m[106]=40; 

m[107]=211; 

m[108]=158; 

m[109]=155; 

m[110]=30; 

m[111]=249; 

m[112]=63; 

m[113]=100; 

m[114]=10; 

m[115]=167; 
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m[116]=81; 

m[117]=68; 

m[118]=171; 

m[119]=47; 

m[120]=129; 

m[121]=160; 

m[122]=210; 

m[123]=34; 

m[124]=240; 

m[125]=38; 

m[126]=168; 

m[127]=211; 

 

d[116]=16; 

d[117]=220; 

d[118]=117; 

d[119]=141; 

d[120]=35; 

d[121]=107; 

d[122]=240; 

d[123]=110; 

d[124]=195; 

d[125]=136; 

d[126]=209; 

d[127]=113; 

 

m[116]=87; 

m[117]=92; 

m[118]=107; 

m[119]=190; 

m[120]=251; 

m[121]=111; 

m[122]=199; 

m[123]=177; 

m[124]=13; 

m[125]=212; 

m[126]=194; 

m[127]=9; 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: You may consider recycling the code below 

 

 
RSACryptoServiceProvider myrsa = new RSACryptoServiceProvider(1600); 
            System.Diagnostics.Stopwatch swatch = new 
System.Diagnostics.Stopwatch(); 
int size; 
int count = 100; 
swatch.Start(); 
for (int i = 0; i < count; i++) 
{ 
  myrsa = new RSACryptoServiceProvider(2048); 
  size = myrsa.KeySize; 
} 
swatch.Stop(); 
Console.WriteLine("Generation time at 1024 bit ... " + 
(swatch.ElapsedTicks / (10*count)).ToString() + " ms"); 
byte[] plain = new byte[20]; 
byte[] ciphertext = myrsa.Encrypt(plain, true); 
 
swatch.Reset(); 
swatch.Start(); 
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for (int i = 0; i < count; i++) 
{ 
    ciphertext = myrsa.Encrypt(plain, true); 
} 
swatch.Stop(); 
Console.WriteLine("Encryption time at 1024 bit ... " + 
(swatch.ElapsedTicks / (10 * count)).ToString() + " ms"); 
 
swatch.Reset(); 
swatch.Start(); 
for (int i = 0; i < count; i++) 
{ 
      plain = myrsa.Decrypt(ciphertext, true); 
} 
swatch.Stop(); 
Console.WriteLine("Decryption time at 1024 bit ... " + 
(swatch.ElapsedTicks / (10 * count)).ToString() + " ms"); 
 
Console.ReadKey(); 
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 THE DSA SIGNATURE ALGORITHM IN .NET  

 

This section presents the DSA (Digital Signature Algorithm) as implemented in 

.NET. The .NET framework contains two digital signature schemes, the RSA which was 

previously discussed and DSA, also known as DSS (Digital Signature Standard). The DSA 

is a discrete logarithm based signature scheme, based on the ElGamal signature, which 

was standardized by NIST.   

5.1 BRIEF THEORETICAL BACKGROUND 

You are referred to the lecture material for more details on the DSA. However, 

to make things clearer, we do a brief recap on how DSA works. The details of this 

algorithm are more complicated than for the RSA, in particular the details are 

somewhat uneasy to memorize as the construction appears less natural than the RSA. 

The straight-forward idea of using the encryption key for verification and the 

decryption key for signing does not work anymore, however, the algorithm is in fact 

slightly more efficient and secure than the RSA and not hard to implement (it is based 

on the same core operation: modular exponentiation). 

How the DSA signature works. As any public key signature, the DSA is a 

collection of three algorithms: 

 Key generation: generate a random prime 𝑝 and a second random prime 

𝑞 such that it divides 𝑝 − 1 then select an element 𝑔 of 𝑍𝑝 of order 𝑞 and 

a random number 𝑎 from 𝑍𝑝. The public key is 𝑃𝑏 = (𝑔, 𝑔𝑎mod 𝑝, 𝑝)  and 

the private key is 𝑃𝑣 = (𝑔, 𝑎, 𝑝) (q is fixed at 160 for the .NET 

implementation due to the use of SHA1) 

 Signing: given the message 𝑚, use the hash function (SHA1 in .NET) to 

compute the hash of the message ℎ, then select a random 𝑘 ∈ (0, 𝑝 − 1) 

and compute 𝑟 = 𝑔𝑘mod 𝑝 then  𝑠 = 𝑘−1(h + ar)mod (𝑝 − 1). The 

signature is the pair (𝑟, 𝑠). 

 Verification: given the signature  (𝑟, 𝑠), first check that 𝑟 ∈ (0, 𝑝), 𝑠 ∈

(0, 𝑞) (if not the signature is considered false) otherwise verify that 𝑣 = 𝑟 

where 𝑣 = 𝑔𝑢1𝑦𝑢2 , 𝑢1 = 𝑤ℎ mod 𝑞, 𝑢2 = 𝑟𝑤 mod 𝑞, 𝑤 = 𝑠−1  and return 

true if this holds (otherwise the signature is considered false). 
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Fortunately, you do not need to remember all these details in order to use this 

signature scheme in .NET, all you have to do is to call the methods for signing and 

verification. We discuss these next.  

