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Sweep-to-Unlock: Fingerprinting Smartphones
based on Loudspeaker Roll-off Characteristics

Adriana Berdich, Bogdan Groza, René Mayrhofer, Efrat Levy, Asaf Shabtai and Yuval Elovici

✦

Abstract—Fingerprinting smartphones based on acoustic characteris-
tics of their loudspeaker may have a number of applications in device-
to-device authentication as well as in forensic investigations. In this work
we propose an efficient fingerprinting methodology by using the roll-off
characteristics of the device speaker, i.e., the transition between the
low and high stopbands to the passband segment of the speaker. We
extract roll-off characteristics from sweep signals, also know as chirps,
that are commonly used in practice to test speaker response. This pro-
cedure appears to be more stable against variations of the volume level
and allows the use of simple linear approximations, which are intuitive
and easy to compute, in order to extract the fingerprint. To increase
detection accuracy, on the basis of the proven performance of deep
learning techniques, a convolutional and a bi-directional long short term
memory neural network are further proposed and their performance
demonstrated for authentication purposes. While numerous applications
may be envisioned, we specifically focus on the use of speaker charac-
teristics in relation to in-vehicle infotainment units, checking if recordings
from these units can be used to fingerprint a specific phone.

1 INTRODUCTION

Device-to-device (D2D) authentication is a frequent task in IoT
scenarios and using device’s characteristics to assure authentica-
tion is crucial in order to remove user interaction — especially for
embedded devices that do not have capable user interfaces or in-
side cars where physical access to the interface may be restricted.
Since each physical sensor (e.g. microphone, accelerometer, etc.)
or transducer (e.g. speaker) has its own characteristics, extracting
fingerprints from the device peripherals is an immediate alter-
native. But extracting specific characteristics or deciding which
classifier should be used is not always straightforward while ex-
ternal factors, such as environmental noise, may cause additional
problems.

There are quite a number of related works in this direction, as
we later discuss, and many characteristics that are specific to audio
signals, e.g., mel-frequency cepstral coefficients, spectral centroid,
spectral kurtosis, etc., as well as machine-learning classifiers
have been proposed. In this work we study the use of roll-off
characteristics of the device speaker which are extracted from a
linear sweep signal. Computing the slope of the roll-off requires
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Fig. 1. Suggestive depiction of our setup: sound emitted by a smart-
phone is recorded by an Android headunit or microphone

only a simple linear approximation and is very intuitive as a
fingerprint. We show that even this simple characteristic works
very well to separate between distinct devices. For higher accuracy
however, on speakers coming from the same smartphone model,
we further rely on deep learning algorithms that give much higher
identification success rates.

Concept summary. Figure 1 provides a graphic depiction of
our setup. We suggest that a smartphone is fingerprinted based
on recordings done by an in-vehicle headunit, which is the main
component in the scenario that we target. In this way, in-vehicle
infotainment units may use the device fingerprint in order to
unlock certain functions and users may authenticate without using
physical keys based on the device characteristics. A similar head
unit was used to make the 3.000 recordings with the 28 devices
from our experiments. While our proposed concept should also be
applicable to other scenarios, within the scope of this paper we
focus on the in-vehicle setting as a first area of analysis and use
recordings performed by a vehicle headunit. Our specific interest
for this scenario comes from the recent intentions of the industry
and researchers in using smartphones as keys for smart vehicles,
e.g., [1], [2], [3] or [4], a task in which phone identification by
vehicle headunits may find an immediate application. Nonethe-
less, the use of physical characteristics has been suggested as
an authentication method in several automotive scenarios, e.g.,
for the generation of secure keys and component identification
[5]. Several sources for creating physical unclonable functions
(PUFs) have been suggested for automotive environments, includ-
ing SRAM [5], optical channels [6] and look-up tables (LUTs)
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Fig. 2. Measurements in the time domain (top) and frequency domain
(bottom) for the three types of chirps played by a Samsung J5 (linear,
quadratic and exponential)

Fig. 3. Frequency sectors after applying a smoothness filter

[7]. As Android phones and head units become ubiquitous, other
sources such as sound and vibrations will become available for
use. Recent results in [8] also suggest the in-vehicle environment
as an exemplary scenario for non-interactive device pairing.

