
Accommodating Time-Triggered Authentication
to FlexRay Demands

Pal-Stefan Murvay
Politehnica University of Timisoara

Timisoara, Romania
pal-stefan.murvay@aut.upt.ro

Lucian Popa
Politehnica University of Timisoara

Timisoara, Romania
lucian.popa@aut.upt.ro

Bogdan Groza
Politehnica University of Timisoara

Timisoara, Romania
bogdan.groza@aut.upt.ro

ABSTRACT
Research efforts related to in-vehicle communication security were
largely focused on the Controller Area Network (CAN) protocol.
While CAN is still the most widely used protocol for building in-
vehicle networks, many safety critical functionalities are based
on other communication protocols such as FlexRay or Ethernet
which constantly expand their use inside vehicles. In this paper
we address the problem of authenticating transmissions in FlexRay
networks. We approach this task by adapting an authentication
protocol to the time-triggered nature of FlexRay communication
while also accounting for non-deterministic transmissions that may
occur in the FlexRay dynamic segment. We illustrate the effects of
introducing authentication on keeping strict message deadlines by
evaluating our proposal based on a real-life scenario from a major
vehicle manufacturer.

CCS CONCEPTS
• Security and privacy→ Security protocols; •Computer sys-
tems organization → Embedded systems;

KEYWORDS
automotive, security, FlexRay, authentication
ACM Reference Format:
Pal-Stefan Murvay, Lucian Popa, and Bogdan Groza. 2019. Accommodat-
ing Time-Triggered Authentication to FlexRay Demands. In Central Eu-
ropean Cybersecurity Conference (CECC 2019), November 14–15, 2019, Mu-
nich, Germany. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
3360664.3360666

1 INTRODUCTION AND MOTIVATION
Considerable effort was dedicated, both by the academic commu-
nity and industrial sector, into designing security mechanisms for
in-vehicle communication as a result of the many reported attacks
[4, 10] on these automotive networks. However, existing works in
this area are largely focused on the Controller Area Network (CAN)
protocol which was targeted in most of the attacks and which is still
the most widely used protocol in the automotive industry. The fea-
tures of CAN are suitable for many current vehicular applications.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CECC 2019, November 14–15, 2019, Munich, Germany
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7296-1/19/11. . . $15.00
https://doi.org/10.1145/3360664.3360666

But there are some functional domains, such as power train, chassis
and advanced driver assistance systems, which provide safety criti-
cal functions that have higher requirements in terms of bandwidth
and reliability compared to CAN’s capabilities. Other technologies
such as FlexRay or automotive Ethernet were introduced to provide
the required communication capabilities for these functions.

In particular, FlexRay provides higher bandwidth and increased
reliability for time-critical applications. Like other wired in-vehicle
communication protocols, FlexRay also lacks in terms of security
mechanisms. The earliest mentions of exploitable FlexRay vulnera-
bilites date from 2004 [20]. Since then, other works have illustrated
attacks on FlexRay communication using either simulations [12]
or actual experimental implementations [11] of FlexRay networks.
Since FlexRay is almost entirely used in safety critical applications,
attacks on FlexRay communication will have serious implications
on human safety (i.e. driver, passenger or other traffic participants).

In this paper we focus on the security of FlexRay by address-
ing the topic of authenticated communication. We consider an
authentication protocol based on symmetric primitives and one-
way key-chains as main building blocks. We take advantage of
the time-triggered nature of FlexRay communication by utilizing
keys associated to time intervals. Key distribution and different
approaches for leveraging communication and computational over-
heads are discussed. We also illustrate the impact of the authentica-
tion mechanisms on the ability to keep deadlines by experimenting
on a setup built after the specification of a real-life scenario. We
continue by presenting related work and FlexRay protocol basics
in sections 2 and 3 respectively. Section 4 presents our proposal for
approaching authentication in FlexRay networks and discusses the
security of the proposed scheme. Finally, in section 5, we present
experimental results before giving our conclusion.

2 RELATEDWORK
There are several lines of work that tackled the issue of authentica-
tion in FlexRay or other time-triggered networks. Szilagyi et al. [16]
discusses the use of Message Authentication Codes (MACs) and
keys shared between node pairs for authentication in time-triggered
networks. The main disadvantage of their approach is that it in-
troduces a considerable communication overhead by transmitting
one MAC for each receiver node. Another work on time-triggered
systems [19] uses a variant of the TESLA protocol [13] with hash
key chains and timed release of keys. Computational and memory
overheads are presented based on several ARM platforms, how-
ever, the authors indicate that the computational overhead might
be too large for real-life applications requiring the use of stronger
processors or cryptographic hardware.

https://doi.org/10.1145/3360664.3360666
https://doi.org/10.1145/3360664.3360666
https://doi.org/10.1145/3360664.3360666

CECC 2019, November 14–15, 2019, Munich, Germany P.-S. Murvay et al.

