Chapter 3. HASH FUNCTIONS AND MAC CODES IN .NET

This section presents the hash functions and their immediate derivative
Message Authentication Codes (MAC) that are supported by the .NET framework. We
also make use of random number generators.

The .NET framework supports the now deprecated but still largely used MD5
(128 bit) and SHA1 (160 bit). Besides these, there is also support for the (soon to be
replaced) current standard SHA2 in all three output sizes 256, 384 and 512 bit and the
less frequent RIPEMD (160 bit).

MACs (Message Authentication Codes) are also named keyed hash functions
since they are built from a hash function with the use of a secret key. But there are also
exceptions to this rule and it happens for MAC codes to be built from symmetric
encryption functions rather than hash functions. The .NET framework contains one
such exception which is the MACTripleDES, a MAC code build on 3DES. The other MAC
code that is supported by .NET is HMAC, which is indeed a keyed hash function and the
preferred alternative, it can be built on any of the hash functions available in the
framework: MD5, SHA1, SHA2 or RIPEMD. Figure 1 shows the class organization for
hash algorithms and MAC codes, we can see again the distinction between abstract and
concrete classes.

3.1 — Hash Functions 33

Abstract

‘ Hash Algorithm ‘

‘ KeyedHashAlgorithm ‘ ‘ MD5 ‘ ‘ RIPEMD160 ‘ ‘ SHA1 ‘ ‘ SHA2 ‘
PAR ZF foomes mmmeeeeT ZF """"" e T """""""" % -
1]
’
: MD5CryptoService SHA1
H Pl}g?/ider RISPeErC?iLG;g(V:iLygo CryptoServiceProvider | | SHA2Managed
: / Managed
H
L]
.
:
' Concrete
L}
[}

HMAC t| MACTripleDES

:
L}
¢

HMAC: MD5/

SHA1/SHA2/

RIPEMD160

Figure 1. Hash functions and keyed hash functions in .NET

3.1 HASH FUNCTIONS

Hash functions are derived from the abstract class HashAlgorithm located in
the aforementioned System.Security.Cryptography namespace. Some properties and
methods are outlined in Tables 1 and 2.

Get/Set Type Brief Description

Bit size of the input block, returns 1
InputBlockSize g Int 1t Stz I . !

unless overwritten

Bit size of the output block, returns 1
OutputBlockSize g Int . >

unless overwritten
HashSize g Int Bit size of the hash
Hash g Byte[] Value of the hash

Table 1. Some properties for hash functions in .NET

34 Hash Functions and MAC Codes in .NET - 3

Return type Brief Description

Creates the object (SHA1 is the
default instance)

Creates the object with the string
specifying the name of the

Create() HashAlgorithm

Create(String) HashAlgorithm
particular implementation given as
string (MD5, SHA1, etc.)

ComputeHash(Byte[]) Bytel] glf)rr:yputes the hash from a byte

ComputeHash(Stream) Bytel] Computes the hash from a stream
object

ComputeHash(Byte[], Bytel] Computes the hash from a specific

Int32, Int32) y region of a byte array

'-I'ransf R A) Computes the hash of a specified

I, region of a byte array and copies

int inputOffset, g vt y P

Int the region to the specified region of

int inputCount,

byl s,
int outputOffset) ’
TransformFinalBlock(byte[] Computes the hash of a specified
inputBuffer, Byte(] region of a byte array, returns a
int inputOffset, copy a of the part of the input that
int inputCount) is hashed

Table 2. Some methods for hash functions in .NET

To compute the hash of a byte array or stream you can simply call the
ComputeHash method as outlined in Table 3. In this example we also used a
RandomNumberGenerator object to generate some arbitrary values that are later
hashed. To generate random values, you simply have to create a
RandomNumberGenerator object and make a call to the GetBytes method on a specific
byte array.

3.2 — Keyed Hash Functions 35

MD5CryptoServiceProvider myMD5 = new MD5CryptoServiceProvider();
RandomNumberGenerator rnd = RandomNumberGenerator.Create();
byte[] input = new byte[20];

byte[] hashValue;

//generates some random input

rnd.GetBytes(input);

//computes the hash

hashValue = myMD5.ComputeHash(input);

Table 3. Example for generating some random bytes and computing their
hash

In Table 4 we then show how to compute the hash of a given file, this is a
frequently used procedure to check the integrity of files, or to compare if two files (or
objects) are the same, as only identical objects can hash to the same value (assuming
the hash function is collision free).

FileStream fileStream = new FileStream("C:\\TEMP\\x.pdf",
FileMode.Open);

fileStream.Position = 9;

hashValue = myMD5.ComputeHash(fileStream);

Table 4. Example for computing the hash of a given file

3.2 KEYED HASH FUNCTIONS

The .NET framework provides an implementation for the HMAC keyed hash
function. The properties and methods for KeyedHashAlgorithm objects are almost
identical to that of HashAlgorithm (a class which they do inherit). The only additional
property, is the one to get or set the key as outlined in Table 5.