5.2 DSACRYPTOSERVICEPROVIDER: PROPERTIES AND METHODS 

 

The DSA implementation in .NET supports keys from 512 to 1024 bits in 64 bit 

increments. The key size can be specified via the constructor of the 

DSACryptoServiceProvider class which will generate a random DSA key. Similar to the 

case of the RSA, the constructor also allows initialization with an existing key given as 

CspParameters object. However, the methods for signing and verification do not offer 

the possibility of using an external hash object, in .NET this signature is bound to SHA1. 

These methods are summarized in Table 1, the distinction with the RSA is the absence 

of the hash algorithm as parameter since this is implicitly set to SHA1. The 

DSACryptoServiceProvider also has an additional VerifySignature method that takes the 

hash and signature of the message as input. 

 

 Return type Brief Description 

ExportParameters  
(bool 
includePrivateParameters) 

DSAParameters 

Gets the DSA key as RSAParameters 
object. The Boolean specifies if the 
private part of the key is or not 
included. 

ImportParameters 
(DSAParameters 
parameters) 

void 
Sets the DSA key from 
DSAParameters object 

ToXmlString   
(bool 
includePrivateParameters) 

string 

Gets the DSA key as string in XML 
format. The Boolean specifies if the 
private part of the key is or not 
included. 

FromXmlString  
(bool 
includePrivateParameters) 

void 
Sets the DSA key from a string in XML 
format. 

SignData(byte[] buffer) byte[] 
Signs the given array of bytes with the 
specified hash algorithm, returns the 
signature as array of bytes 
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SignData(Stream 
inputStream) 

byte[] 
Same as previously, but this time the 
data is given as stream 

SignData(byte[] buffer,
 int offset, int 
count) 

byte[] 
Signs the byte array starting from 
offset for count bytes 

SignHash(byte[] hash, 
string str) 

byte[] 
Signs the hash of the data, the string 
is the name of the algorithm that was 
used to hash the data 

VerifyData(byte[] buffer, 
byte[] signature) 

bool 
Verifies the signature given a hash 
algorithm as object, the signature 
and message as byte arrays 

VerifyHash (byte[] Hash, 
string str, byte[] 
Signature) 

bool 
Verifies the signature given the hash 
of the message and the name of the 
hash algorithm 

VerifySignature(byte[] 
Hash, 
byte[] Signature) 

bool 
Verifies the signature given the hash 
of the message 

 

Table 1. Methods from the DSACryptoServiceProvider class  

 

Signing with DSA in .NET. Signing requires the instantiation of a 

DSACryptoServiceProvider object and then calling one of the signing methods, same for 

verification. This is suggested in the code from Table 2. 

 

 
DSACryptoServiceProvider myDSA = new DSACryptoServiceProvider(512); 
byte[] sig = myDSA.SignData(data); 
bool verify = myDSA.VerifyData(data, sig); 

  

 

Table 2. Example for signing a byte array and verifying the signature in .NET 

with DSA 

 



60   The DSA Signature Algorithm in .NET - 5 

5.3 THE STRUCTURE OF THE PUBLIC AND PRIVATE KEY  

We now enumerate the parameters of the DSA private and public key: 

 P – the prime that defines the group, i.e., 𝑝, 

 Q – the factor of p-1 which gives the order of the subgroup, i.e., 𝑞, (this is 

always 160 bits in .NET) 

 G – the generator of the group, i.e., 𝑔, 

 Y – the value of the generator to X, i.e., 𝑦 = 𝑔𝑥mod 𝑝  

 J – a parameter specifying the quotient from dividing p-1 to q, i.e., 𝑗 = (𝑝 −

1)/𝑞, 

 Seed – specifies the seed used for parameter generation, 

 Counter – a counter value that results from the parameter generation 

process, 

 X –  a random integer, this is the secret part of the key, i.e., parameter 𝑎 

from the description of the scheme. 

Exporting and importing keys as XML strings. Similar to the case of RSA the 

key can be exported to (or imported from) XML Strings. In Tables 3 and 4 we show a 

DSA key exported from .NET with and without the private part. 

 

 
<DSAKeyValue> 
<P> 
sRp/2qfasQ+6ObB/6+7HqyZnmgp0drn7G/ewLihzFfiJrVS15Wu5slPXYY8lIpiqbwgVWj
5UMoV1ynnmx392YQ== 
</P> 
<Q> 
+DqDOhkIdeiQrtipZf6d/ei35Yc= 
</Q> 
<G> 
NElPMJMiLsqzHWyFmQeLNESbdmRNTta78aApURYyCqZ9CVTQCZTwX/N5YpulkCKG
KwOxMkXRdfAB0XVDQj/nJQ== 
</G> 
<Y> 
KYtWDqa9aRI/bP5q82sfpSutSWJqDnkS9INGhZbdHxHcJw4XMU/ihIHUzS3zkODneM
nj3kz0Ly3jMJvkcm15kw== 
</Y> 
<J> 
tqXwIvpqvwSLuUWWfcrGaUyl9AP07V0qfib1UtBD2xyf0c9sHacjniyQbqA= 
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</J> 
<Seed> 
nVHH51WY6AQqRGBXYDg+zQnHF5s= 
</Seed> 
<PgenCounter> 
Ag== 
</PgenCounter> 
<X> 
NhAM2W6d+VISPUZ967Zfc8v8D+8= 
</X> 
</DSAKeyValue> 

 