In [17] a range of broadcast authentication protocols proposed
for CAN were mapped and evaluated on a FlexRay based simulated
network. The paper presents computational and communication
overheads for each case. On the downside, no adaptions of the
protocols was done to better fit the FlexRay communication model.

Püllen et al. investigate in [15] the useMACs and hash key-chains
to achieve frame authentication. They discuss different strategies for
MAC transmission and sharing hash chain seeds between recipient
nodes while associating keys to time slots. However, there are less
discussions on the practical performance of the proposed schemes.
In fact, a common shortcoming of all the previous works is the
lack of an evaluation for the authentication overhead on schedule
deadlines based on real-life scenarios.

Other lines of work addressed the problem of scheduling of the
FlexRay communication. The scheduling problem for a FlexRay net-
work using the TESLA authentication protocol is discussed in [7].
Under the assumption that some network nodes can be equipped
with Hardware Security Modules (HSMs) to reduce the computa-
tional overhead, the authors determine the minimum number of
HSMs required depending on the message deadlines and number
of tasks running in the network. Since the main focus of the paper
was on formulating and solving the scheduling problem, details on
efficient deployment of TESLA for FlexRay are limited.

3 THE FLEXRAY PROTOCOL
The FlexRay protocol was developed by a consortium of represen-
tative companies from the automotive sector. A new protocol was
needed since CAN, the de facto standard for automotive commu-
nication, proved its limitations in fulfilling the requirements of
modern high-performance and safety-critical applications. To com-
ply with timing requirements of safety-critical functions, FlexRay
was designed to offer deterministic transmissions following a time-
triggered communication model. Moreover, FlexRay provides fault-
tolerance by means of its fault detection and confinement mecha-
nisms as well as through channel redundancy. Each FlexRay node
comes with two channels each capable of bit rates of up to 10Mbit/s.
If redundancy is not required, simultaneous transmission on both
channels is possible allowing overall bit rates of up to 20Mbit/s.

At the physical layer [1] FlexRay is implemented as a two-
wire differential line. Various topologies can be employed to build
FlexRay-based networks ranging from bus to active or passive star.
Hybrid topologies are also possible as long as propagation delays
between network nodes that are farthest apart from one another
comply with the FlexRay specification.

The largest part of the FlexRay protocol is defined in the Data-
Link layer specification [2]. This document describes the communi-
cation cycle and frame format which we detail next.

3.1 Communication cycle
FlexRay uses a TDMA (Timed DivisionMultiple Access) mechanism
to establish node access to the communication medium. Accord-
ingly, the communication follows a cyclically executed predefined
schedule based on the FlexRay communication cycle. The commu-
nication schedule is defined off-line during network design and has
to be adopted by all nodes for a collision-free communication.

Figure 1: The FlexRay communication cycle (a) and frame
structure

At the macro-level, a FlexRay communication cycle, depicted in
Figure 1 (a), consists of 4 sections: static segment, dynamic segment,
symbol window and network idle time (NIT). Out of these, only the
static segment and NIT are mandatory. The predefined size of each
of these segments is always the same in each communication cycle.

The main body of the traffic, following a time-triggered model,
takes place in the static segment which is divided in a number of
static slots each of which can accommodate a single frame transmis-
sion. Static slots are equal in size, therefore, all frames transmitted
in these slots have the same payload length. Static slots are uniquely
assigned to nodes according to the communication schedule.

The role of the dynamic segment is to provide support for non-
deterministic (i.e. event-triggered) transmissions. This is achieved
by dividing the segment in a fixed number of so-called minislots.
Minislots are then allocated, in a priority based manner, upon re-
quest for the transmission of dynamic messages. Thus, the dynamic
frame with the lowest value ID (highest priority) will be expected
to start in the first minislot. If this happens, then the number of
minislots required to transmit the whole frame is allocated for this
purpose provided that sufficient minislots are available. If the frame
transmission does not start, the slot is consumed and the following
frame ID is expected in the next available minislot. This continues
until the number of available minislots is not sufficient to accommo-
date a frame transmission. This handling enables the transmission
of different size frames in the dynamic segment.

The symbol window is used for special transmissions employed
mainly in the node wake-up process. At the end of each cycle a NIT
segment is required to allow nodes to perform synchronization and
communication management operations.