In an analogy to the now customary swipe-to-unlock action,
the title of our work suggests the use of sweep signals as acoustic
fingerprints for smartphones which may be recognized and allow
their owners to gain access to, i.e., unlock, other devices. The
linear sweep function is commonly used to test speaker response
by HiFi enthusiasts and professionals. The sweep signal, also
referred to as chirp, is a signal in which the frequency increases
over time. Ideally for speakers, one targets a linear response in
the 20Hz-20kHz range (or even further), but due to inherent
technological limitations the response is not linear and rises or
falls at the low and high ends respectively. Three kinds of chirps
are commonly used and they are readily available in the Matlab
numerical environment: i) linear, i.e., f(t) = f0 + (f1−f0)

t1
t,

ii) quadratic f(t) = f0 + (f1−f0)
t21

t2 and iii) exponential, i.e.,

f(t) = f0 (f1/f0)
t/t1 . Here t denotes time, f0 is the start

frequency at time 0 and f1 the instantaneous frequency at time
t1. Concretely, in our implementation we used f0 = 20Hz,
f1 = 20kHz, t1 = 10s. Figure 2 shows the result from the three
chirp functions in the time and frequency domain after they are
processed following a recording from an in-vehicle infotainment
unit. The signals were played by one of the phones in our
experiments, i.e., a Samsung J5. Note that in the time domain
differences are more visible since the frequencies change distinctly
with time. The frequency response, i.e., the power spectrum, is
similar for the same phone, which is expected since in all three
types of chirps, i.e., linear, quadratic, and exponential, the same
frequency range 20-20kHz is probed.

However, for distinct speakers, the frequency response is quite
distinct since speakers do not cope well at the chirp edges: bass
response is limited while the high frequencies may start to beam,
all these causing distinct roll-offs. Figure 3 shows the power
spectrum as recorded from four smartphones: Samsung S7 (blue),
Samsung J5 (red), LG Optimus P700 (orange) and Allview V1
Viper I (magenta) that performed a linear sweep function between
20Hz and 20kHz. The recordings were done by the same Android
Infotainment Unit and the plot is done in Matlab based on the
recorded data after applying a smoothness filter. Specifically, after
recording the linear sweep function from 20Hz to 20kHz we split
the range into three sectors: i) the first sector between 700Hz
and 3kHz, ii) the second sector between 3kHz and 7kHz and iii)
the last sector between 7kHz and 11kHz. Based on the power
spectrum of the recording, computed in Matlab, speaker response
was poor below 700Hz and above 11kHz, a reason for which
we decided to focus our analysis in the 700Hz-11kHz range.
It is easy to distinguish a passband sector in the middle which
corresponds to the midrange frequencies of the speaker. The
left and right stop-bands cause the low and high roll-offs, they
represent a frequency range that the phone speaker has trouble
to reproduce. This separation into three sectors corresponding to
the low, middle and high frequencies is natural, e.g., most high-
end HiFi system employ a 3-way architecture that uses distinct
drivers for reproducing the bass, midrange and treble. Selecting
700Hz, 3kHz, 7kHz and 11kHz as cut-off frequencies was done
based on empirical observation of the rising and falling edges of
the signals and it fit well the devices in our experiments. The
heterogeneity of the selected devices suggests these ranges should
be suitable for most smartphones. Finally, the neural network
classifiers presented in the experimental section can easily cope
with the full audio spectrum, usually in the range of 20Hz-
20kHz but as shown in Figure 3 smartphone speakers are hardly
capable of covering it. For this reason we use only the band of
700Hz-11kHz for our neural network classifiers which reduces the
computational overhead, i.e., smaller inputs, and also eliminates
sectors which will be more easily susceptible to noise (since
loudspeaker response is mostly absent in that area). By careful
analysis, we determine that the roll-off, i.e., the slope of this
transfer function, provides a good characteristic that is specific
to each device. This is already visible in Figure 3 and we explore
more on this in the forthcoming sections. Briefly, the contributions
of our work can be summarized as follows:

1) we build a comprehensive data-set containing 3000 samples
collected from 28 devices which will be publicly released to
serve for future investigations,
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2) we explore the use of a simple classifier based on linear
approximations of the slope roll-off which proves to be a
good discriminator especially between different smartphone
models,

3) to grasp on finer grain characteristics and distinguish between
identical speakers, we design two deep neural network archi-
tectures that have high accuracy in distinguishing identical
devices,

4) to account for environmental changes, we study the influence
of both environmental noise as well as of synthetic noise over
the recordings.

