
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2019.DOI

TRICKS - time TRIggered Covert Key
Sharing for Controller Area Networks
BOGDAN GROZA1, LUCIAN POPA2 AND PAL-STEFAN MURVAY.3
1Faculty of Automatics and Computers, Politehnica University of Timisoara, 300223 Timisoara, Romania (e-mail: bogdan.groza@aut.upt.ro)
2Faculty of Automatics and Computers, Politehnica University of Timisoara, 300223 Timisoara, Romania (e-mail: lucian.popa@aut.upt.ro)
3Faculty of Automatics and Computers, Politehnica University of Timisoara, 300223 Timisoara, Romania (e-mail: pal-stefan.murvay@aut.upt.ro)

Corresponding author: Bogdan Groza (e-mail: bogdan.groza@aut.upt.ro).

This work was supported by a grant of Ministry of Research and Innovation, CNCS-UEFISCDI, project number
PN-III-P1-1.1-TE-2016-1317, within PNCDI III (2018-2020).

ABSTRACT There are dozens of proposals for securing the Controller Area Network (CAN), however,
only a few of them are concerned on how to share secret keys between CAN nodes. Recently, some works
have used the non-destructive property of CAN arbitration in order to exchange a secret key and achieve
information theoretic security for the key exchange. In our proposals we exploit both delays and the non-
destructive arbitration of CAN to achieve a secure key exchange. While our approach is less efficient when
it comes to bandwidth, we do not require any kind of additional hardware and we build our implementation
on the software layer which is accessible for any CAN based application. To boost efficiency, we finally
bootstrap secret keys by means of the guessing-resilient protocols such as EKE (Encrypted-Key-Exchange)
and SPEKE (Simple Password Exponential Key Exchange). In principle a few dozen frames suffice for a
secure key-exchange between two CAN nodes. We discuss several protocol versions and extensions for the
case of more than two parties. We also present experimental results on modern automotive-grade controllers
to prove the performance of our solution.

INDEX TERMS Authentication, Cryptography, Microcontrollers, Network security

I. INTRODUCTION AND MOTIVATION

In the recent years, numerous works have been focusing on
designing security protocols for the CAN bus [18], showing
innovative solutions from the use of cryptographic message
authentication codes [20], [27], group key-sharing [17], sig-
nal characteristics [35], [11] or network delays [9], [37]. Not
surprisingly, the majority of these solutions, e.g., works in
[27], [20], [41] and many others, are based on cryptographic
Message Authentication Codes (MACs) that do require a
secret shared key. However, with the exception of the work
in [34] later explored in a more comprehensive way by [23],
little focus was put on how to exchange cryptographic keys
on the CAN bus.

In an exceptional engineering work, Mueller and Loth-
speich [34] show how to exploit the dominant vs. recessive
state of the CAN bus in order to securely exchange a key.
On the CAN bus, two or more nodes can write bits at the
same time and a 0 will always overwrite a 1. The principle
they use is simple and effective: two CAN nodes generate
a random sequence of bits and then start to place the bits
simultaneously on the bus. If both bits are 1 then the bus will

be in a recessive state and the adversary will know that both
nodes have generated a recessive bit. However, if the pair
of bits generated on the nodes are (0, 0), (0, 1) or (1, 0) the
bus will have a dominant level in all cases and the adversary
cannot discern between the three cases. For genuine nodes
however, the node that generated the 1 will know that the
other node has generated a 0 if the bus is dominant and thus
one bit is extracted. For the node that generated a 0, the (0, 0)
and (0, 1) case are again indistinguishable but this situation
is solved by re-sending the complement value of the bits.
This again discloses the (0, 0) pair to the adversary since this
changes to (1, 1) and the bus is recessive. However, the (0, 1)
and (1, 0) cases remain indistinguishable for an adversary
and from these, the genuine nodes are able to extract one bit
for the key (since each node is aware of the bit it placed on
the bus).

Contribution and addressed scenario. Figure 1 is a basic
depiction of the CAN bus and of our addressed scenario.
The depiction is also suggestive with respect to one of
the protocol designs that we later address. For this reasons
frames are depicted arriving at intervals ∆ and each node

VOLUME 7, 2019 1

Groza et al.: TRICKS - time TRIggered Covert Key Sharing for Controller Area Networks

CAN-H

CAN-L

ECU1

IDmin

VN adapter

Δ

ECU2

Δ Δ

IDmax

IDmin

IDmax

IDmin

IDmax

ECUn

w w w~ ~ ~

FIGURE 1. Structure of the CAN bus and addressed scenario.

sends an ID that is the minimum or the maximum from the
particular time interval (more on this later). We also depict
a VN adapter which is an industry-standard instrument from
Vector and was used by us mostly for debugging purposes.
We assume that a weak shared-secret w̃ is already shared
by the nodes ECU1, ECU2, ..., ECUn. Without the existence
of such a secret, security can be achieved only with respect
to a weaker form of adversaries (that are unable to unplug
nodes from the bus as we later discuss). We consider that it
is realistic to assume that in-vehicle Electronic Control Units
(ECU) do share a weak secret key of some sort. For example,
following the fundamental resurrecting-duckling paradigm
[38], components inside the car may be imprinted with a
secret derived from the first seconds when the car is start for
the first time. This hopefully happens in a secure environment
at the manufacturer or seller. We do not require for this secret
to be a strong cryptographic key, but rather a weak one which
is sufficient to bootstrap a secure cryptographic key later.
Nonetheless, the secret w̃ can be an existing secret shared
between the nodes as current AUTOSAR specifications have
support for key-exchange protocols [2] and ask for security
on in-vehicle units [3]. In this case, the procedures that we
discuss here can be used as a covert channel to further re-
enforce an existing key.

In this setting, we design a solution that can be fully
implemented at the application layer without requiring any
modifications of the CAN protocol stack. That is, the ability
to program timer-counter circuits and to send CAN frames
is enough to negotiate a session key in a secure manner. We
later add some cryptographic flavors to our protocol suite in
order to boost efficiency in the initial versions of our protocol.
We discuss four main variations based on data or remote
frames, identifier priority and nonetheless timings. The last
two versions of our schemes: time-triggered minimax and the
randomized delay key negotiation set room for piggybacking
frames with parts of the keys that are shared via the Diffie-
Hellman (DH) version of the Encrypted-Key-Exchange pro-
tocol (EKE) [6] and Simple Password Exponential Key Ex-
change (SPEKE) [22]. This is possible in case of the later
schemes that we introduce since the bits of the key that are to

be negotiated are known in an a-priori manner.
The EKE-DH protocol is known to be secure against

guessing attacks and thus we can bootstrap a session key
by using a small entropy secret for authenticating the larger
session key. For nodes that do not have enough computation
power to rely on the Diffie-Hellman key-exchange, all the
schemes that we introduce are functional even without this
cryptographic extension of our protocol. Thus we try to
cover both scenarios where mid to high-end automotive grade
controllers are present, as well as scenarios with low-end
cores.

II. BACKGROUND AND EXPERIMENTAL SETUP
We begin with a brief background on CAN then we revisit
some of the existing related work. Finally, we give some
details on our experimental setup.

A. CAN BASICS
CAN is the de facto standard for communication in automo-
tive in-vehicle networks. Bit rates of up to 1Mbit/s can be
used on CAN, however, actual implementations only go up
to 500Kbit/s to assure reliability. At the physical layer CAN
is implemented as a two wire differential bus which uses two
levels to encode transmissions: a dominant and a recessive
level. A dominant level (interpreted as logical "0") is asserted
when at least one CAN node actively drives the bus, while the
recessive level (interpreted as logical "1") is the result of none
of the nodes driving the bus. Therefore, a dominant level will
always overwrite a recessive level.