3.2 Frame format
The format of the FlexRay frame, illustrated in Figure 1 (b) , was
designed to assure integrity and increased data throughput. The
logical frame structure is the same for both static and dynamic
segment transmissions. It features an 11 bit CRC dedicated to the
frame header and an additional 24-bit CRC for the entire frame. The
header indicates the type of frame, the ID (which corresponds to
the slot dedicated for the frame transmission), the payload length
and the current cycle count. The data field can hold up to 254 bytes
of actual data. The payload size is always a multiple of 2 bytes as a
consequence of the design decision of denoting payload lengths of
up to 254 bytes using a 7 bit length field.

Additional bit fields are added at the start and end of frame as
well as before each byte for additional support for coping with
synchronization related problems.

Accommodating Time-Triggered Authentication
to FlexRay Demands CECC 2019, November 14–15, 2019, Munich, Germany

Table 1: FlexRay communication parameters of three industrial use cases from major automotive manufacturers

System Node count Bit rate Cycle duration Static segment Dynamic segment
Duration Slots Frame payload Message cycle Duration Frame Payload

BMW 7 series [3] 15 10Mbit/s 5ms 3ms 91 16 bytes 2.5, 5, 10, 20, 40 ms 1.99ms 2-254 bytes
Unkn. X-by-Wire [21] 10 10Mbit/s 1/8ms 0.77/7.77ms* 22/222 26 bytes* 1, 8ms 0.23ms* 2-254 bytes*
Ford prototype [14] 8 10Mbit/s 5ms 4ms 24 156 bytes∗ 2.5, 5, 10ms 1ms 2-254 bytes*

* Values not directly extracted from the cited sources but calculated based on other specified parameters

4 AUTHENTICATING FLEXRAY
COMMUNICATION

4.1 Challenges
Designing authentication mechanisms for FlexRay networks comes
with the specific challenges of time-triggered networks. Strict mes-
sage arrival deadlines, which are often as low as several millisec-
onds, must be kept.

To better illustrate the strict timing requirements we list the
communication parameters of three industrial FlexRay use cases
in Table 1. The first [3] corresponds to a real-life implementation
running on BMW7 series vehicles while the other two [14, 21] come
from prototypical implementations of two other major automotive
companies. The three use cases utilize cycle times for static segment
messages in the order of milliseconds to tens of milliseconds with
the lowest cycle time at 1ms.

Upon adding authentication, the time required by a message
to be available at its destination consists of the timings required
to perform the following operations: generation of the data to be
transmitted, authentication information generation, data transmis-
sion, authenticity verification. With the authentication mechanism
in place, even the shortest message deadline of the use cases in
Table 1 (i.e. 1ms) must be still fulfilled to allow the functioning of
the underlying functionality. To achieve this, the authentication
protocol design must be considered alongside with the employed
embedded platforms.

Automotive-grade embedded platforms are limited both in com-
putational power and available memory when compared to a con-
ventional PC or even some modern smart mobile devices. This adds
to the challenge of bringing cryptography inside vehicles.

4.2 Protocol design considerations
Given the constraint nature of automotive embedded platforms we
take steps towards alleviating these limitations by making several
design choices for a FlexRay authentication protocol.

Key distribution. To eliminate additional overhead generated
by key distribution operations during system operation we perform
these tasks in the off-line state, i.e., when the car is not in use. A
central or master node, which can be represented by the active star
coupler (in active star topologies) or a gateway node, is in charge
of distributing keys to all other network nodes. We assume that
the master node is equipped with superior storage capability and
cryptographic processing power in comparison to other network
nodes. The key distribution process can be performed either at the
end of a driving session (i.e., after the engine is stopped and car is
locked) or when a new driving session is started (i.e., after the car
is unlocked). The master must assure that, before a new driving

session starts, all nodes have sufficient keys to last for the longest
possible driving session. If, after a short driving session, sufficient
keys are still available on all nodes, the distribution process may
be skipped. The master node is responsible for evaluating current
key needs, generating new keys or key seeds (depending on the
requirements of the underlying authentication protocol) and trans-
mitting them to network nodes encrypted with the current valid
key in the chain corresponding to the recipient node. We discuss
more on this key distribution process in what follows.