Table 3. DSA key exported as XML string with private parameters 

 
<DSAKeyValue> 
<P> 
sRp/2qfasQ+6ObB/6+7HqyZnmgp0drn7G/ewLihzFfiJrVS15Wu5slPXYY8lIpiqbwgVWj
5UMoV1ynnmx392YQ== 
</P> 
<Q> 
+DqDOhkIdeiQrtipZf6d/ei35Yc= 
</Q> 
<G> 
NElPMJMiLsqzHWyFmQeLNESbdmRNTta78aApURYyCqZ9CVTQCZTwX/N5YpulkCKG
KwOxMkXRdfAB0XVDQj/nJQ== 
</G> 
<Y> 
KYtWDqa9aRI/bP5q82sfpSutSWJqDnkS9INGhZbdHxHcJw4XMU/ihIHUzS3zkODneM
nj3kz0Ly3jMJvkcm15kw== 
</Y> 
<J> 
tqXwIvpqvwSLuUWWfcrGaUyl9AP07V0qfib1UtBD2xyf0c9sHacjniyQbqA= 
</J> 
<Seed> 
nVHH51WY6AQqRGBXYDg+zQnHF5s= 
</Seed> 
<PgenCounter> 
Ag== 
</PgenCounter> 
</DSAKeyValue> 
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Table 4. DSA key exported as XML string without private parameters (just the 

public key) 

 

Exporting and importing keys as byte arrays. Identical to the case of RSA, keys 

can be imported and exported as System.Security.Cryptography.DSAParameters which 

is a structure containing a byte array for each of the previously described parameters. 

This is suggested in Figure 1. 

 

Figure 1. Fields of the DSAParameters structure 

5.4 EXERCISES 

2. Evaluate the computational cost of DSA signature in .NET in terms of: key 

generation, signing and verification time. Results have to be presented in a tabular form 

as shown below. 

512 bit 640 bit 768 bit 1024 bit 

    

 

Table 5. Cost of DSA key generation 
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512 bit 640 bit 768 bit 1024 bit 

    

 

Table 6. Cost of DSA signing 

 

512 bit 640 bit 768 bit 1024 bit 

    

 

Table 7. Cost of DSA verification 
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 COMPUTATIONAL PROBLEMS BEHIND PUBLIC-

KEY CRYPTOSYSTEMS, BIGINTEGERS IN JAVA 

 

In this section we pay attention to computational problems that stay at the core 

of public key cryptosystems, RSA in particular. We exemplify computational problems 

with the help of the BigInteger class from Java. Rather than briefing through the 

capabilities of this class, we take a problem based approach in which we try to underline 

the math behind cryptosystems such as the RSA (pointing on issues that potentially 

cause insecurity). A shortcoming of this section is that we do not describe the particular 

algorithms behind these computations, however some of the algorithms are described 

during the lectures and here we try to fix the notions by playing with numbers.  

6.1 THE JAVA BIGINTEGER CLASS 

The Java BigInteger class allows working with arbitrary precision integers. 

There is virtually no limit on their size, except for the memory available. However, in 

public key cryptosystems we usually work with integers that are in the order of several 

thousands of bits, e.g., 1024-4096 in case of the RSA, so you should imagine this as the 

practical size that we target. To initialize a BigInteger is fairly simple, the constructor of 

the class can also take strings, for example,  

BigInteger two = new BigInteger(“2”); 

creates a BigInteger with value 2. You can initialize the integer with a value of 

your choice, e.g.,  

BigInteger exponent = new BigInteger(“65537”); 

Then operations are simply performed by calling the related methods. For 

example if you want to compute an exponentiation 265537mod3 simply call:  

BigInteger result = two.modPow(exponent, new BigInteger(“3”)); 

In Table 1 we summarize the arithmetic operations and the equivalent Java 

BigInteger’s methods. 
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Arithmetic Operation Java BigInteger Method 

 

additions and 

subtractions (+, -)  

  

subtract(BigInteger val) 

add(BigInteger val) 

multiplications and 

divisions (*, /), 

multiply(BigInteger val) 

divide(BigInteger val) 

divideAndRemainder(BigInteger val) 

mod(BigInteger m)  

remainder(BigInteger val) 

comparisons (<, >) 

compareTo(BigInteger val) 

max(BigInteger val)  

min(BigInteger val) 

exponentiation and 

modular exponentiation, 

𝑎𝑥 

modPow(BigInteger exponent, BigInteger m) 

pow(int exponent) 

greatest common divisor 

(GCD) and multiplicative 

inverse, i.e., 𝑥−1 

gcd(BigInteger val) 

modInverse(BigInteger m) 

primality testing 
isProbablePrime(int certainty) 

probablePrime(int bitLength, Random rnd) 

 

Table 1. A summary of arithmetic operations and the corresponding methods 

in Java 
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6.2 SOLVED EXERCISES 

The private exponent reveals the factorization of the modulus. This is a 

commonly known property of the RSA. It is also the reason for which a modulus cannot 

be shared by two distinct entities even if they use distinct public exponents (since the 

private exponent of each of them can be used to factor the modulus and recover the 

private exponent of the other). This problem is also referred as the common modulus 

problem.  

Let the following RSA key:  

 1 837210799, 7, 47834175: 1en dK    

Show how the modulus can be factored given the private key and find the 

private exponent for the following key:  

 3 8372107 1 ?: 99, 7,e dK n   . 