The main part of CAN communication consists of standard
and/or extended data frames, depicted in Figure 2, which can
carry up to 8 bytes of data. The difference between the two
types of data frames consists in the identifier field which is 11
bits long in standard frames and 29 bits in extended frames.

Remote request frames differ from data frames by the RTR
bit which should be set to "1" (recessive) in the case of
remote frames. This type of frames is used to request the
transmission of a specific data frame.

2 VOLUME 7, 2019

Groza et al.: TRICKS - time TRIggered Covert Key Sharing for Controller Area Networks

FIGURE 2. Structure of standard and extended CAN frames.

B. RELATED WORK
Following the attacks reported on modern cars, e.g., [8], [31],
[32], numerous proposals for assuring security on in-vehicle
buses started to appear. As expected, the largest body of
proposals is centered around embedding cryptographic mes-
sage authentication codes (MAC), e.g., [20], [4] and some
go further to optimal traffic allocation to cope with security
demands [28], [29], [42] or analyze trade-offs between safety
and security [13].

Blameless, while the use of MACs in all previous works
mandates for a shared secret key, very few research proposals
have actually focused on how to share cryptographic keys on
the CAN bus. This task is more complicated than what may
appear on the first sight. For example, the adoption of out-
of-the-box public-key exchanges based on the RSA [36] or
Diffie-Hellman [14] is problematic due to the large public-
keys or by the requirement of the corresponding public-key
infrastructure (PKI), certificates, etc.

The procedure introduced by Mueller and Lothspeich [34]
was the first to use intrinsic properties of the CAN bus for
providing key agreement. The scheme was later extended by
Jain and Guajardo to achieve group key agreement over CAN
[23]. In a more recent work [24] the authors evaluate the
resilience of this type of CAN key agreement mechanism to
probing attacks. As it turns out, differences in signaling be-
havior specific to each node can be used to identify the value
of the bit generated by each of the nodes participating in the
key agreement scheme. Vulnerability to probing attacks can
be alleviated by the use of mechanisms that mask the unique
node signaling behavior as proposed by [24]. Particularities
of the physical layer, voltage level in particular, have in fact
become recent preoccupation for many works focused on
intrusion detection on the CAN bus, e.g., [35], [10], [11],
[26]. Other works used physical properties of oscillators to
distinguish between nodes based on clock drifts, i.e., [9].
But recent research has also shown that clock skews can be
mimicked and impersonation is possible [37]. Our work uses
both the wired-and behaviour of the CAN bus as well as de-
lays in order to negotiate a secret key. While probing attacks
and delays may reveal some information about the senders,
countermeasures exists, e.g., nodes sending in parallel [24]
or forcing small random delays to hide the real clock drift.

Properties of the physical layer were also used for key
establishment in wireless networks [30] which is an emerging
sector of in-vehicle communication. In wireless communica-

FIGURE 3. Hardware and software components employed in our experiments.

tion, the principle of reciprocity of random fading wireless
channels is employed for key generation. While such an
approach is entirely distinct to ours, the protocols that we
describe here can be ported to some wireless networks as
well. This however may subject of future work and it is out
of reach for the current publication.

C. SETUP FOR OUR EXPERIMENTS
In brief, our setup includes several development boards
equipped with high-performance automotive grade micro-
controllers from the Infineon Aurix family which we inter-
face to the CANoe environment running on a standard PC
via a VN adapter from Vector (for monitoring frame arrival
on the bus). The components employed in our experimental
setup are depicted in Figure 3.

The experiments described in this paper have been per-
formed by pairing nodes implemented on AURIX-based de-
velopment boards. We employed three AURIX Application
Kit models from Infineon which differ in the microcontroller
version used:
• The TC224 features one core running at a frequency of

up to 133MHz along with 96kB of RAM and 1MB of
FLASH.

• The TC277 is equipped with three cores, each of which
can operate at 200MHz, as well as 472kB RAM and
4MB FLASH.

• The TC297 microcontroller as one of the top performers
in the AURIX class comes with 728kB RAM, 8MB
FLASH and three cores that can be clocked at 300MHz.

A VN PC CAN adapter from Vector was used to interface
between the bus connecting the node pairs and the CANoe
analysis environment for communication monitoring and
trace recording on a PC. Further analysis of the recorded
traces was performed in the Mathematica environment.

III. TIME-TRIGGERED KEY-EXCHANGE PROTOCOLS
We discuss four protocol versions in what follows. We start
from using remote vs. data frames, overlapping IDs, then we

VOLUME 7, 2019 3

Groza et al.: TRICKS - time TRIggered Covert Key Sharing for Controller Area Networks

TABLE 1. Summary of notations

ID identifier field of a CAN message
ECU Electronic Control Unit
Prbad probability that a frame discloses the corresponding bit

Haverage mean entropy (as function of k frames)
T duration of the key exchange (as function of k frames)
∆ estimated delay between two frames
b� array of random bits generated by � ∈ {A,B}
¬b� complement of values in previous bit array � ∈ {A,B}
x� random delay generated by � ∈ {A,B}
id� array of random ID generated by � ∈ {A,B}
IDmin the ID with the minimum value

(whenever two IDs occur at the same time)
IDmax the ID with the maximum value

(whenever two IDs occur at the same time)

add timing and finally we include a randomized distribution
of the delays for sender and receiver node.

A. SUMMARY OF NOTATIONS
Table 1 gives a summary on the notations that we use for the
following protocol schemes. To quantify the performance of
the protocol we mainly use three metrics: the probability that
a frame is bad Prbad by which we mean that the bit disclosed
by the frame is visible to an adversary, the mean entropy
Haverage which is a function of the number of frames sent by
one node and the total time T for the key-exchange protocol.

B. ADVERSARY MODEL
We do consider the general case of a Dolev-Yao adversary
[15] that has full control over the communication, i.e., he can
read, write or stop messages on the communication channel
at will.

The first schemes that we present for key-exchange based
on covert timing channels are not fully secure against such
an adversary. That is, if an adversary is able to unplug a
node from the bus and send messages instead of the genuine
node, then such an impersonation will be successful since
there is no mechanism to discern between such an adversary
and the genuine node. Previous proposal, such as the Mueller
and Lothspeich protocol [34], will be vulnerable to such an
adversary as well. We do emphasize however, that such an
attack will not be easy to mount since it is hard to unplug
nodes at will inside a car. Previous research has focused
on DoS (Denial of Service) attacks that will place CAN
nodes in bus-off, e.g., [9]. But the implied procedures are
not yet at the point of giving the adversary an on-off that
will disconnect/connect nodes from the bus at will, e.g., CAN
nodes may stay in bus-off for a very short amount of time or
not enter in bus-off state at all. If the adversary can also inject
or modify messages (without being able to disconnect nodes
from the bus), then the attack will result in a DoS since the
genuine nodes will end up with wrong keys. So we consider
that even the first schemes are secure in front of a more
limited adversary that can only eavesdrop on the channel.
For the case of a stronger adversary, that has full control
over the nodes, we later design a protocol that uses a weak

existing secret along with the initial version of our schemes to
securely exchange a session key based on guessing resilient
protocol Encrypted Key Exchange (EKE) [6], [5]. To reduce
the overhead we rely on elliptical-curves and rely on the main
idea from the SPEKE protocol [22] also taking into account
recent attacks and modifications proposed in [19].