The rest of the work is organized as follows. In Section 2
we survey some related works. Section 3 sets the background
and methodology also pointing out to some limitations in related
works. Section 4 presents our identification results with simple
linear approximations both on distinct smartphones and speakers
from the same smartphone model. In Section 5 we proceed to an
analysis based on deep neural networks which leads to very small
false acceptance or false rejection rates even for identical speakers
that are extracted from identical smartphones and mounted on the
same device (to avoid influences from the electronic circuits inside
the phone). Section 6 holds the conclusion of our work.

2 RELATED WORK

There are only a few works so far that have focused on finger-
printing smartphones based on the device speaker alone. Figure
4 provides an overview of the paths taken by these works. Since
we are interested in device-to-device authentication we rely on
synthetically produced sounds rather than on musical instruments
or human voice. We also avoid the use of human voice for
fingerprinting because of privacy concerns. The earliest work
which took this approach is [9] which fingerprints smartphones
based on the frequency response of speakers between 14kHz and
21kHz at 100Hz frequency steps. The fingerprints are compared
based on the Euclidean distance to the reference data. We note
that one potential limitation is that by increasing the volume, the
distance increases as well making the fingerprint problematic. In
contrast, the slope of the roll-off should provide better resilience to
this. Nonetheless, not all of the smartphones from our experiments
were capable of correctly reproducing frequencies around 20kHz
and thus fingerprinting may become unreliable for some phones
(the aforementioned paper uses speakers of the same smartphone
model).

Rather than synthetic sounds, other works have used natural
sounds, such as human voice or instrumental music, to fingerprint
the device. The works from [10] and [11] are fingerprinting
devices based on human voice or instrumental music by using
features such as mel-frequency cepstral coefficients (MFCCs),
root mean square (RMS), spectral centroid, entropy, skewness,
kurtosis, tonal centroid, and others. K-nearest neighbors (KNN)
and Gaussian mixture models (GMM) are used as classification
algorithms to identify the device. According to [11], the best
results are obtained using MFCCs (we omit the rest of the
features from the drawing in Figure 4 to avoid overloading).
As we later discuss, this approach appears to have the same
limitation by being highly dependent on the volume level of the
device. More recently, the work in [12] uses human speech along
with various classifiers (support vector machine (SVM), Random
Forest, etc.) and convolutional neural networks (CNN) as well as

Fig. 4. Paths taken by various works in fingerprinting smartphones
based on accoustic data ([*] refers to this work)

and Recurrent Neuron Network-Long Short-Term Memory Neural
Network (RNN-BLSTM) for smartphone identification.

Other works have used microphones to extract fingerprints
rather than loudspeakers. Note that in our authentication scenario
we assume that the recording device is fixed, in particular, we
used the vehicle head-unit in Figure 5 for all the recordings and a
calibrated UMIK-1 microphone from time to time only to check
the accuracy of our measurements. This is done for example by the
works in [13] and [14] which use CNN and also KNN and SVM
classifiers for smartphone identification based on the microphone
response. The smartphones record and save a tone at 1kHz and
2kHz and the frequency domain representation of the normalized
recorded sound is used for classification. In [15] the use of
environmental sounds such as pneumatic hammer and gunshot is
also considered for smartphone classification based on microphone
response. The microphone is also identified based on Gaussian
Supervector (GSV) using SVM and sparse representation-based
(SRC) classifiers in [16]. For forensics purposes, the authors in
[17] use Band Energy Differences (BED) to prove that a recording
was done with a particular device. Electrical Network Frequency
(ENF) analysis is used to identify the recording device in [18].
The extracted features are later used with an SVM classifier for
device identification. Smartphone identification based on encoding
parameters of various audio files, e.g., MP3, AAC and M4A,
is studied by the authors in [19]. In [20], MFCCs is used for
recorder recognition based on audio signals. In a distinct vein,
serving as a protection mechanism for user’s privacy, the authors
in [21] propose to modify the frequency response of the phone
loudspeaker in order to avoid user from being tracked.

Other systems for mobile device fingerprinting are based
on audio signals and multiple motion smartphone sensors, e.g.,
accelerometer, gyroscope are proposed in [22] and [23]. The
device speakers along with other smartphone sensors such as the
accelerometer, gyroscope, and the magnetometer are used in [24].
We note that fingerprinting approaches based on sensor character-
istics that require on-device measurement through respective apps
such as [25] are complementary to our focus of fingerprinting
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smartphones based on externally measurable attributes. In [26]
the mobile devices are identified based on speakers, microphones
and accelerometer data. A survey on various smartphone sensors
that can be used for fingerprinting can be found in [27] and an
overview on techniques for secure device pairing is available in
[28].