 

Solution 1. The mathematical relation between the private and public RSA exponents 

is the following: 

 

 1modd e n   

 

This implies that there exists a number k such that  

 

 1d e k n    .  

Since  

 

    1 1 1n p q p q p q          

 

It follows that  

 1 1d e k p q p q         

 

Rearranging the terms we get  

 

1
1

d e
pq p q

k

 
    . 
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We know all values from the left side, except for k . However, by closely examining 

the previous relation  1 1d e k p q p q         since on the right side p q  is 

much larger than 1p q    we are not far by approximating k as:  

 

1 1d e d e
k

p q n

     
       

 

 

 

In our case, starting from the already known key we get: 

 

478341751

83721079

1
4

9

7
k

  
  
 

 

 

It follows that: 

 

 837210799 14 1 7*478341751
11

4
2736p q

  



   

 

This implies that p and q can be extracted as roots of the equation 2 0x Sx P    

where 112736S   and 837210799P  . By elementary calculations, we get:  

 
2112736 4 837210799 9360562500      

 

The roots follow as: 

 

1

112736 9360562500
104743

2
x


     and 

2

112736 9360562500
7993

2
x


   

 

These are the factors of the modulus. Finding the second private exponent is now 

trivial as: 

 

 

  1 1mod 1 1 17 m 837098064 246205od 313d e p q d        

 

 

Solution 2. The private exponent always decrypts a message encrypted with the public 

one, since: 
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 , mod
d

e

nx Z x x n    

 

Given the values from the first key we always have: 

 

 
478341751

7 8372m 1od 0799x x  

 

By multiplying with 
1x
 and rearranging we get: 

 
478341751 17 1mod837210799x    

 

Dividing by 2 we get: 

 
2

478341751 1

2

7

8372101m d 799ox
 

 
 

 

 

This means that the right quantity is a square root of 1. To eliminate the two trivial 

roots of 1, i.e., +1 and -1, we continuously divide the exponent until we get a non-

trivial root. For example, let us fix 10x   and compute: 

 

 
478341751 1 478341751 1478341751 1 478341751 1

8 16

77 7

2 4

7

1, 1 562155, 1 8, 6 2x x x x
     

     

 

It is easy to note that when dividing the exponent with 16 the result is no longer 1. For 

this final result we have:  

 

 

 

1, 7993

1, 1047

562155682

5621556 482 3

cmmdc n p

cmmdc n q

  

  
 

 

In this way we have successfully extracted the factors of n . The mathematical 

explanation is that we have: 

 

478341751 1 478341751 1 478341751 1

16 16

7 7

1

2

6

7

1mod 1 1 0modx n x x n
        

        
    
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and since  

478341751 1

1

7

6 1x


   it means that the two factors contain the prime numbers 

that divide n .  

 

Small encryption exponents. While small exponents are preferred for 

encryption because they result in faster operation, small exponents are known to cause 

insecurity. The .NET framework has the default exponent set to 65537, this should be 

secure, but it may be tempting to use even smaller exponents. Consider the following 

two 1536 and 2048 bit modules taken from the RSA challenge website 

http://www.rsasecurity.com/rsalabs/node.asp?id=2093  

n1= 

1847699703211741474306835620200164403018549338663410171471785774910651696711

1612498593376843054357445856160615445717940522297177325246609606469460712496

2372044202226975675668737842756238950876467844093328515749657884341508847552

8298186726451339863364931908084671990431874381283363502795470282653297802934

9161558118810498449083195450098483937752272570525785919449938700736957556884

3693381277961308923039256969525326162082367649031603655137144791393234716956

6988069 

 

n2= 

2519590847565789349402718324004839857142928212620403202777713783604366202070

7595556264018525880784406918290641249515082189298559149176184502808489120072

8449926873928072877767359714183472702618963750149718246911650776133798590957

0009733045974880842840179742910064245869181719511874612151517265463228221686

9987549182422433637259085141865462043576798423387184774447920739934236584823

8242811981638150106748104516603773060562016196762561338441436038339044149526

3443219011465754445417842402092461651572335077870774981712577246796292638635

6373289912154831438167899885040445364023527381951378636564391212010397122822

120720357 
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By this exercise we show that even if the factorization of these numbers is 

unknown (these challenge numbers were not yet factored, so it is impossible for us to 

know their factorization), one can still recover encrypted values in certain situations if 

the exponents are small. Consider that one fixes an encryption exponent 𝑒 = 2 (this is 

in fact known as the Rabin cryptosystem and is a secure cryptosystem when correctly 

used, see the lecture material for more details) and that one encrypts the same 

message 𝑚 once with each modulus, i.e., 𝑐1 = 𝑚2mod 𝑛1, 𝑐2 = 𝑚2mod 𝑛2 . Given the 

result of the encryptions below, you are requested to find the encrypted message: 

c1= 

1720824975522517857539467309146518060382842270514896093391979291030656292239

7291446654035136859446266905140522147597644944431643498057575862023479413245

6638260412096493538625812249998880361757163409597018001190001744747405240965

7500820140866171389821089899978493473235156488326073675749875367732149010528

9244104109064444335973488450882364503785143338799248614163518428477608940469

9678849571206887860878689927075639507531091535187214291140378602914898718344

7449947 

 

c2= 

4561642280956381246774642331705575104523442518306294887033201504008906454855

8878555145972657908956759775539747979197737797768926554418702738975251318948

7102258520443358104409325508073221395545765319081041834133569912754811011387

3635190699932165850542152382657518899992710162713201334532551245793969597202

6692191157400036070478620074907493119547542465852819192370184492356694178657

6698578327560649299302223024036233077234207232288187628580786589383228234629

4300028016342171410187938861009812975635715641457865781951720724292241356964

6111551957961184286656146057704287329146644239215935313741848147782402529568

44983980 

Solution. The mistake comes from the fact that the small encryption exponent allows 

one to recover the message by squaring the output composed via the Chinese 

Remaindering Theorem (CRT). We show how this can be done in what follows. CRT 

implies that the following result holds: 