C. PRELIMINARY IMPLEMENTATION NOTES
We now give some implementation details that are common
for the implementation of all protocols that we introduce
in the next sub-section. For a more conclusive presentation,
starting from the next section, we support the theoretical de-
scription of the schemes with practical results (experimental
data from the CAN bus). For clarity, we summarize here
some preliminary implementation notes.

For implementing the timing functionality required by
the proposed key negotiation mechanisms we employed the
Capture/Compare Unit 6 Timer (CCU6) module available
on the AURIX chips. The T13 timer block of the CCU6 is
configured to generate periodic interrupts which represent the
system tick on which the local timestamping functionality is
based.

The CAN communication on the embedded platforms side
is assured through the on-chip MultiCAN+ module. It han-
dles message transmission and reception through so called
message objects which serve as storage for sent and received
frames and can be used for message filtering. A maximum
of 256 or 128 message objects are available on each chip
depending on the microcontroller variant. We configured
message objects to support up to 64 different send and receive
message IDs and set the acceptance filter to 0 in order to
process any received CAN frame regardless of the frame
identifier. The bit rate of the CAN controller was configured
to 500Kbit/s according to the SAE Recommended Practice
SAE-J2284-3.

In all of the described protocols, after a startup phase in
which hardware initialization and configuration takes place,
each node waits for a CAN frame that triggers the initializa-
tion of the timer. This frame is sent from CANoe. The timer
interrupt period is configured at 2 µs.

After the trigger-frame is received, the software is con-
figured in order to send a CAN Frame (remote or standard
depending on the experiment) at a specific timestamp, mea-
sured by the timer. After every data transfer, each node saves
the ID and the timestamp and also verifies if it has received
any CAN frame before and if so, it saves the ID of the frame
and the timestamp. After the number of expected frames
is received, each node computes the other node’s random
bits based on the timestamp arrays. Otherwise, every node
computes all the bit values based on the timestamp arrays.

D. COVERT KEY-EXCHANGE PROCEDURES
Data vs. Remote Frame Negotiation. This type of key negoti-
ation is identical to Mueller and Lothspeich [34] principle
except that is far more inefficient since a single frame is
required for a single bit. Discussing the principles is however

4 VOLUME 7, 2019

Groza et al.: TRICKS - time TRIggered Covert Key Sharing for Controller Area Networks

relevant for the protocols that follow and also for clarifying
how Mueller and Lothspeich solution works [34].

An array of bits is randomly generated on each node, i.e.,
bA = b1A, b

2
A, ..., b

k
A, bB = b1B , b

2
B , ..., b

k
B . Each bit in the

arrays establishes if the frame that needs to be sent by the
corresponding node is a data frame (bit equals to 0) or a
remote frame (bit equals to 1). Both nodesA andB broadcast
the frame simultaneously at intervals ∆. That is, the i-th
frame from each node is sent at time tstart + i∆ (assuming
communication has start at tstart). The value of ∆ should
be chosen so that it accommodates the transmission time of
a CAN frame at the current baud-rate. For example, in our
experiments with a 500Kbit/s bus, ∆ was set to 200µs (this
value can be further reduced to the maximum duration of a
frame on the bus).

Figure 4 shows the situations that may occur on the bus. If
the bits on the nodes are the complement of each other, i.e.,
the 01 and 10 cases (i), (ii), a data frame will appear on the
bus. The node that sent the remote frame knows that the other
node has placed the data frame. However, the node that sent
the data frame does not know whether the other node sent a
remote frame or a data frame, i.e., case (ii) vs. (iii) for node
B, since in both situations a data frame will occur on the bus.
This is further clarified when the complement of the bit-array
is sent, i.e., ¬bA,¬bB . In case (iv) when both nodes have sent
a remote frame this is visible to the adversary so the security
of the bit is compromised. The ID that is broadcast is a fixed
value for all nodes. We also note that transmission errors may
occur if there is no acknowledgement bit and if only the two
sender nodes are present on the bus the sender cannot place
an acknowledgement bit (according to CAN specifications).
To avoid nodes entering in bus-off mode we configured the
Infineon CAN module not to re-attempt transmission. If a
third node is present on the bus (the most likely) then such
a situation will not occur since the third node will place the
acknowledgement bit.

In this case, obviously, half of the bits are visible to the
adversary, i.e., cases (iv) in Figure 4 and the complement of
case (iii), and thus Prbad = 1/2. Consequently, only half of
the frames from each will contribute to the entropy of the
key which leads to Haverage(k) = (1− Prbad) k = k/2. The
runtime of the protocol is the time to send k frames by each
node and then their complements resulting in T(k) = 2k∆.

Experimental results on this approach now follow. In all
experiments two nodes are present on the bus and send
messages according to the previous protocol description. For
simplicity, the figures show only data for the first 32 frames.
In Figure 5 we show frames on each of the two nodes placed
on the X-axis according to the arrival timestamp. The Y-
axis represents the value of the ID in decimal. Whenever a
frame is remote, to avoid overlapping with data frame, the ID
is represented as −ID, thus remote frames are depicted by
negative IDs. The IDs broadcasted by the nodes in each time
interval are identical and this is a assured by using a non-
secret seed for a pseudo-random number generator. Finally,
in Figure 6 we show frames as they arrived on the bus by

t

Δ

IDrem

IDdata

IDdata

IDrem IDdata

IDdata

IDrem

IDrem

Δ Δ Δ

Δ Δ Δ Δ

IDdata IDdata IDdata IDrem

01 10

(i) (ii) (iii) (iv)

00 11

Δ

IDrem

IDdata

IDdata

IDrem

Δ

Δ Δ

10 01

IDdata IDdata

(v) (vi)

not

not

ECU A:

ECU B:

BUS:

FIGURE 4. Data vs. Remote frame negotiation (based on Mueller and
Lothspeich principle [34]).

FIGURE 5. Data vs. Remote frame negotiation: frames on node A and node B
(orange vs. blue).

FIGURE 6. Data vs. Remote frame negotiation, frames arrived on the bus
data (square) vs. remote (empty square).

using the trace from CANoe. Remote frames (which appear
in case when both nodes are sending a remote frame) are
depicted by an empty square and data frames by a full square.
Figure 7 summarizes the experiments by placing a check-
mark over the frames that arrived at the expected time, this
holds for all frames.

Minimax Negotiation. The minimax key exchange uses
randomized IDs that are sent by each node. Each node,

VOLUME 7, 2019 5

Groza et al.: TRICKS - time TRIggered Covert Key Sharing for Controller Area Networks

FIGURE 7. Data vs. Remote frame negotiation: expected arrival frame (as
checkmark) vs. arrived frame (square).

ECUA and ECUB , generates two arrays of k random IDs
idA = id1

A, id
2
A, ..., id

k
A, idB = id1

B , id
2
B , ..., id

k
B . These

are sent on the bus at delay i∆. Due to the non-destructive
arbitration of CAN the smaller ID will win the arbitration.
We will call the transmitted IDs as IDmin and IDmax.

Figure 8 shows the situations that may occur on the bus.
There is a small probability that the IDs are identical on
both nodes, this will be visible to an adversary since a single
frame arrives on the bus (depicted in the figure as IDeq). The
probability for this is Prbad = 1/211 in case of standard
IDs and Prbad = 1/229 in case of extended identifiers. In
case of extended IDs the chances of this happening is 1 in
500 million, which is very low. Even if this is the case, the
protocol will continue with the rest of the bits. While we can
reduce the chance of a collision by adding random bytes in
the data-field (our protocols work with empty data-fields),
adding a data-field will also increase the transmission time
and lead to a larger ∆ (requiring a longer protocol run). This
effect is undesired, thus we stay to the 0-length data-field. In
the experiments, the value of ∆ was first fixed to 200µs. Then
we endeavored to lower this value to ∆ = 125µswhich again
proved to be sufficient (theoretically, at 500Kbit/s the time on
the bus for a frame with no data-field is 106µs, thus 212µs
is the minimum cycle time for 2 Minimax frames). In this
case (i) we set the bits to 00. Otherwise, the bits are set to 01
(i) or 10 (ii). To avoid confusions, we assume that the node
that transmits the first IDmax is node A. Assuming that no
identical IDs occur, each frame carries exactly one bit of en-
tropy and assuming no collision this leads Haverage(k) ≈ k.
Since two frames may occur each time on the bus, frames
will be sent at 2∆ intervals and thus the protocol runtime is
T(k) = 2k∆.