Get/Set Type Brief Description

Key g/s Byte[] Value of the key for the HMAC

Table 5. The Key property of keyed hash algorithms in .NET

36 Hash Functions and MAC Codes in .NET - 3

In Tables 6 and 7 we show how to instantiate a HMAC with a particular hash
function, how to generate the authentication tag with ComputeMAC(byte[] mes, byte[]
key) and then verify it with CheckAuthenticity(byte[] mes, byte[] mac, byte[] key).

private HMAC myMAC;

public MACHandler(string name)

{

if (name.CompareTo("SHA1") == @) { myMAC = new

System.Security.Cryptography.HMACS
HAL(); }
if (name.CompareTo("MD5") == @) { myMAC = new
System.Security.Cryptography.HMACM
D5(); }
0) { myMAC = new
System.Security.Cryptography.HMACR
IPEMD160(); }
if (name.CompareTo("SHA256") == @) { myMAC = new
System.Security.Cryptography.HMACS
HA256(); }

if (name.CompareTo("SHA384") == @) { myMAC = new
System.Security.Cryptography.HMACS
HA384(); }

if (name.CompareTo("SHA512") == @) { myMAC = new
System.Security.Cryptography.HMACS
HA512(); }

if (name.CompareTo("RIPEMD")

Table 6. Creating a HMAC object with a particular hash function

public bool CheckAuthenticity(byte[] mes, byte[] mac, byte[] key)

{
myMAC.Key = key;
if (CompareByteArrays(myMAC.ComputeHash(mes), mac, myMAC.HashSize /
8) == true)
{

return true;

else

{

3.3 — Hash Functions and MAC Codes as CryptoStreams 37

return false;

}
}
public byte[] ComputeMAC(byte[] mes, byte[] key)
{

myMAC.Key = key;
return myMAC.ComputeHash(mes);

}

public int MACByteLength()

¢ return myMAC.HashSize / 8;

}

private bool CompareByteArrays(byte[] a, byte[] b, int len)
{

for (int i = @; i < len; i++)
if (a[i] != b[i]) return false;
return true;

}

Table 7. Computing the HMAC and then verifying the authenticity of a message

3.3 HASH FUNCTIONS AND MAC CODES AS CRYPTOSTREAMS

A final trick that may be useful to know is that you can pass hash functions or
HMAC s as transformations embedded into CryptoStreams. In Table 8 we show such an
example. The streams that we use will not store the data that is written into them, i.e.,
they receive Stream.Null at initialization. In order to retrieve the hash or HMAC value
we then simply call the Hash property of the cryptographic objects, i.e., hmac.Hash and
hash.Hash.

RandomNumberGenerator rnd = RandomNumberGenerator.Create();
byte[] key = new byte[16];

rnd.GetBytes (key);

byte[] input = new byte[20];

rnd.GetBytes(input);

HMACSHA256 hmac = new HMACSHA256(key);
SHA256Managed hash = new SHA256Managed();

38 Hash Functions and MAC Codes in .NET - 3

CryptoStream cs_hmac = new CryptoStream(Stream.Null, hmac,
CryptoStreamMode.Write);
CryptoStream cs_hash = new CryptoStream(Stream.Null, hash,
CryptoStreamMode.Write);

cs_hmac.Write(input, @, input.Length);
cs_hmac.Close();

cs_hash.Write(input, @, input.Length);
cs_hash.Close();

Table 8. Example for HMACSHA256 and SHA256 used in CryptoStreams

3.4 EXERCISES

2. Write a C# application that allows a user to select a Hash or HMAC algorithm from
a Combo Box, generate keys (in case of HMAC), hash messages and verify (in case of
HMAC) their hashes. Display the plain text and hash both in ASCIl and HEX; also display
the time required by the hash and HMAC operations. A suggestion for starting the
interface is below, but feel free to modify it at will. Results should be presented in a
tabular form as shown below.

- b
okl MAC Test (== o

Key
SHAT - Ascll | |

PlainText

|)

MAC

| |

HEX | |

3.4 — Exercises 39

] -]] -] -]

2|35 |82 |85 |22 |8%|5% |58 |22 |29

I8 |28 |28 (<8 | €8 <8| <98 |28 |29 |WE

e | vs [TL | IS o IS(TL [T& 2L |[&F

s ”n ns ”n ns| n ns s
second
s/block
bytes/s
econd
(from
RAM)
bytes/s
econd
(from
HDD)

Table 9. Computational cost for hash functions

2. Write a program that searches, by generating random values, for hashes that have
all the last k bits set to 0 (k is given as parameter by the user). Give an estimation to
find such values for a given k.

Remark. You can recycle some of the code below for the interface of exercise 1.

private void buttonCompute_Click(object sender, EventArgs e)
{
MACHandler mh = new MACHandler(comboBoxMAC.Text);
byte[] mac =
mh . ComputeMAC (myConverter.StringToByteArray(textBoxPlain.
Text),myConverter.StringToByteArray (textBoxKey.Text));
textBoxMAC.Text = myConverter.ByteArrayToString(mac);
textBoxMACHEX. Text = myConverter.ByteArrayToHexString(mac);

}

private void buttonVerify_Click(object sender, EventArgs e)

{

MACHandler mh = new MACHandler (comboBoxMAC.Text);

40 Hash Functions and MAC Codes in .NET - 3

if
(mh.CheckAuthenticity(myConverter.StringToByteArray(textB
oxPlain.Text),
myConverter.HexStringToByteArray(textBoxMACHEX. Text),myCo
nverter.StringToByteArray(textBoxKey.Text)) == true)
{
System.Windows.Forms.MessageBox.Show("MAC OK I'!1");
}
else
{
System.Windows.Forms.MessageBox.Show("MAC NOT OK !!1");
}