Besides fingerprinting, other works have linked authentication
and key-exchange protocols to the fingerprint (this is indeed a
straight-forward extension). An authentication protocol for two
devices based on the frequency response is proposed in [29]. The
authors fingerprint the speakers and the microphones from differ-
ent smartphones in distinct locations by using frequency domain
analysis. Also, in [30] an authentication protocol is proposed for
mobile devices based on acoustic channel response. A smartphone
authentication scenario, based on the frequency response of the
loudspeaker, non-uniformity of camera and accelerometer features
in the time and frequency domain is proposed in [31]. Another
system for transmitting the data between mobile devices and
fingerprinting devices based on audio signals in the inaudible
range, between 17.5kHz and 21kHz is proposed in [32]. The fin-
gerprinting is based on features of audio signals such as the RMS,
the symmetry of the signal, correlation of frequency response and
others. The fast Fourier transform (FFT) of the audio signal is used
in [33] to extract information for authentication. Also, in [34] the
audio signal is used for smartphone key exchange. Device pairing
based on audio signals is also proposed in [35], [36], [37], [38]
and ambient noise is particularly used by [39] and [40].

Since our work directly targets the ecosystem formed by cars
and smartphones, we also consider to enumerate several works that
have focused on acoustic data inside the car. The low-frequency
noise inside the car with an open window at different vehicle
speeds is analysed in [41]. In [42] the vehicle speed and other
characteristics of the cars, e.g., the length and width of vehicles
passing on the street, are estimated based on a microphone that
records audio signals emitted by the car in motion, e.g., noise
from the engine, tires, exhaust, and air turbulence. In [43] the
authors distinguish the position of the phone between the driver
and the passenger based on the audio signal emitted at a frequency
greater than 15kHz. Detection of abnormal driver behaviour based
on audio signals recorded by the phone using machine learning is
proposed in [44]. In [45] the car is paired with the smartphone
using out-of-band communication channels such as an audio
channel and light. A method to prevent relay attacks in the case of
key-less car access systems based on sound proximity is described
in [46]. After symmetric key authentication, the car and the key
begin to record the ambient sound while the key transmits this to
the car which detects the proximity of the key.

Other applications based on acoustic data may be also worth
mentioning for the context in our work. Device localization based
on audio data extracted from the ecosystem is described in [47].
In [48] a system for tracking based on audio data is proposed. An-
other indoor tracking system based on audio data between 17kHz
and 22kHz (emitted and received by smartphones) is proposed in
[49]. The authors also analyse the smartphones frequency range
for audio signals, the battery consumption at different volume
levels and the influence of the distance on volume. In [50], sound
propagation from the speaker to the microphone is analyzed along
with sound reflections and the influence of volume levels.

Fig. 5. The headunit and four smartphones from the experiments: Allview
V1 Viper I, LG Optimus P700, Samsung S7 and Samsung J5

Fig. 6. Samsung J5 along with the 16 dismantled speakers and case

3 SETUP AND ANALYSIS OVERVIEW

In this section we give an overview of the methodology and
experiments. We discuss the environment configuration, tools, and
devices used for data collection. We also give a preliminary view
of the experimental data.

3.1 Setup and methodology

Devices. Our initial analysis started with several distinct smart-
phones. Noticing that these are easy to separate, we extended
the set with 5 and later 16 identical Samsung J5 speakers which
make separation more challenging. Besides these, we also use
an after-market vehicle headunit manufactured by Erisin that was
available to us. This unit is equipped with a microphone and
supports external speakers. We are specifically interested by the
vehicular setting since numerous recent works have proposed the
use of smartphones for car access scenarios, e.g., [1], [2] or [3].
Four smartphones from the experiments along with the headunit

are depicted in Figure 5. The 16 speakers disassembled from J5
smartphones along with a J5 case and the J5 used for fingerprinting
are shown in Figure 6.