The experiments that follow show data for the first 64
frames that arrive on the bus (32 for each of the two nodes
that negotiate the key). In Figure 9 we show frames on each
of the two nodes placed on the X-axis according to the
arrival timestamp and on the Y-axis by the value of the ID
in decimal. The IDs broadcasted by the nodes are random.
There is no collision for the 211 bit IDs, although this may
happen and the protocol will cope with this. In Figure 10 we

t
IDeq

IDeq

IDeq

Δ

Δ

IDmax

IDmin

IDmin

IDmax

Δ

Δ

IDmax

IDmin

Δ

Δ

Δ

Δ

IDmax IDmin

01 10

(i) (ii)

00

(iii)

ECU A:

ECU B:

BUS:

FIGURE 8. Minimax Key Exchange.

FIGURE 9. Minimax frame negotiation: frames on node A and node B (orange
vs. blue).

FIGURE 10. Minimax frame negotiation, frames arrived on the bus from Node
A (orange) vs. Node B (blue).

show frames as they arrived on the bus, according to the trace
from CANoe, and the bits that have been exchanged. Figure
11 serves only as a summary by placing a check-mark over
the frames that arrived at the expected time (this is verified
by all frames). All frames are successfully checked.

Time-triggered Minimax Negotiation. Besides generating
the IDs identical to the Minimax protocol, both nodes gen-
erate also an array of random bits which is to be kept secret,
i.e., bA = b1A, b

2
A, ..., b

k
A, bB = b1B , b

2
B , ..., b

k
B . In the time-

triggered Minimax key-exchange, frames with random IDs
are sent by the nodes at intervals (2i+ bi)∆, i.e., either 2i∆

6 VOLUME 7, 2019

Groza et al.: TRICKS - time TRIggered Covert Key Sharing for Controller Area Networks

FIGURE 11. Minimax frame negotiation: expected arrival frame (as
checkmark) vs. arrived frame (square).

or (2i + 1)∆, according to the bit in the array. The case of
distinct bits, 10, 01 can be easily separated regardless of the
value of the ID by the sender and receiver. Bits are visible to
an adversary in the equality case 00, 11 since in this case the
frames will overlap and the inter-frame space will be smaller.
Thus half of the bits are lost and Prbad = 1/2 while the
entropy carried by k frames is Haverage(k) = k/2. To avoid
overloading the figure, we omit the 00 case which results in
lost security bits anyway. The probability of ID colliding will
require the same sending time, thus is it reduced to half when
compared to the previous case. Statistically, this is included
in the equality case 00, 11 as it requires identical timings.
The time increases since an additional ∆ is required for
the case when both frames are delayed, i.e., 11, leading to
T(k) = 3k∆. Figure 12 shows the situations that may occur
on the bus.

The delay bit will be visible when the frames arrive one
after another. This results in half of the bits being disclosed
to an adversary. This apparent disadvantage opens door to
an improvement by bootstraping the session key with EKE
which will be discussed later. Since there is a possibility that
both nodes send the frame at (2i + 1)∆ we have to expand
the periodicity at 3∆ which makes the runtime a bit longer.

We again provide experiments for the first 64 frames that
arrive on the bus (32 for each of the two nodes). Figure 13
places frames on the X-axis according to the arrival times-
tamp and on the Y-axis by the value of the ID in decimal.
We preserved the same random IDs for the frames as in the
previous experiment but the periodicity now increases to 3∆
and thus the values on the X-axis of the plot are now distinct.
To shorten the runtime of the protocol, in the experiments
we forced ∆ to 200µs which caused no problems. In Figure
14 we show frames as they arrived on the bus by using the
trace from CANoe and the bits that have been exchanged (the
delays vary according to the bits that are negotiated). Again,
Figure 11 serves only as a summary on the expected arrival
tine if the frames and all frames are successfully checked.

The entropy of the exchanged key can be further improved
by harvesting additional bits based on the principle of the
Minimax scheme. In case when 11 or 00 occur on the bus

there will still be an ID that is smaller and thus wins the
arbitration. Consequently, one additional bit can be harvested
from the ID that wins and thus the entropy of the scheme
can be set to Haverage(k) = k. However, our intention is to
extract the key solely from the delay which further allows
bootstrapping the key with EKE. For this reason we leave the
scheme as it is and the improvement can be used when EKE
is not a viable option.

Randomized time-triggered key exchange. In the random-
ized time-triggered key-exchange, nodes are selecting k ran-
dom values in integer interval [1..`], where k < `. Let
x1A, x

2
A, ..., x

k
A be the values for node A and x1B , x

2
B , ..., x

k
B

be the values for B. Frames with random identifiers are
broadcast at time xiA∆ by node A and xiB∆ by node B. To
extract the key, a 0 is added when a frame from A arrives and
a 1 is added when a frame from B arrives on the bus.

In the experiments we used ∆ = 200µs and l = 512.
The bits of the key are extracted based on the delays between
distinct frames from the same sender. In Figure 17 we show
the arrival time for the first 32 frames and in Figure 18 for
the last 32 frames. Due to randomized allocation of delays,
collisions are expected and these are marked by an X (one
collision occurred only in the second figure). Figure 19 gives
an overview of the arrival time in conjunction with the ID of
each frame (this is also randomly generated by each node).

The probability of frames to be sent at the same time
(which discloses that delays are identical on both nodes and
thus the two frames cannot originate from the same node)
depends on `. The probability that the ` selected delays from
node A are all distinct from the delays selected by B is
(`− k)/` which means that the probability for a single colli-
sion and thus Prbad = 1 − (` − k)/` = k/`. For simplicity,
to estimate the entropy, we assume that no collision occurs
(by setting the proper ` chances for collisions are small, in
the experiments that we discuss next a single collision oc-
curred). The adversary will observe 2k frames on the bus. To
extract the key bits, since the delays between frames can be
measured by the adversary as by genuine users, the adversary
has to guess which frame was sent by which node. There are
(2k)!/k! possibilities for the frames of node A (node B will
have the remaining k frames) and since the order of the k
frames does not matter we have to divide this again by k!.
This leads to entropy Haverage(k) = − log2

(
(k!)2/(2k)!

)
.

The length of the interval ` can be accounted by taken the
average number of frames that collide as k2/` and replacing
k in the previous relation with the number of correct frames,
i.e., k − k2/`. Figure 20 gives an overview of the entropy
extracted with the number of frames k and the length of the
interval `. Note that as ` increases the chance for a collision
decreases (and the entropy increases) but so does the duration
of the key-exchange protocol. Thus ` should be increased
with care. The time to send all the ` frames is T(k) = `∆.

Table 2 summarizes metrics for the four protocol versions.
Next we improve on the last two protocols with a session-key
bootstrap based on the EKE protocol.