A secret master key 𝐾𝑖 , shared between each node 𝑖 = 1..𝑛 − 1
and the master, is generated and pre-programmed at production
time on all nodes. Rather than exposing this master key in the key-
distribution process, we also use one-way key chains. This makes a
potential attack on the master key harder as it is not directly used
in the subsequent keying process. The master shares with each of
the other network nodes a one way key chain SK𝑖 = {sk 𝑗

𝑖
| sk 𝑗

𝑖
=

𝐻 (sk 𝑗−1
𝑖

), 𝑗 = 1..𝑙}, 𝑖 = 1..𝑛 − 1. Here 𝐻 is a hash function, 𝑙 is the
key chain size and 𝑛 is the number of network nodes including the
master. The initialization value sk0𝑖 of each chain is computed by
means of secure derivation from some seed 𝑠 distributed by the
master to each sender and the master key 𝐾𝑖 , i.e., sk0𝑖 = KD(𝐾𝑖 , 𝑠).
Each node then generates and stores a key chain of predetermined
size. For example, considering a maximum driving session of 8
hours, a car that is running three times per day (excepting breaks
for fueling) for 15 years, an 𝑙 = 16470 is required. If all the chain
keys would be stored, a node will roughly require 258KB of memory
space to store a chain of 128 bit keys. By only storing intermediate
chain values and regenerating chain portions upon requirement,
the required memory can be reduced considerably. If the amount
of storage space still does not allow storing a key chain for the
entire vehicle lifetime, then chain reinitialization could be done
by secure reprogramming at the service during one of the routine
maintenance visits.

Adaptable use of cryptographic algorithms. Since message
cycles are short, we can use faster algorithms provided that they
have sufficient security for the short life-time of the message. For
this purpose, in the experimental section we provide performance
results for several cryptographic primitives.

For example, we also include MD5 which is known to have
collisions, but these do not affect the HMAC and its security level
may be sufficient at small cycle times.

Truncated authentication tags.We address the communica-
tion overhead issue by using truncated authentication tags. The
number of tag bits is adapted to message cycle duration (i.e., the
smaller the cycle the smaller the tag) while assuring that the security
level provided is sufficient for the target time interval. Authentica-
tion tag truncation is a common practice to reduce communication

CECC 2019, November 14–15, 2019, Munich, Germany P.-S. Murvay et al.

overhead. NIST specifies 64 bits as an acceptable size for a MAC tag
[6]. However, in some cases this may introduce greater overhead
than might be acceptable, e.g. in the BMW use case, a 64 bit tag
will cause a 50% increase in the frame payload. The same NIST
document covers the case of even smaller sized authentication tags
but does not recommend the use of tags less than 32 bits in size.
We tailor authentication tag sizes for each message type based
on message cycle duration, key validity duration and acceptable
probability of interpreting forged data as authentic. The likelihood
of accepting forged data can be calculated using the tag size and
number of times the same key is used for MAC generation [6].

Authentication tag transmission. Another step for reducing
communication overhead is efficient transmission of authentication
information. We propose two approaches: (i) transmit the tag in
the same frame as the corresponding data and (ii) aggregate all
tags generated by one sender in a separate frame. In the first case
immediate authentication is possible if the key is available on the
receiver side while in the second a receiver must buffer a message
until the tag frame is received. The second approach only improves
on communication overheads if the sender node has to transmit
sufficient tags to efficiently occupy the payload of a separate frame.

Time synchronization. The authentication mechanisms that
we discuss next require that network nodes have a common knowl-
edge of the current time. We rely on communication cycle slots
to assure a common time base since the FlexRay protocol would
not function unless nodes are synchronized. Therefore, the FlexRay
communication controller assures the synchronization process. A
small synchronization error (in the order of hundreds of nanosec-
onds) given by intrinsic network characteristics such as propagation
delay (which is under 400ns for the maximum allowed distance
between 2 FlexRay nodes). Although, fully relying on FlexRay
intrinsic features for synchronization reduces overhead, this in-
troduces a vulnerability to man-in-the-middle attacks which we
address in section 4.4.

4.3 Authentication variants
We investigate two approaches for authentication in FlexRay net-
works. The first is based on the TESLA broadcast authentication
protocol, while the second uses shared one-way chains for provid-
ing immediate authentication.

4.3.1 Timed release of keys. The principle of achieving authenti-
cation by first transmitting the message along with the authentica-
tion tag and later disclosing the key is employed by the well known
TESLA protocol [13]. For security reasons, a loose time synchro-
nization needs to be established between the sender and receiver
nodes in order to check that the keys are indeed released after the
arrival of the tag. For continuous authentication of packets, the
broadcasting period is divided into time intervals and a different
key is assigned to each interval. Additionally, the disclosed keys
must be authenticated. This is achieved by using a one way key
chain generated by the sender. The sender then sends the last gen-
erated value in the chain, through an authenticated channel, to
all receivers as the chain commitment. Receivers can authenticate
the keys disclosed in a certain time interval by performing a hash
over the key and comparing the result with the commitment, i.e.,