 

Iff 
2

1 1

2

2 2

mod

mod

m c n

m c n

 




 then there exists a unique m modulo 1 2n n .  
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But message m  was encrypted with the first modululs, this means it cannot exceed 

1536 de bits. Therefore the square of the message has at most 2x1536 = 3072 bits. 

CRT allows one to retrieve a solution modulo 
1 2n n , n.b., moreover, this solution is 

unique. Since the two modules have 1536 and 2058 bits respectively it means that this 

solution is unique for up to 1536+2048 = 3584 bits and thus message m  can be fully 

recovered as square root of the value retrieved via CRT. We show how this can be 

done by using the CRT solution offered by Gauss. First, we compute the modular 

inverses: 

 
1

1 2modn n   

14310987589421656595052001273606996601993205437791295923061219355358

48932621722047996479172395205182484709925981345086823592361098676116

71392972306371407115917893215317798609151299752650828413641260143703

29155407443919355323334425193123995577457586594368899226059650898095

20834325441902847281013633185468633945939268807563205737631762188641

52671120930328170757381015429724281519672245536989347042821946707579

75832865425047290849934241209824297863258898100147349976522660848513

21478225880606620937765676470289712411515994875794907540854600946369

53345877613019417560448506378779860461784570861030428654699658479137

76536 

 
1

2 1modn n   

79822742293307335384489483161431538390245026454391226276909057792674

23380579666935238128274202459805360169170453399966923117770181725592

75601482046960296591379092565607100459489204412824908723342592405951

83320111854009654964710771311177195733351955713468728607066480923161

79828221492242083990594584260123165469731743876993400374593233583932

30935565486090366472938842936241337967316093017879168325168806666801

810050461909194360757373556305588374910163613774723450 

 

Then we use Gauss’s solution for the CRT and compute: 

 

 2 1 1

1 2 2 1 2 1 1 2 1 2mod mod modm c n n n c n n n n n   

40248409279371781562594703314715910034847869225366381022540697914175

85602944732917136098048248669251363580202404678911735557994243268711

30957480186462490633501794023786817125556940132457090093447788623246

76312015640007845168955339378322270670911475586002444628901333977782

21666551093553199704408884732857724216266011039547799164354879332317

67021086547098554239862430087393177761620546493093153699808344190034

56501265688124968112372793434959057461901805742130368652426798835499

11146730234579613576919248080423603916547270288585014116973253480963

65792194781034259041465702725888150371192734835039659581519708126428

20437659327488904506012157371352696825838199381494305046066162771892
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Balanced vs. unbalanced RSA. The RSA version in which the two factors p  and 

q  have the same size is also referred as balanced RSA. An unbalanced version of the 

RSA was also proposed, it benefits from a large modulus (harder to factor, thus 
increased security) but still fast for decryption if this is performed via the smaller factor. 
Unbalanced RSA assumes the use of a small p  (e.g., several hundred bits) and a larger 

q  (e.g., several thousand bits). Only messages smaller than p  are encrypted and then 

decryption is performed modulo p  (this can be done only by the owner of the private 

key who is in possession of p ). For correct encryption, a bound l  on the size of the 

plaintext is made public (this does not make the scheme unsafe, it is simply the 
bitlength of p  which does not make factorization trivial). We give a small numerical 

example: 
 

Key generation: 

    

 1

56658389,

541, 1047

1 1 56553

29, 7, 200

120,

mod 1 463

n

p q e

p q

d e p

l

n 



   

 

 





 

  

Encryption: 

7 5665300 838300 9 181573mod 76m c     

Decryption: 

75083123873943549970558612016817243280483663927948950510612617417357

297285884203981954351050666622817897351291284744036 

 

Now we can extract the encrypted message as the square root of the previous message, 

i.e.,: 

 

2m m   

20062006200620062006200620062006200620062006200620062006200620062006

20062006200620062006200620062006200620062006200620062006200620062006

20062006200620062006200620062006200620062006200620062006200620062006

20062006200620062006200620062006200620062006200620062006200620062006

20062006200620062006200620062006200620062006200620062006200620062006

200620062006200620062006200620062006200620062006200620062006 
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463 m18 od157376 541 300m    

 

Show how a CCA2 (Chosen Ciphertext Attack) attack can be mounted such that the 

adversary can recover the private key. Use the previous numbers to illustrate the 

attack.  

 

Solution. The CCA2 attack assume that the adversary has unlimited access to the 

decryption machine, i.e., the machine accepts to decrypt messages at his choice. The 

adversary can cheat and encrypt a message that is larger than the bound l , e.g., 

 
7 566583891000 mo 27 3d 6415 2c   

 

The decryption machine performs decryption according to the rules and answers with: 

 
463 m27 od6415 54132 459m    

 

Now the adversary can use this response to factor the modulus as: 

 

gcd (1000 − 459, 𝑛) = 541 

 

Thus, the adversary can factor the modulus and completely break the cryptosystem. 