All of the previous graphical depictions are based on real

VOLUME 7, 2019 7

Groza et al.: TRICKS - time TRIggered Covert Key Sharing for Controller Area Networks

t

Δ

Δ

IDmax

IDmax IDmin

IDmax IDmin

IDmax

IDminIDeq

IDeq

IDeq

IDmin

IDmin

IDmin IDmaxIDmax

Δ

Δ

IDmax

IDmin

IDmin

IDmax

Δ

Δ

Δ

Δ

10 01 01 11

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

(i) (ii) (iii) (iv)

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

ECU A:

ECU B:

BUS:

FIGURE 12. Time-triggered Minimax Key Exchange.

FIGURE 13. Time-triggered Minimax frame negotiation: frames on node A
and node B (orange vs. blue).

FIGURE 14. Time-triggered Minimax frame negotiation, frames arrived on the
bus from Node A (orange) vs. Node B (blue).

experimental data. For a crisper image, we also illustrate
some captures on the bus that were done with a Salae logic
analyzer. Figure 21 shows the full 64 frames arriving on the
bus during Time-triggered Minimax. Then in Figure 23 we
illustrate the 01 case, i.e., the first frame arrives with no
delay and the second is delayed. Similarly, Figures 22 and
24 illustrate the 11 case in slot 2 and 3 respectively, here both

FIGURE 15. Time-triggered Minimax frame negotiation: expected arrival
frame (as checkmark) vs. arrived frame (square).

frames are sent with a delay. In Figure 25 we give a detailed
plot for the 11 scenario.

IV. CRYPTOGRAPHICALLY RE-ENFORCED VERSIONS
We extend the last protocol versions with the Diffie-Hellman
version of the Encrypted Key Exchange (EKE) protocol
which allows bootstrapping an authentic key based on a low-
entropy common secret. Finally we discuss a group extension
that allows multiple nodes to negotiate a session key.

A. PIGGY-BACKED DIFFIE-HELLMAN EKE/SPEKE
While our proposal has the advantage of being fully imple-
mentable on software (which is not the case for the solution
in [34]), it is less efficient in terms of bandwidth compared
to [34] as we rely on one frame for exchanging a single bit.
Here we turn this to our advantage by piggybacking frames
with parts of a Diffie-Hellman [14] based keys shares of EKE
[6]. This scheme achieves provable security against guessing
attacks [5] and can be used to bootstrap a session key by
using a small entropy shared secret. For a more compact
representation however, we rely on elliptical-curves and thus
we modify this scheme by using the main idea from the

8 VOLUME 7, 2019

Groza et al.: TRICKS - time TRIggered Covert Key Sharing for Controller Area Networks

t

Δ

Δ

IDa

Δ

Δ

IDb

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

IDb IDb IDb

IDa IDaIDa IDa

IDb

IDbIDb IDb IDb IDbIDa IDa IDaIDa IDa

ECU A:

ECU B:

BUS:

FIGURE 16. Randomized time-triggered key exchange.

TABLE 2. Comparison of the key-exchange schemes

Data vs. Remote Minimax Time-triggered Minimax Randomized Time-triggered
Prbad 1/2 1/211 1/2 k/`

Haverage k/2 k k/2 − log2

(
(k!)2

(2k)!

)
T 2k∆ 2k∆ 3k∆ `∆, ` > k

FIGURE 17. Arrival time for the first 32 frames with Randomized
time-triggered key-exchange.

FIGURE 18. Arrival time for the first 32 frames with Randomized
time-triggered key-exchange.

SPEKE protocol [22].
Both the time-triggered minimax and the randomized

FIGURE 19. Frame arrival time and ID value with Randomized time-triggered
key-exchange.

FIGURE 20. Entropy extracted from the randomized time-triggered
key-exchange (approximation).

time-triggered key exchange are suitable for piggy-backing
the EKE-DH frames. The minimax negotiation is not, since

VOLUME 7, 2019 9

Groza et al.: TRICKS - time TRIggered Covert Key Sharing for Controller Area Networks

FIGURE 21. All 64 pairs of frames arriving on the bus during Time-triggered Minimax (capture with Salae logic analyzer).

FIGURE 22. The 11 case (both frames with delays) of Time-triggered Minimax in slot 1 (between markers A2-A1).

FIGURE 23. The 01 case (one frame with delay) of Time-triggered Minimax in slot 2 (between markers A2-A1).

FIGURE 24. Another 11 case (both frames with delays) of Time-triggered Minimax in slot 3 (between markers A2-A1).

FIGURE 25. Detailed view of the 11 case (both frames with delays) of Time-triggered Minimax.

the nodes do not know in an a-priori manner the bits of the
key that is going to be negotiated. For these schemes the
EKE-DH can be used only after the key bits are exchanged.
It is more efficient if the bits are piggy-backed to the frames
and thus the last two protocol versions are more suitable for
this kind of key negotiation. We illustrate this on the Time-
triggered Minimax scheme which is easier to understand and
implement.

Protocol 1 (Time-triggered Minimax with piggy-backed
EKE/SPEKE). We assume that an elliptic curve E/Fq and
fixed point P = f(w̃) ∈ E(Fq) of prime order p as public
system parameters. Here f is a function that maps the weak
secret to a pointP on the elliptical curve, similar to the choice
of generator g in the SPEKE protocol [22]. The delay ∆ is

also fixed as system wide parameter (practical instantiations
of these are to be discussed below). Each of the two nodes
follows the procedures below:

1) Setup(1k) in which ECUA and ECUB generate and keep
secret two arrays of k random bits bA = b1A, b

2
A, ..., b

k
A,

bB = b1B , b
2
B , ..., b

k
B , two arrays of k random IDs

idA = id1
A, id

2
A, ..., id

k
A, idB = id1

B , id
2
B , ..., id

k
B ,

two integers xA ∈ Zp and xB ∈ Zp then compute
sA = bAxAP = {s1A, s2A, ..., skA} ∈ E(Fq), sB =
bBxBP = {s1B , s2B , ..., skB} ∈ E(Fq),

2) SendCyclic(i), i = 1..k in which ECUα, α ∈ {A,B} at
each clock tick 3i∆, i = 1..k, if biα = 1 waits for more
∆ ticks, then broadcasts a frame with identifier id iα and
data-field containing siα.

10 VOLUME 7, 2019

Groza et al.: TRICKS - time TRIggered Covert Key Sharing for Controller Area Networks

3) ExtractSessionKey(T) in which ECUα, α ∈ {A,B},
having the frames received on the bus along with their
arrival timestamps T = {(id1, t1), (id2, t2), (id3, t3),...,
(id2k, t2k)} checks if |t2i−1−t2i| < ε, i = 1..k and sets
biβ = ¬biα or otherwise sets biβ = biα, then recovers the
shared Diffie-Hellman session key as Kses = xαb

−1
α Q

(where Q is the point recovered from the k packets).
4) ConfirmSessionKey(Kses) at which having recovered

the session key ECUA places on the bus a frame con-
taining MACKses

(sB) and ECUB places on the bus a
frame containing MACKses (sA) (we assume that the
cryptographic MAC is truncated to 64 bits such that it
fits a single CAN frame, less may be in order). If the
session key is confirmed by both parties, then the weak
secret w̃ is updated to w̃ = MAC w̃(Kses).

5) Abort(T) is the action by which ECUα, α ∈ {A,B}
aborts the protocol and signals this by error frames if
any of the following is met: i) more than 2k frames
arrived on the bus, i.e., |T | > 2k, ii) the frames in T are
not a pair-wise succession idα, idβ with α 6= β where
one of the IDs is known by the the sender node or iii)
|t2i−1 − t2i| > 3∆.

The protocol ends successfully if the cryptographic MAC
can be verified by both nodes.