𝑘
𝑗
𝑖
= 𝐻 (𝑘 𝑗−1

𝑖
), 𝑗 = 1..𝑙 . The commitment is updated to the new key

𝑘
𝑗
𝑖
upon successful verification.
This approach is a good match to the FlexRay scenario. Firstly,

FlexRay requires time synchronization to function and assuring
synchronization is an inherent responsibility of the communication
controller. Secondly, the FlexRay communication is performed in
repeating cycles providing the time intervals to which keys are
associated. There are, however, two aspects to address for using
a TESLA-like approach for FlexRay: transmitting chain commit-
ments and handling delayed authentication. As previously stated,
in our approach, the master node handles key distribution. Thus,
to bootstrap authentication based on timed release of keys the
master node generates a random seed 𝑠 𝑗 for each sender node 𝑗
and broadcasts it encrypted with the current key sk 𝑗∗ from the
key chain shared with node 𝑗 . Both the sender and the master
nodes then generate a hash key chain of predetermined length.
The sender nodes will store this chain while the master only re-
tains the last generated chain value from each such chain as the
chain’s commitment. The commitments are then transmitted as a
single message along with authentication data for each receiver
node, i.e.𝑀𝑐𝑜𝑚𝑚 = {𝑐1, 𝑐2, ..., 𝑐𝑛−1, 𝑡1, 𝑡2, ..., 𝑡𝑛−1}, where each 𝑐𝑖 is
the key chain commitment for one of the 𝑛 − 1 sender nodes and
𝑡𝑖 = 𝑀𝐴𝐶 (sk 𝑗∗, 𝑐1 | |𝑐2 | |...| |𝑐𝑛−1), 𝑖 = 1..𝑛 − 1 are the MAC tags for
the 𝑛 − 1 receiver nodes.

The delayed release of keys also delays the authentication and
thus adds to the time until the actual data can be used on the receiver
side. This has to be factored in designing the communication cycle.
We propose transmitting the keys in a static slot following the slot
used to transmit the data and authentication tag but within the same
communication cycle. This assures a precise time interval for the
transmission of the key which is certain to follow the authentication
tag transmission interval so that the key cannot be sent before the
tag. For the case of frames in the dynamic segment, the same result
is obtained if the key is sent in the frame having 𝐼𝐷 = 𝐼𝐷𝑡𝑎𝑔 +
1, where 𝐼𝐷𝑡𝑎𝑔 belongs to the frame holding the corresponding
authentication tag. This assures that the key is sent in a separate
time interval after the tag and that no other higher priority (lower
𝐼𝐷 value) frames are transmitted before the key.

Regarding memory requirements, receivers only have to store a
key chain commitment for each sender while senders have to store
the entire key chain. For long key chains, memory requirements
may become a problem, however, different storage strategies exist
to prolong the protocol lifetime [5].

4.3.2 A hybrid approach with shared one-way key chains. The
main downside of the previous approach is the delayed authenti-
cation. By recognizing that certain nodes may have a higher trust
level than others, in this approach we utilize a one-way key chain
shared between a sender and some of the receivers. During the key
distribution process the master generates a random seed for each
sender node, encrypts it with the sender key and the keys of the
trusted receivers then transmits these values. The seeds are utilized
by each node to generate a one-way chain of predefined length.
Keys are then used in reverse order of generation to generate and
verify MACs, each key being valid for a predefined period of time.
This way message authentication can be immediately done by the
receivers who have a higher level of trust and are in possession of

Accommodating Time-Triggered Authentication
to FlexRay Demands CECC 2019, November 14–15, 2019, Munich, Germany

the key-chain while the rest have to wait for the timed release of
the key.

While having the benefit of providing immediate authentica-
tion, this approach also requires more storage space for trusted
receiver nodes since each receiver node has to store a one way
chain for each distinct sender from which it consumes messages.
The required storage space can be reduced, at the cost of introduc-
ing additional computational and/or communication overheads, by
using key chain based protocol life prolonging techniques such as
proposed in [8].

4.4 Security analysis
Attackermodel.We consider the case of an attacker that is able to
infiltrate the FlexRay network by either attaching a node to the net-
work or by compromising an existing node, e.g., by reprogramming.
The attacker is not able to retrieve any keys that might be stored on
the compromised nodes or obtain master node keys which are used
to distribute keys to other nodes. We consider that the attacker is
able to listen to all network traffic and inject messages. Note that
injecting messages in slots employed by legit nodes that have not
been removed from the network will always result in collisions [11]
making the actual injection impossible. We also consider the case
in which the attacker can act as a man-in-the-middle (MITM). This
can be achieved by either compromising an active star coupler or
interposing a node between two sections of the network.