Table 1 provides a summary of the devices and associated
measurements. A total of 28 devices have been fingerprinted
(totaling 3000 measured sweep signals) out of which 16 are
identical smartphone speakers placed in the same smartphone
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TABLE 1
Summary of devices and associated measurements

Phones Label No. Meas. Total

1. Samsung Galaxy J5 A, C and F to P 13 100 1300
(distinct speakers in phone) B, D, E 3 500 1500

2. Samsung Galaxy S7 Edge S7 1 30 30
3. LG Optimus P700 LG 1 30 30
4. Allview V1 Viper I AV 1 30 30
5. Samsung Galaxy J5 (other) J5′ 1 30 30
6. Samsung Galaxy J5 (other) J5′′/J5′′′ 2 10 20
7. Samsung Galaxy Note 8 N8 1 10 10
8. Samsung Galaxy A21s A21 1 10 10
9. Samsung Galaxy Tab S7 T7 1 10 10
10. Xiaomi Mi A3 X3 1 10 10
11. Xiaomi Redmi 7A X7 1 10 10
12. Leagoo Z10 LE 1 10 10

Total 28 3000

case (2800 measurements target these identical speakers)1. The
first row contains the 16 identical speakers which are the main
focus of our work being the most difficult to separate, i.e., a
worst-case scenario. For 13 of them we took 100 measurements
which were sufficient for fingerprinting with machine learning
algorithms. We also selected 3 speakers out of these which had
very close fingerprints and took 500 measurements to see how
separation works in a much larger dataset. To serve for additional
experiments, rows 2-5 contain 4 devices for which we took 30
measurements in order to test them at various volume and angle
manipulations. Finally, rows 6-12 contain 8 devices, taken from
casual visitors, for which we made only 10 measurements and
determined that they do separate well enough even with simple
linear approximations of the roll-off frequency. The separation
between distinct devices is clearly visible in Figure 7 where we
show the displacement for all the phones in the experiments. In
this figure and similarly in several of the figures that follow, the
phones (or speakers) are placed in a Cartesian coordinate system
where the abscissa (x-axis) represents the slope of the low roll-off
and the ordinate (y-axis) represents the slope of the high roll-
off. There is clear separation between the devices but two of the
J5s do overlap, i.e., J5′′ and J5′′′, which suggests right from the
beginning that for better separation machine learning approaches
are needed as the slope alone may lead to overlaps especially for
similar devices.

We note that the fingerprint is dependent on the recorder as
well since physical imperfections of the microphone will lead to
small measurement variations. However, in the scenario that we
target, i.e., device-to-device authentication, the recording device
is fixed. We consider the case of a single device playing the sweep
signal at a time, if multiple devices are playing then the overlap
will likely make identification not possible. Background noise may
have a similar effect as we discuss in a later section.

Tools and environments. We use Room EQ Wizard2 (REW),
a free room acoustic software widely used for various audio
measurements. In particular, we used it to generate a LinearSweep
signal with a frequency between 20Hz and 20kHz, the same signal
was also generated later in Matlab which offers a more complex
numerical processing environment and many other options for
processing. The signal is saved as a .wav file with a sample rate
of 48kHz at 16-bit resolution. The sample is played by each of the

1. the samples from the 16 identical smartphone loudspeakers are publicly
available at http://www.aut.upt.ro/∼bgroza/projects/sweep-to-unlock/

2. https://www.roomeqwizard.com/

Fig. 7. Overview of the displacement according the roll-off slopes for 12
phones in our experiments

Fig. 8. Overview of the fingerprinting procedure

phones and the infotainment unit will record the produced sweep,
more details follow in the next sections. For the off-line analysis
of the recorded data, we used the Matlab3 environment which has
a vast signal processing tool-set. For a crisper image, Figure 8
provides an overview of the fingerprinting procedure. In the first
step the phone, located 1m away from the headunit, emits a sweep
signal which has a duration of about 10s. The headunit records the
signal from which the power spectrum is extracted and used either
to compute the slopes of the low and high roll-offs (Section 4) or
with more complex machine-learning techniques (Section 5).

Experimental scenarios. Each smartphone plays the .wav file
containing the Linear Sweep signal generated by REW. On the
Erisin headunit, we run an Android application that records the
sound from the smartphones. The recorded signal is saved as a
.wav file for later analysis. The experiments are done in a room of
3 × 3.7 × 2.5m (room acoustics may also influence the results).
Devices were placed on a working desk, the distance between the
Erisin headunit and the smartphone that plays the sound is fixed at
1 meter. Regarding the volume of the smartphone, three scenarios
were considered with four of the smartphones: 100% volume,
75% volume, and 50% volume. We performed five measurements
in identical setups with all smartphones. For the individual J5
speakers we perform several kinds of experiments, an overview of