A practical instantiation of this scheme that we use in our
experiments consists in setting k = 21, thus 42 frames are
sent in total. The elliptical curve is defined over a 160-bit
field, thus 20 bytes are needed to send the X-coordinate of
each point. One additional bit is needed for the sign of the
point, that is, we use the compressed form of the points on
the curve.

B. SECURITY ARGUMENT

We now give arguments on the security of the protocol. Since
SPEKE is part of existing standards, i.e., IEEE 1363.2 [16]
and ISO 1170-4 [21], and has been also analyzed by the
community [43], [40] and [19] a formal security analysis
would be out-of-scope for the current work (we are con-
cerned with deploying cryptographic building blocks on an
automotive-grade controller/bus). We did consider the use
of a model-checker like AVISPA [1] for verifying security,
however, we noticed that in the AVISPA library of proto-
cols, the existing model for SPEKE outputs no attack http://
www.avispa-project.org/library/SPEKE.html. Recently how-
ever, attacks and fixes were reported on the SPEKE protocol
by [19]. This suggests that the model-checker cannot cope
with the mathematical details behind SPEKE. At best, what
we could do is to build model that accounts for the recent
vulnerabilities from [19]. These attacks (an impersonation
attack in parallel sessions that is inapplicable in case of our
work and a key malleability attack which does not leak the
shared secret) are however easy to fix as shown in [19]. Thus,
in what follows, we discuss the rationale behind the protocol
design and we are confident on existing analysis and fixes
proposed by the community, e.g., [43], [40] and [19].

Our scheme continuously increases the entropy of the
weak secret w̃ by repeatedly ratcheting the newly exchanged
secret session on the previously know weak secret w̃. De-
riving point P = f(w̃) from the weak shared secret w̃
prohibits an adversary from playing as man-in-the-middle
since the adversary cannot compute the point P (this is the
concept behind the SPEKE protocol [22]). Consequently, if
an adversary disconnects one of the genuine nodes from the
bus and sends his own piggy-backed frames this will carry
some value badvxadvP ′ where P ′ 6= P . The resulting key-
share will be xαxadvP ′ for the genuine node α and xadvxαP
which will not match. The security will held also in front of
probing adversaries, e.g., [24], assuming that they have no
access to the weak secret w̃. The entropy increases in time
with every bit that such an adversary is unable to extract.

If the weak shared secret w̃ is unavailable then the protocol
achieves security only in front of a weaker form of adversary.
Namely, the protocol is still secure only if we assume that
the adversary is unable to unplug nodes from the bus nor
is he able to probe to bus in order to learn the bits biα, α ∈
{A,B}, i = 1..k. Otherwise, if the adversary can disconnect
the genuine node from the bus, then he can successfully
impersonate it (this is in fact the case in the original proposal
from [34]). We believe that such a scenario (when nodes can
be unplugged from the bus) is not so easy to set on an in-
vehicle network and even if this is the case then the existence
of a weak secret of some sort w̃ should be realistic for ECUs
that share a common history. As stated in the introductory
section, by following the resurrecting-duckling paradigm
[38], components inside the car may be imprinted with a
secret derived from the CAN data recorded when the car is
started for the first time or imprinted with a factory secret key.
While both these alternatives lead to a weak shared secret
(e.g., some similarities may exist between distinct cars from
the same manufacturer), the guessing resilient EKE/SPEKE
protocol will help to bootstrap a cryptographically strong
shared secret-key.

C. IMPLEMENTATION DETAILS
In the piggybacked encrypted key exchange protocol, the
generated random bits are used to calculate the ECC public
key for each node. The public key is exchanged on the CAN
bus by each node using 42 frames of one byte (20 frames
for the public key data bytes and 1 frame for the sign of
the point, done by each node using one of the last two key-
exchange protocols). We can extend the size of the data-field
to more than a single byte and reduce the number of frames.
However, we want a sufficient number of bits for masking
in the key exchange and thus we consider that 21 frames
of one byte is the better option. After all the messages are
received, the random bits of the other node are extracted
based on the populated timestamp arrays. Using the random
bits and the public key, each node calculates its session key.
For verification of having the same session key, each node has
sent on the CAN bus a MAC value of the received public key,
using the session key. The received MAC value is compared

VOLUME 7, 2019 11

http://www.avispa-project.org/library/SPEKE.html
http://www.avispa-project.org/library/SPEKE.html

Groza et al.: TRICKS - time TRIggered Covert Key Sharing for Controller Area Networks

with a computed MAC value, based on its own public key,
using the session key.

For the encrypted key exchange mechanisms, we have
used MIRACL (Multiprecision Integer and Rational Arith-
metic Cryptographic) [33] which is a C/C++ software library
covering a wide range of applications including elliptic curve
cryptography (ECC).

For exchanging the point on the curve we used point
compression and thus exchanging only the X coordinate of
a point. The curve that we used was 160-bit and thus 20
bytes plus 1 for the sign of the Y coordinate is sufficient. This
results in the 21 bytes that are exchanged for key extraction
by the EKE protocol.

Table 3 gives a summary of the parameters and runtime in
all the experiments so far. A key can be exchanged in roughly
a few dozens milliseconds. The Minimax is more efficient in
terms of extracted entropy since each frame contributes to the
entropy of the key in our experiments we have also lowered
the delay to 125µs and thus 64 bits could be exchanged in
16ms. The size of the extracted keys increases linearly with
time, so Table 3 is enough to infer the time for extracting
keys of any size. In case of the EKE-DH we consider that
the size of the entropy of the shared key is the entropy of the
exchanged Diffie-Hellman key, i.e., 160 bits as we worked
on an 160-bit curve. In this case, the time represents the time
to send the 42 frames on the bus, i.e., 12ms, to which the
computational time compute the shares and extract the key
has to be added, i.e., 98ms if SPEKE alone is used. We now
discuss more on computational requirements for the piggy-
backed versions. Table 4 summarizes the computational time
for the EKE and SPEKE protocols and contrasts these to the
regular Diffie-Hellman on an NIST 192-bit curve (which was
available in the same cryptographic library).

Computing the piggy-backed key will require less than
100ms depending on the platform and implementation. To
check that a point belongs to the curve, we use the Boolean
returned by the set function available in MIRACL for setting
points based on the X coordinate and their sign. A new
X-coordinate and sign are generated from the value w̃ by
seeding it to the PRNG (pseudo-random number generator)
available in the MIRACL library. If the resulting point does
not belong to the curve, a new output is retrieved from the
PRNG until the point belongs to the curve. On average, two
attempts are needed since there are 50% chances that the
resulting y2 from replacing x in the equation of the curve is
indeed a square (this was verified experimentally). We bench-
marked the code and this operation (point selection of the
curve) increases to computational time to around 25%, i.e., it
requires less than 10ms compared to computing the regular
Diffie-Hellman key-share (which requires the generation of a
random scalar a and one point multiplication aP).

The regular Diffie-Hellman is 4–6 times faster due to
specific optimizations which we could enable on the C imple-
mentation. For the moment we were not able to enable such
optimizations on the C++ implementations that we did for
EKE and SPEKE. Since EKE requires one additional point

multiplication and SPEKE requires deriving a new point
P on the curve, these should be roughly two times slower
than the regular Diffie-Hellman. With specific optimizations
this should be the expected computational time. A more
interesting option is to use fast curves such as Curve25519
[7] or FourQ [12]. Curve25519 uses a 255-bit modulus that
is larger than the 160-bit modulus which was chosen by us
for the compact representation (bandwidth is a major concern
for in-vehicle networks while CAN packets are limited to
64 bits). For completeness however, we also evaluated the
FourQ implementation1 which according to [12] is faster than
Curve25519 and we compared it to our SPEKE implemen-
tation in Linux on a standard Core i7 PC. For extracting
the Diffie-Hellman key share, i.e., computing abP from a
and bP , the FourQ code was almost 4 times faster than the
160-bit curve from MIRACL. Porting this on Infineon will
require more work but the results suggest that, with specific
optimizations and a faster curve, a key can be exchanged in a
dozen milliseconds or less.