Attack resilience.As shown by previous work [11], the success
of message injection attacks is first of all conditioned by the absence
of the legit sender of the injected messages. If the attacker manages
to overcome this, then the proposed authentication mechanisms
will prohibit spoofing and replay attacks as the attacker is not able to
generate valid authentication tags. However, a man-in-the-middle
(MITM) attacker could mount a cleverer attack on the TESLA-based
protocol as we discuss next. As a MITM, the attacker is responsible
of relaying all communication from the rest of the network to the
network segment targeted by the attack. The attacker could then
force the communication cycles of the attacked network segment to
lag behind the real communication by constantly delaying relay of
the synchronization frames coming from legit nodes from the rest
of the network. The delayed frames will still be accepted as valid as
long as they can be authenticated and the delay is not big enough
to completely break synchronization. This leads to the creation
of time domain cliques (i.e., groups of nodes in the same network
with common time-base within the clique but different compared to
others) a known problem in time-triggered networks [9]. If enough
delay is introduced, so that the attacker receives the disclosed keys
from the legit network before the expected arrival time of the
message and authentication tag on the receiver side, it can start
injecting its own messages. But such isolation of the receivers
in a distinct time-slot will hold only if the rest of the network
does not notice missing messages from the attacked segment as
such messages will not arrive as expected anymore because of the
increasing delays. If this happens, the nodes can signal an error or
even stop sending messages for the nodes in the attacked segment.
Another approach could be periodically signing message history
using short-term public keys like suggested in [18]. This kind of
attack will not be possible when using shared key-chains.

5 EXPERIMENTAL EVALUATION
5.1 Experimental setup
For evaluating the overheads introduced by adding FlexRay authen-
tication, we implemented a scaled-down setup configured based on
the FlexRay communication parameters employed in BMW 7 series
vehicles [3]. We selected this scenario because it represents an ac-
tual implementation in existing vehicles in contrast with the other
previously mentioned scenarios which only represent prototypical
implementations of FlexRay networks.

Scaled network model. Our setup consists in a two node net-
work following the communication parameters as described in the
first line of Table 1: 10Mbit/s bit rate, 5ms cycle with 3ms allocated
for the 91 slots in the static segment each holding a frame with 16
bytes of payload and a 1.99ms dynamic segment. We focus on the
messages with lowest cycle times of 2.5, 5 and 10ms, i.e. messages
sent twice per cycle, once per cycle and once every two cycles
respectively since longer deadlines would be easier to keep. A sec-
ond communication cycle is configured based on the initial one to
accommodate payloads of 20 bytes in static slots for transmitting a
32 bit authentication tag and the message in a single frame. This
adaption resulted in the decrease of the number of static slots from
91 to 81, while keeping all other settings. More slots could be con-
figured in the same static segment time span if reducing slot idle
times but this will restrict maximum network length ([3] considers
a maximum cable length of 24 meters).

Even with the use of a reduced network model, our performance
results still give a realistic depiction on the behavior of a full net-
work implementation. The presence of other nodes will not affect
communication during the static segment since each node only
transmits in its allocated slot while additional traffic in the dynamic
segment can be easily generated by the two existing nodes.

Embedded platforms. Two types of automotive grade micro-
controllers were employed in our experimental evaluation: the NXP
S12XF512 and the Infineon AURIX TC297. With a top operating fre-
quency of 100MHz, 32kB of RAM and 512kB of Flash, the S12XF512
platform targets applications requiring low to medium performance.
It features two 16 bit cores: the main S12 core and the XGATE co-
processor included to reduce the load of the main core when serving
interrupts. On the other hand, the TC297 offers higher performance
with three 32-bit cores running at up to 300MHz, 728kB of RAM
and 8MB of Flash. Both microcontrollers are equipped with a range
of communication modules including FlexRay controllers.

5.2 Performance evaluation
We evaluated both the communication and computational overhead
considering different approaches for transmitting authentication
data and various cyptographic building blocks.

Communication overhead. Based on the implemented setup
we evaluated communication related overheads. In the original
setup (with 16 bytes payload) it takes 62.15µs for a frame to be
transmitted and made available on the receiver side. When using
authentication with timed release of keys on this setup, assuming
the MAC fits in the same frame as the message, it takes 82.59µs to
transmit the two consecutive frames holding the message, authen-
tication tag and disclosed key. Accordingly, in the second setup
with 4 additional bytes for the MAC tag, it takes 67.91 and 90.40µs

CECC 2019, November 14–15, 2019, Munich, Germany P.-S. Murvay et al.