The mathematical fact behind this attack is trivial. Since   mod
d

ex x p  but 

 
d

ex x mod p (note that ≫ 𝑝 ) it follows  
d

ex x k p    and thus   0
d

ex x 

which implies gcd(𝑥 − (𝑥𝑒)𝑑 , 𝑛) = 𝑝 and thus the modulus can be factored. 

 

6.3 FURTHER EXERCISES 

1. Given the RSA encryption below with the corresponding modulus and exponent, find 
the encrypted message assuming that encryption was performed without padding. 

 
n= 
8716664131891073309298060436222387808362956786786341866937428783455
3659623916739172495744915952292070842977414645571321982290863656526
04590297378403184129 
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2. Given the RSA key-pair below find the factorization of the modulus. 

 

3. The following fact is considered an interesting property of the RSA, although we do 
not know the sum of the two factors of the modulus, i.e., 𝑝 + 𝑞, we can compute the 
value of 𝑥𝑝+𝑞mod 𝑛. Figure out how this is possible and compute this value for the 
numbers below.  

e=3 

c= 
1375865583010982618632308529423371271821438577980922927124130396877
925863587827122886875024570556859122064458153631 

 

 
n=  

5076313634899413540120536350051034312987619378778911504647420938544
7465177110314901155284204273194792744073890582538974985571109131603
02801741874277608327,  

e=3 

d= 

3384209089932942360080357566700689541991746252519274336431613959029
8310118072592266557861250508877279212747197519861041620378008076415
22348207376583379547 

 

 
n=  

1070064658568088584852050373529985247886583743870981513899285988324
9955498916287857233627498606657866763592788339595921943627412052904
161935201780928478603,  

x= 

7133764390453923899013669156866568319243891625806543425995239922166
6369992773872531940485057673409245980641693041362105818099065112161
68762318630818311867 
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4. Factor the following integer, knowing that it is the power of a prime number. What 
is the expected number of steps to factor an integer of this form? 

 

5. To speed-up verification time for multiple RSA signatures, rather than verifying each 

signature independently, one can check the following equality: (∏ 𝑠𝑖
𝑘
𝑖=1 )

𝑒
=

∏ ℎ(𝑚𝑖)𝑘
𝑖=1  (this is called batch verification). This method is fast as it requires a single 

modular exponentiation, in contrast to k exponentiations (and indeed modular 
exponentiation is the most expensive computational step in verifying signatures). 
However, there is a problem with this method: show that given multiple signatures 
{𝑠1, 𝑠2, … , 𝑠𝑘 } corresponding to a set of messages {𝑚1, 𝑚, … , 𝑚𝑘  } one can produce a 
fake set of signatures that passes the batch verification test but no signature will hold 
for any of the messages in particular.  

 

6. Prove the equivalence between the following computational problems: RSA-Key, 
computing Euler-Phi and Integer Factorization.  

 

 

Note. Since there is no method in the Java.BigInteger class for computing integer 

square roots, you may recycle the naive code below. 

 

 

 
n= 
1412121655904559272391372547028455291589329729954595551258669512277
0931673525642809374899750759599902194861123590215515956690880367223
6782701780153260648702410644513576680061002271472311778912389401527
8870040434452846004485093642675885009807658579541139272020261525991
6568029436599814044031229151775310358906532007112584154431330139440
8906580430629631327415853437044184526066718512464557009387552200433
0140817631416034869890537888261433693978718361566731421862575341925
9203124994887398592090289570466328291725708474859718918318673622960
749 
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//recursively searches for the sqr root of a in interval [left, right] 

private static BigInteger NaiveSquareRootSearch(BigInteger a, BigInteger left, 
BigInteger right) 

    { 

        // fix root as the arithmetic mean of left and right 

        BigInteger root = left.add(right).shiftRight(1); 

        // if the root is not between [root, root+1],  

       //is not an integer and root is our best integer approximation 

if(!((root.pow(2).compareTo(a) == -
1)&&(root.add(BigInteger.ONE).pow(2).compareTo(a) == 1))){ 

            if (root.pow(2).compareTo(a) == -1) root = NaiveSquareRootSearch(a, root, 
right); 

            if (root.pow(2).compareTo(a) == 1) root = NaiveSquareRootSearch(a, left, 
root); 

        } 

        return root; 

    } 

     

public static BigInteger SquareRoot(BigInteger a) 

{ 

    return NaiveSquareRootSearch(a, BigInteger.ZERO, a); 

} 
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 CRYPTOGRAPHY IN JAVA: SYMMETRIC AND 

ASYMMETRIC ENCRYPTIONS, PASSWORD BASED KEY-

DERIVATIONS 

 

The first subject of this section is understanding how encryption functions 

work in Java. Compared to .NET encryption is done a bit differently but it is not at all 

hard to do and more, there are external libraries, e.g., Bouncy Castle Crypto APIs, which 

have extensive support for many encryption functions that are not available in .NET. 

Moreover, the entire code is open source! For this reason you may prefer to work in 

Java, while for simplicity you may choose .NET.  

Another subject that we reach in this section is how to generate keys. 