Both EKE and SPEKE are affordable and they allow the
secure exchange of a secret key based on a low-entropy
secret. If both the masking of the share with the random bits is
done, by computing xP , and extraction of P according to the
SPEKE specifications then around 80ms should be required
for both computing the key shares and extracting the session
key. This requirement is modest and should be affordable for
most modern automotive-grade controllers assuming that a
key-exchange session is not done very often, e.g., only when
the nodes re-join the bus.

D. MULTI-PARTY VERSION OF THE SCHEME
The proposed schemes can be immediately extended to
session key negotiation between more than a single pair
of nodes. Various ways to achieve group extensions of the
Diffie-Hellman protocol have been previously discussed in
works such as [39] or [25] and these can be applied to the
current proposals.

We outline here a protocol version that is close to the one
in [39]. The CAN nodes ECUi, i = 1..n proceed in pairs.
First, ECU1 and ECU2 exchange a session key using the
TT-Minimax with EKE-DH. Let this session key be x1x2P .
Then, based on the session key, they generate by using a key
derivation function KD the seed for a PRNG that generates
a new sequence of bits b12 and a new random value x12
(since these values are generated by PRNGs with identical
seed, the values will be identical on the side of ECU1 and
ECU2). These values are to be used in negotiating a key
with ECU3 and so on. Finally, for negotiation with ECUn,
all previous units ECU1,ECU2, ...,ECUn−1 have agree with
a key that is x123...n−2xn−1P and this key is used to share
the key with ECUn. The resulting key will be x123...n−1xnP .
Figure 26 gives an overview of the protocol actions. The
squares represent the ECUs and the gray ovals the key that is
exchanged between two ECUs or a logical entity that groups

1https://github.com/Microsoft/FourQlib

12 VOLUME 7, 2019

Groza et al.: TRICKS - time TRIggered Covert Key Sharing for Controller Area Networks

TABLE 3. Summary of experimental parameters and results

Data vs. Remote Minimax Time-triggered Minimax Randomized Time-triggered SPEKE TT-Minimax
∆ (µs) 200 125 200 200 200
Haverage (bits) 32 64 32 124 160
T (ms) 25 16 38 102 12 (bus) + 98 (comp.)

TABLE 4. Computational time for the cryptographic blocks on Infineon TC 297

Diffie-Hellman using NISTP192 EKE (Diffie-Hellman based) SPEKE
Share (compute aP) 12.1 ms 74.32 ms 53.61 ms
Recover (extract abP) 13.93 ms 73.84 ms 44.39 ms

ECU1

b1x1P
ECU2

b2x2P

ECU3

x1x2P

b12x12P

b3x3P

x12x3P

ECUnb123...n-1x123...n-1P

bnxnP

x123...n-1xnP

FIGURE 26. Suggested group keying with EKE-DH.

all previous ECUs under the same key. The logical entity will
be instantiated by the last of the ECUs that is grouped under
it. Ideally, all nodes behind a logical entity can broadcast the
frame since the content is identical and a single frame will
appear on the bus. This may however trigger errors in case
that synchronization is not perfect between nodes.

Electronic control units with low computational power,
that cannot handle public key encryption, proceed in identical
fashion to what is suggested in Figure 26 but they simply skip
the EKE-DH negotiation and the session key follows from the
frame timing alone. That is, all the previous schemes apply
in a cascade fashion from ECU1 to ECUn.

V. CONCLUSIONS
Secure key-exchange on the CAN bus is a relevant topic
since the large majority of existing schemes for assuring
authenticity on CAN require a secret shared key. Our work
provides a protocol suite for securely exchanging session
keys over the CAN bus which can be fully implemented on
the software layer. The basic versions of the schemes do not
require cryptographic capabilities from the CAN nodes. Still,
nodes that can handle Elliptical Curve Cryptography can ex-
tract larger session keys in an authenticated manner by using

the modified EKE/SPEKE versions of the Diffie-Hellman
protocol. Convincing experimental results are provided on
high-end controllers with Infineon Aurix cores, i.e., TC297,
TC277, both for the simple bus-based key negotiation as well
as for the crypto-based EKE/SPEKE-DH key sharing. We
discuss both two-party versions of the scheme as well as
multi-party versions and show that these scale well with the
number of nodes.

REFERENCES
[1] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuéllar,

et al. The avispa tool for the automated validation of internet security
protocols and applications. In International conference on computer aided
verification, pages 281–285. Springer, 2005.

[2] AUTOSAR. Specification of Crypto Abstraction Library, 4.2.2 edition,
2015.

[3] AUTOSAR. Specification of Secure Onboard Communication, 4.3.1
edition, 2017.

[4] G. Bella, P. Biondi, G. Costantino, and I. Matteucci. Toucan: A protocol
to secure controller area network. In Proceedings of the ACM Workshop
on Automotive Cybersecurity, pages 3–8. ACM, 2019.

[5] M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange
secure against dictionary attacks. In International conference on the theory
and applications of cryptographic techniques, pages 139–155. Springer,
2000.

[6] S. M. Bellovin and M. Merritt. Encrypted key exchange: Password-based
protocols secure against dictionary attacks. In Research in Security and
Privacy, 1992. Proceedings., 1992 IEEE Computer Society Symposium on,
pages 72–84. IEEE, 1992.

[7] D. J. Bernstein. Curve25519: new Diffie-Hellman speed records. In
International Workshop on Public Key Cryptography, pages 207–228.
Springer, 2006.

[8] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Sav-
age, K. Koscher, A. Czeskis, F. Roesner, T. Kohno, et al. Comprehensive
experimental analyses of automotive attack surfaces. In USENIX Security
Symposium. San Francisco, 2011.

[9] K.-T. Cho and K. G. Shin. Fingerprinting electronic control units for
vehicle intrusion detection. In 25th USENIX Security Symposium, 2016.

[10] K.-T. Cho and K. G. Shin. Viden: Attacker identification on in-vehicle
networks. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 1109–1123. ACM, 2017.

[11] W. Choi, K. Joo, H. J. Jo, M. C. Park, and D. H. Lee. Voltageids: Low-level
communication characteristics for automotive intrusion detection system.
IEEE Transactions on Information Forensics and Security, 2018.

[12] C. Costello and P. Longa. FourQ: Four-dimensional decompositions
on a Q-curve over the mersenne prime. In Advances in Cryptology -
ASIACRYPT 2015 - 21st Intl. Conf. on the Theory and Application of
Cryptology and Information Security, pages 214–235, 2015.

[13] L. Dariz, M. Selvatici, M. Ruggeri, G. Costantino, and F. Martinelli. Trade-
off analysis of safety and security in can bus communication. In 2017 5th

VOLUME 7, 2019 13

Groza et al.: TRICKS - time TRIggered Covert Key Sharing for Controller Area Networks

IEEE International Conference on Models and Technologies for Intelligent
Transportation Systems (MT-ITS), pages 226–231. IEEE, 2017.

[14] W. Diffie and M. Hellman. New directions in cryptography. IEEE
transactions on Information Theory, 22(6):644–654, 1976.

[15] D. Dolev and A. Yao. On the security of public key protocols. IEEE
Transactions on information theory, 29(2):198–208, 1983.