Table 2: Overheads for computingMACs on 128 bitmessages
with 128 bit keys on the S12XF512 and TC297 platforms

CPU HMAC-MD5 HMAC-SHA1 HMAC-SHA256 CMAC-AES128
S12 3.034ms 7.118ms 17.45ms 1.381ms
XGATE 1.328ms 3.240ms 8.702ms 538.2µs
TriCore 22.42µs 31.17µs 59.25µs 41.66µs

to receive one and two consecutive frames respectively. If trans-
mitting the authentication tags as a separate frame the incurred
authentication delay will vary for each frame depending on the
moment of MAC transmission.

Clearly, from the communication point of view it would be more
efficient to transmit the authentication tag in a single frame along
with the message and use shared key chains to avoid additional
frame transmissions for tags or key disclosure.

Computational overhead. In our computational overhead anal-
ysis we consider the use of 128 bit keys for MAC generation in
accordance with current key length recommendations for symmet-
ric primitives1. In Table 2 we present execution times for different
MAC algorithm implementations, from the wolfCrypt library2, on
the two employed platforms accounting for the different processing
units available on each. As expected, the 16-bit CPUs of the S12 are
clearly outperformed in all cases by the TriCore. Even so, thanks
to the XGATE co-processor it would take ≈ 1.1ms for S12 nodes
to compute two AES based CMACs, one before transmission and
one for verification upon arrival on the receiver. This fits within
the lowest message cycle time of 2.5ms with almost 1.5ms left for
data acquisition and transmission. However, the S12 platform will
not be able to cope with lowest message cycle time of 1ms from the
presented use cases. Higher performance controllers such as the
TC297 or dedicated cryptographic hardware should be selected for
complying with very short deadlines.

Combined overhead. For low performance platforms the com-
munication overhead is negligible compared with the computa-
tional time. High performance platforms, like the Aurix, provide
combined overheads of roughly double the transmission times.

6 CONCLUSIONS
We investigated the adaption of time-triggered authentication to
cope with the strict requirements of FlexRay communication. As-
sociating keys from one way chains to time intervals for authen-
tication matches the time-triggered nature of FlexRay. As shown,
automotive-grade embedded platforms are suitable for providing
authentication at various performance levels matching the timing
requirements of different time-critical applications. Careful match-
ing of utilized embedded platforms and underlying cryptographic
primitives to expected deadlines will provide reliable and efficient
implementations of authenticated FlexRay communication.

Detailed protocol design and in-depth security analysis (i.e. for-
mal analysis) of the mechanisms discussed here is required for
real-life deployment. We plan these as future work along with opti-
mized generation and storage of the one-way key-chains to cope
with both timing and memory demands.

1https://www.keylength.com
2https://www.wolfssl.com/products/wolfcrypt-2/

ACKNOWLEDGEMENTS
This work was supported by a grant of the Romanian Ministry
of Research and Innovation, CNCS - UEFISCDI, project number
PN-III-P1-1.1-PD-2016-1198, within PNCDI III.

REFERENCES
[1] 2010. FlexRay Communications System - Electrical Physical Layer Specification,

Version 3.0.1. Standard. FlexRay Consortium.
[2] 2010. FlexRay Communications System - Protocol Specification, Version 3.0.1. Stan-

dard. FlexRay Consortium.
[3] Josef Berwanger, Martin Peteratzinger, and Anton Schedl. 2008. FlexRay startet

durch - FlexRay-Bordnetz für Fahrdynamik und Fahrerassistenzsysteme (in Ger-
man). https://www.elektroniknet.de/flexray-startet-durch-1127.html. [Online:
accessed 25-May-2019].

[4] Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, et al. 2011.
Comprehensive experimental analyses of automotive attack surfaces.. In USENIX
Security Symposium, Vol. 4. San Francisco, 447–462.

[5] Don Coppersmith and Markus Jakobsson. 2002. Almost optimal hash sequence
traversal. In International Conference on Financial Cryptography. Springer, 102–
119.

[6] Quynh Dang. 2012. Recommendation for Applications Using Approved Hash Algo-
rithms. Technical Report. National Institute of Standards and Technology.

[7] Z. Gu, G. Han, H. Zeng, and Q. Zhao. 2016. Security-Aware Mapping and Sched-
uling with Hardware Co-Processors for FlexRay-Based Distributed Embedded
Systems. IEEE Transactions on Parallel and Distributed Systems 27, 10 (Oct 2016),
3044–3057.

[8] Donggang Liu and Peng Ning. 2007. Security for wireless sensor networks. Vol. 28.
Springer Science & Business Media.