Password based key derivations and randomness are essential tools for generating 

cryptographic keys. The security of any cryptosystem ultimately depends on the 

randomness of the key, if the key is easy to guess, then the cryptosystem is trivially 

broken. Both these primitives are also available in the .NET framework, as well as the 

encryption primitives that we discussed in .NET have instances in Java.  

7.1 SYMMETRIC AND ASYMMETRIC ENCRYPTION: AES, DES AND RSA 

According to the Java SE (Standard Edition) documentation, see 

http://docs.oracle.com/javase/, the following algorithms are supported by the Cipher 

class: 

 AES/CBC/NoPadding (128) 

 AES/CBC/PKCS5Padding (128) 

 AES/ECB/NoPadding (128) 

 AES/ECB/PKCS5Padding (128) 

 DES/CBC/NoPadding (56) 

 DES/CBC/PKCS5Padding (56) 

 DES/ECB/NoPadding (56) 

 DES/ECB/PKCS5Padding (56) 

 DESede/CBC/NoPadding (168) 

 DESede/CBC/PKCS5Padding (168) 

 DESede/ECB/NoPadding (168) 

 DESede/ECB/PKCS5Padding (168) 

 

http://docs.oracle.com/javase/
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 RSA/ECB/PKCS1Padding (1024, 2048) 

 RSA/ECB/OAEPWithSHA-1AndMGF1Padding (1024, 2048) 

 RSA/ECB/OAEPWithSHA-256AndMGF1Padding (1024, 2048) 

Key sizes are available in parentheses, the mode of operation and padding are 

also specified. This is not much more support when compared to the .NET framework, 

we have the same DES, 3DES, AES and RSA suite. Fortunately, there are also many 

public extensions of Java so there are many others cryptographic functions, modes of 

operations or paddings supported by external implementations. One of the leading 

packages is the Bouncy Castle Crypto package, see 

https://bouncycastle.org/specifications.html , which has extensive support for many 

other constructions, e.g., IDEA, Serpent, RC4, in its Cipher class. There is clearly much 

more support for cryptography in Java than .NET, but it is also true that for regular 

applications it is unlikely that you will need more than the standard AES, 3DES and RSA. 

To perform encryption and decryptions you first need to add some imports 

required for the objects that you are going to use as well as for the exceptions that are 

going to be thrown. These are summarized in Table 1. Besides the Cipher class from 

which all cryptosystems derive, you need to handle keys with Key, KeyPair and 

KeyPairGenerator classes then to randomly generate them with the SecureRandom 

class, please refer to the online documentation for more information.  

 
import java.security.Key; 

import java.security.KeyPair; 

import java.security.KeyPairGenerator; 

import java.security.Security; 

import java.security.SecureRandom; 

import javax.crypto.Cipher; 

 

import java.security.InvalidKeyException; 

import java.security.NoSuchAlgorithmException; 

import javax.crypto.BadPaddingException; 

import javax.crypto.IllegalBlockSizeException; 

import javax.crypto.NoSuchPaddingException; 

import javax.crypto.ShortBufferException; 

https://bouncycastle.org/specifications.html
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Table 1. Some imports required in Java for the encryption 

To perform encryption the paradigm is a bit different to that of .NET but not 

necessarily harder while the result is the same. To initialize a cipher object with a 

particular encryption scheme you will simply call a new instance with: 

 

Cipher myAES = Cipher.getInstance("AES/ECB/NoPadding"); 

 

Then you will have to initialize this to work either in encryption or decryption 

mode as follows: 

 

myAES.init(Cipher.ENCRYPT_MODE, myKey); 

myAES.init(Cipher.DECRYPT_MODE, myKey); 

 

Encryption and decryption work by simply updating the input with the 

plaintext (or ciphertext in case of decryption) and then calling the doFinal method for 

the remaining blocks (if any). The doFinal method returns the number of bytes stored 

in the buffer and the same is done by the update method. This is all summarized in 

Table 2. 

import javax.crypto.spec.SecretKeySpec; 

import javax.rmi.CORBA.Util; 

 

 
byte[] keyBytes = new byte[16]; 

// declare secure PRNG 

SecureRandom myPRNG = new SecureRandom(); 

// seed the key 

myPRNG.nextBytes(keyBytes); 

// build the key from random key bytes 

SecretKeySpec myKey = new SecretKeySpec(keyBytes, "AES"); 
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Table 2. Example of AES encryption and decryption in Java 

For asymmetric encryption or decryption the procedure is similar. The only 

distinction is that you now have to deal with two keys: a public and private one. For this 

// instantiate AES object for ECB with no padding 

Cipher myAES = Cipher.getInstance("AES/ECB/NoPadding"); 

// initialize AES objecy to encrypt mode 

myAES.init(Cipher.ENCRYPT_MODE, myKey); 

// initialize plaintext 

byte[] plaintext = new byte[16]; 

//initialize ciphertext 

byte[] ciphertext = new byte[16]; 

// update cipher with the plaintext 

int cLength = myAES.update(plaintext, 0, plaintext.length, ciphertext, 
0); 

// process remaining blocks of plaintext 

cLength += myAES.doFinal(ciphertext, cLength); 

// print plaintext and ciphertext 

System.out.println("plaintext: " + 
javax.xml.bind.DatatypeConverter.printHexBinary(plaintext)); 

System.out.println("ciphertext: " + 
javax.xml.bind.DatatypeConverter.printHexBinary(ciphertext)); 

// initialize AES for decryption 

myAES.init(Cipher.DECRYPT_MODE, myKey); 

// initialize a new array of bytes to place the decryption 

byte[] dec_plaintext = new byte[16]; 

cLength = myAES.update(ciphertext, 0, ciphertext.length, dec_plaintext, 
0); 

// process remaining blocks of ciphertext 

cLength += myAES.doFinal(dec_plaintext, cLength); 

// print the new plaintext (hopefully identical to the initial one) 

System.out.println("decrypted: " + 
javax.xml.bind.DatatypeConverter.printHexBinary(dec_plaintext)); 
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reason you now have a KeyPair object to store the pair of keys, you Key objects to store 

individually the private or public key (when needed for wither decryption or 

encryption) and of course the KeyPairGenerator object to generate these keys. Table 

3 summarizes the source code for the procedures. 