[16] I. P. W. Group et al. P1363. 2: Standard specifications for password-based
public-key cryptographic techniques. Draft available at: http://grouper.
ieee. org/groups/1363.

[17] B. Groza, S. Murvay, A. V. Herrewege, and I. Verbauwhede. Libra-can:
Lightweight broadcast authentication for controller area networks. ACM
Transactions on Embedded Computing Systems (TECS), 16(3):90, 2017.

[18] B. Groza, L. Popa, and S. Murvay. INCANTA - intrusion detection in
controller area networks with time-covert cryptographic authentication. In
International Workshop on Cyber Security for Intelligent Transportation
Systems (ESORICS’18 Workshops), 2018.

[19] F. Hao and S. F. Shahandashti. The SPEKE protocol revisited. In
International Conference on Research in Security Standardisation, pages
26–38. Springer, 2014.

[20] O. Hartkopp, C. Reuber, and R. Schilling. MaCAN-message authenticated
CAN. In 10th Int. Conf. on Embedded Security in Cars (ESCAR 2012),
2012.

[21] I. S. o. I. T. ISO. Security techniques, key management, part 4: “mecha-
nisms based on week secrets,” iso/iec 11770-4. 2006.

[22] D. P. Jablon. Extended password key exchange protocols immune to
dictionary attack. In Proceedings of IEEE 6th Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises, pages 248–255.
IEEE, 1997.

[23] S. Jain and J. Guajardo. Physical layer group key agreement for automotive
controller area networks. In Conference on Cryptographic Hardware and
Embedded Systems, 2016.

[24] S. Jain, Q. Wang, M. T. Arafin, and J. Guajardo. Probing attacks on
physical layer key agreement for automotive controller area networks
(extended version). arXiv preprint arXiv:1810.07305, 2018.

[25] Y. Kim, A. Perrig, and G. Tsudik. Group key agreement efficient in
communication. IEEE transactions on computers, 53(7):905–921, 2004.

[26] M. Kneib and C. Huth. Scission: Signal characteristic-based sender identi-
fication and intrusion detection in automotive networks. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications
Security, pages 787–800. ACM, 2018.

[27] R. Kurachi, Y. Matsubara, H. Takada, N. Adachi, Y. Miyashita, and
S. Horihata. CaCAN - centralized authentication system in CAN (con-
troller area network). In 14th Int. Conf. on Embedded Security in Cars
(ESCAR 2014), 2014.

[28] C. Lin, Q. Zhu, C. Phung, and A. Sangiovanni-Vincentelli. Security-
aware mapping for can-based real-time distributed automotive systems.
In 2013 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pages 115–121, Nov 2013.

[29] C.-W. Lin, Q. Zhu, and A. Sangiovanni-Vincentelli. Security-aware
modeling and efficient mapping for CAN-based real-time distributed auto-
motive systems. IEEE Embedded Systems Letters, 7(1):11–14, 2015.

[30] Y. Liu, H.-H. Chen, and L. Wang. Physical layer security for next gen-
eration wireless networks: Theories, technologies, and challenges. IEEE
Communications Surveys & Tutorials, 19(1):347–376, 2017.

[31] C. Miller and C. Valasek. Adventures in automotive networks and control
units. DEF CON, 21:260–264, 2013.

[32] C. Miller and C. Valasek. Remote exploitation of an unaltered passenger
vehicle. Black Hat USA, 2015, 2015.

[33] MIRACL Ltd. Multiprecision Integer and Rational Arithmetic C Library
– the MIRACL Crypto SDK. https://github.com/miracl/MIRACL. Ac-
cessed: 2018-12-11.

[34] A. Mueller and T. Lothspeich. Plug-and-secure communication for can.
CAN Newsletter, pages 10–14, 2015.

[35] P.-S. Murvay and B. Groza. Source identification using signal charac-
teristics in controller area networks. IEEE Signal Processing Letters,
21(4):395–399, 2014.

[36] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM,
21(2):120–126, 1978.

[37] S. U. Sagong, X. Ying, A. Clark, L. Bushnell, and R. Poovendran.
Cloaking the clock: emulating clock skew in controller area networks. In
Proceedings of the 9th ACM/IEEE International Conference on Cyber-
Physical Systems, pages 32–42. IEEE Press, 2018.

[38] F. Stajano and R. Anderson. The resurrecting duckling: Security issues for
ad-hoc wireless networks. In International workshop on security protocols,
pages 172–182. Springer, 1999.

[39] D. G. Steer, L. Strawczynski, W. Diffie, and M. Wiener. A secure
audio teleconference system. In Proceedings on Advances in Cryptology,
CRYPTO ’88, pages 520–528, Berlin, Heidelberg, 1990. Springer-Verlag.

[40] Q. Tang and C. J. Mitchell. On the security of some password-based key
agreement schemes. In International Conference on Computational and
Information Science, pages 149–154. Springer, 2005.

[41] S. Woo, H. J. Jo, I. S. Kim, and D. H. Lee. A Practical Security
Architecture for In-Vehicle CAN-FD. IEEE Trans. Intell. Transp. Syst.,
17(8):2248–2261, Aug 2016.

[42] Y. Xie, G. Zeng, R. Kurachi, H. Takada, and G. Xie. Security/timing-aware
design space exploration of can fd for automotive cyber-physical systems.
IEEE Transactions on Industrial Informatics, 15(2):1094–1104, 2019.

[43] M. Zhang. Analysis of the speke password-authenticated key exchange
protocol. IEEE Communications Letters, 8(1):63–65, 2004.

BOGDAN GROZA is Professor at Politehnica
University of Timisoara (UPT). He received his
Dipl.Ing. and Ph.D. degree from UPT in 2004
and 2008 respectively. In 2016 he successfully
defended his habilitation thesis having as core
subject the design of cryptographic security for
automotive embedded devices and networks. He
has been actively involved inside UPT with the
development of laboratories by Continental Au-
tomotive and Vector Informatik. Besides regular

participation in national and international research projects in information
security, he lead the CSEAMAN project (2015-2017) and currently leads the
PRESENCE project (2018-2020), two national research projects dedicated
to automotive security.

LUCIAN POPA started his PhD studies in 2018
at Politehnica University of Timisoara (UPT). He
graduated his B.Sc in 2015 and his M.Sc studies
in 2017 at the same university. He has a back-
ground of 4 years as a software developer and
later system engineer in the automotive industry
as former employee of Autoliv (2014 - 2018) and
current employee of Veoneer (2018 - present). His
research interests are in automotive security with
focus on the security of in-vehicle buses.

PAL-STEFAN MURVAY is Lecturer at Po-
litehnica University of Timisoara (UPT). He grad-
uated his B.Sc and M.Sc studies in 2008 and
2010 respectively and received his Ph.D. degree
in 2014, all from UPT. He has a 10-year back-
ground as a software developer in the automotive
industry. He worked as a postdoctoral researcher
in the CSEAMAN project and is currently a senior
researcher in the PRESENCE project. He also
leads the SEVEN project related to automotive and

industrial systems security. His current research interests are in the area of
automotive security.

14 VOLUME 7, 2019

	Introduction and motivation
	Background and experimental setup
	CAN basics
	Related work
	Setup for our experiments

	Time-triggered key-exchange protocols
	Summary of notations
	Adversary model
	Preliminary implementation notes
	Covert key-exchange procedures

	Cryptographically re-enforced versions
	Piggy-backed Diffie-Hellman EKE/SPEKE
	Security argument
	Implementation details
	Multi-party version of the scheme

	Conclusions
	REFERENCES
	Bogdan Groza
	Lucian Popa
	Pal-Stefan Murvay