[9] Paul Milbredt, Martin Horauer, and Andreas Steininger. 2008. An investigation
of the clique problem in FlexRay. In 2008 International Symposium on Industrial
Embedded Systems. IEEE, 200–207.

[10] Charlie Miller and Chris Valasek. 2015. Remote exploitation of an unaltered
passenger vehicle. Black Hat USA 2015 (2015), 91.

[11] Pal-Stefan Murvay and Bogdan Groza. 2018. Practical Security Exploits of the
FlexRay In-Vehicle Communication Protocol. In International Conference on Risks
and Security of Internet and Systems. Springer, 172–187.

[12] Dennis Nilsson, Ulf Larson, Francesco Picasso, and Erland Jonsson. 2009. A
first simulation of attacks in the automotive network communications protocol
flexray. In Proceedings of the International Workshop on Computational Intelligence
in Security for Information Systems CISIS’08. Springer, 84–91.

[13] A Perrig, D Song, R Canetti, JD Tygar, and B Briscoe. 2005. Timed Efficient Stream
Loss-Tolerant Authentication (TESLA): Multicast Source Authentication Transform
Introduction. RFC 4082. IETF. 1–22 pages. https://tools.ietf .org/html/rfc4082

[14] Von Chait Phagoo, Jim Lawlis, Payam Naghshtabrizi, Emmerich Fuchs,
and Gerald Freiberger. 2011. Prototyping von FlexRay-Applikationen
bei der Ford Motor Company - FlexRay für Ford (in German).
https://www.elektroniknet.de/elektronik-automotive/sonstiges/prototyping-
von-flexray-applikationen-bei-der-ford-motor-company-77276.html. [Online:
accessed 25-May-2019].

[15] Dominik Püllen, Nikolaos Athanasios Anagnostopoulos, Tolga Arul, and Stefan
Katzenbeisser. 2019. Security and Safety Co-Engineering of the FlexRay Bus in
Vehicular Networks. In Proceedings of the International Conference on Omni-Layer
Intelligent Systems (COINS ’19). ACM, New York, NY, USA, 31–37.

[16] C. Szilagyi and P. Koopman. 2009. Flexible multicast authentication for time-
triggered embedded control network applications. In 2009 IEEE/IFIP International
Conference on Dependable Systems Networks. 165–174.

[17] Paula Vasile, Bogdan Groza, and Stefan Murvay. 2015. Performance Analysis
of Broadcast Authentication Protocols on CAN-FD and FlexRay. In Proceedings
of the WESS’15: Workshop on Embedded Systems Security (WESS’15). ACM, New
York, NY, USA, Article 7, 8 pages.

[18] Ronghua Wang, Wenliang Du, Xiaogang Liu, and Peng Ning. 2009. ShortPK: A
short-term public key scheme for broadcast authentication in sensor networks.
ACM Transactions on Sensor Networks (TOSN) 6, 1 (2009), 9.

[19] A.Wasicek, C. El-Salloum, andH. Kopetz. 2011. Authentication in Time-Triggered
Systems Using Time-Delayed Release of Keys. In 2011 14th IEEE International Sym-
posium on Object/Component/Service-Oriented Real-Time Distributed Computing.
31–39.

[20] MarkoWolf, AndréWeimerskirch, and Christof Paar. 2004. Security in automotive
bus systems. In Workshop on Embedded Security in Cars.

[21] H. Zeng, M. Di Natale, A. Ghosal, and A. Sangiovanni-Vincentelli. 2011. Schedule
Optimization of Time-Triggered Systems Communicating Over the FlexRay Static
Segment. IEEE Transactions on Industrial Informatics 7, 1 (Feb 2011), 1–17.

https://www.elektroniknet.de/flexray-startet-durch-1127.html
https://tools.ietf.org/html/rfc4082
https://www.elektroniknet.de/elektronik-automotive/sonstiges/prototyping -von-flexray-applikationen-bei-der-ford-motor- company-77276.html
https://www.elektroniknet.de/elektronik-automotive/sonstiges/prototyping -von-flexray-applikationen-bei-der-ford-motor- company-77276.html

	Abstract
	1 Introduction and motivation
	2 Related work
	3 The FlexRay protocol
	3.1 Communication cycle
	3.2 Frame format

	4 Authenticating FlexRay communication
	4.1 Challenges
	4.2 Protocol design considerations
	4.3 Authentication variants
	4.4 Security analysis

	5 Experimental evaluation
	5.1 Experimental setup
	5.2 Performance evaluation

	6 Conclusions
	References