Table 3. Example of RSA encryption and decryption in Java 

 
 

// get a Cipher instance for RSA with PKCS1 padding 

Cipher myRSA = Cipher.getInstance("RSA/ECB/PKCS1Padding"); 

// get an instance for the Key Generator 

KeyPairGenerator myRSAKeyGen = KeyPairGenerator.getInstance("RSA"); 

// generate an 1024 bit key 

myRSAKeyGen.initialize(1024, myPRNG); 

KeyPair myRSAKeyPair= myRSAKeyGen.generateKeyPair(); 

// store the public and private key individually 

Key pbKey = myRSAKeyPair.getPublic(); 

Key pvKey = myRSAKeyPair.getPrivate(); 

// init cipher for encryption 

myRSA.init(Cipher.ENCRYPT_MODE, pbKey, myPRNG); 

// encrypt, as expected we encrypt a symmetric key with RSA rather than 
a file or some longer stream which should be encrypted with AES         

ciphertext = myRSA.doFinal(keyBytes); 

// init cipher for decryption        

myRSA.init(Cipher.DECRYPT_MODE, pvKey); 

// decrypt 

plaintext = myRSA.doFinal(ciphertext); 

System.out.println("plaintext: " + 
javax.xml.bind.DatatypeConverter.printHexBinary(plaintext)); 

System.out.println("ciphertext: " + 
javax.xml.bind.DatatypeConverter.printHexBinary(ciphertext)); 

System.out.println("keybytes: " + 
javax.xml.bind.DatatypeConverter.printHexBinary(keyBytes)); 
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7.2 GENERATING KEYS: PASSWORD BASED KEY DERIVATION 

Humans are not at all efficient in remembering, e.g., storing in mind, 

cryptographic random keys. But it happens that humans are better in remembering 

passwords or even longer sentences if these have some sense, i.e., passphrases. The 

issue with these is that they are generally incompatible with the format required for a 

cryptographic key. For example, an AES key has exactly 128 bit, but imagine that 

password can have 18 characters which require 144 bits for storing.  The 18 character 

passwords have little chances in having 128 bits of entropy, i.e., being more secure than 

128 bits picked at random, but is clearly easier to remember. If we truncate the 18 

character password to 16 characters it will fit the 128 bits of the ley but it is a pity to 

lose the additional bits of entropy.  Password based key derivation (PBKD) is here to 

help.  

The main idea behind PBKD is to use a hash function in order to get an output of 

fixed size. But besides this hash function there are two more ingredients which you 

already met in the section dedicated to the UNIX password authentication system:  

i) Salts, which and are used to prevent off-line guessing attacks, 

ii) Iterations, which are used to make testing for each password more 

intensive and to hinder the adversary. 

Both the salt and the iterations value are public and they not need to be kept 

secret. 

The example provided in Table 1 shows how to generate a 128 bit key for AES by 

using a fixed password, a randomly generated salt and a fixed number of iterations. The 

number of iteration makes the key harder to crack by an adversary. The point is that a 

user will generate this key rarely, e.g., for each login, so waiting 10.000 iterations can 

take milliseconds which go unnoticeable. For an adversary however, the same 

procedure must be repeated for each password it tries, thus hindering the exhaustive 

search.  

 
char[] password = "short_password".toCharArray(); 

byte[] salt = new byte[16]; 

int iteration_count = 10000; 
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Table 3. Example of password based key derivation for 128 bit AES with HMAC-

SHA1 from password, random salt and 10000 iterations 

7.3 EXERCISES 

1. Write a program that performs encryption in CBC mode then in OFB and CFB  by 
using a key that is generated from a user’s password. Please remember to correctly set 
the IVs.  

2. Write a program that derives keys from passwords and displays the computational 
time required for generating the password and the computational time required by an 
adversary to break the password by considering l iterations for password generation 
and passwords of k bit entropy. 

  

 

 

int key_size = 128; 

// set salt values to random         

myPRNG.nextBytes(salt); 

         

// initialize key factory for HMAC-SHA1 derivation 

SecretKeyFactory keyFactory = 
SecretKeyFactory.getInstance("PBKDF2WithHmacSHA1");             

// set key specification 

PBEKeySpec pbekSpec = new PBEKeySpec(password, salt, iteration_count, 
key_size); 

// generate the key 

SecretKey myAESPBKey = new SecretKeySpec( 
keyFactory.generateSecret(pbekSpec).getEncoded(), "AES"); 

// print the key 

System.out.println("AES key: " + 
javax.xml.bind.DatatypeConverter.printHexBinary(myAESPBKey.getEnc
oded())); 
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