3. https://www.mathworks.com/products/matlab.html

http://www.aut.upt.ro/~bgroza/projects/sweep-to-unlock/
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Fig. 9. Overview of the experimental results on distinct Samsung J5
speakers: speakers in original case (OR), speakers on acrylic board
(AC), speakers on damping material (DP), suppression with AWGN
(GN), and recording in street traffic (ST)

the results is graphically outlined in Figure 9. We first try three
distinct placements of the speakers: in the original case (OR),
on an acrylic board (AC) and on a damping material (DP). We
further suppress the original signal with additive white Gaussian
noise AWGN (GN) and perform recordings inside a car in traffic
(ST). This change of environments has a clear impact on the
recorded roll-offs as can be seen in Figure 9, but it is already
visible that results from the same environment are clustered. A
detailed discussion on separation in each such scenario will follow
in the next section.

3.2 Potential limitations in related approaches

In the earlier development stages of our work we tried to use a
more classical approach with simpler classifiers based on MFCCs
which is also suggested in related works. However, we determined
that the volume level may be misleading for such approaches and
regular classifiers such as KNN do not cope well with changes in
volume. That is, a classifier may correctly identify phones merely
due to the output volume which is distinct on distinct phones (even
if technically they are all set at the same volume level) and then
mismatch them at a distinct volume (when changed by a user).
In this way, correct identification is not a consequence of distinct
patterns in the audio signal but rather of the volume level. When
changing the volume level, the classifier fails to correctly identify
the phone. The experimental data from Figure 14 discussed later,
shows that roll-off characteristics remain more stable with changes
in volume and orientation.

For this reason, we choose to focus our work on sweep signals
and later rely on deep neural networks. In what follows we only
briefly outline the potential limitation that we determined with
classical machine learning algorithms applied on periodic signals.
Namely, we found that by directly using the recorded audio
signal with MFCCs (the discriminant recommended by [11]), the
identification works mostly when the audio output is kept at the
same level on distinct phones which results in fact in distinct
amplitudes for the output. Once the volume changes, bringing the
volume to the same actual level, the identification results become
misleading.

In Table 2 we show that results by using KNN on the features
extracted from a linear sweep with MFCCs at various volume
levels may be inconsistent (the roll-offs that we later use seem to

TABLE 2
Misinterpretations with KNN classification and MFCCs at various

volume levels 100%, 75% and 50% volume level

Volume Phone J5 S7 LG AV

100%

J5 56.36% 7.18% 2.46% 34.01%
S7 1.06% 96.57% 1.19% 1.19%
LG 12.75% 14.70% 61.43% 11.12%
AV 28.77% 0.57% 2.83% 67.89%

75%

J5 5.61% 80.42% 1.53% 12.45%
S7 88.23% 6.95% 2.60% 2.22%
LG 18.83% 33.12% 45.84% 2.21%
AV 0.82% 75.71% 0.64% 22.84%

50%

J5 6.70% 78.60% 2.12% 12.58%
S7 90.61% 1.82% 3.85% 3.73%
LG 19.61% 28.98% 46.64% 2.78%
AV 1.02% 65.47% 0.99% 32.51%

be less affected as shown in Figure 14). For the four smartphones
in this experiment, we considered the features extracted from the
audio signal from one experiment as training data and the features
extracted from the another four experiments as test data. The first
experiments show all phones at 100% volume. In this case, all
smartphones are correctly identified. Then we reduced the volume
for all phones to 75% and kept the same number of experiments
5. For the Samsung S7 however, we also add 5 experiments as test
data with the volume set to 100%. In this case, only the LG is
correctly identified while the S7 begins to overlap in identification
with the J5 and the Allview. When proceeding to a reduction in
volume to 50% and again adding misleading test data for S7 at
100% the situation remains similar. The volume also fluctuates
and differences can be significant according to the frequency.

We have also tested the phones with a periodic tone as
employed in related works, i.e., we use a sine wave s(t) =
a sin(2πft/fs), where a is the amplitude, f the frequency, fs
the sampling frequency and t denotes time. This tone was used
to encode a 1 while a 0 will be denoted by a period of silence.
However, we noted similar differences between the volume levels
of the phones. For example, at 1kHz with all phones kept at 100%
volume, the J5 is louder than the rest, while the Allview is only
at 68% of the J5 volume, LG at 67 % and the S7 at only 39%
of the J5 volume (this is in fact visible in Figure 11 which we
discuss in a later section). This distinction is enough to provide
a fingerprint, but we cannot be sure of the volume level at which
the user keeps the phone. Scaling the volume to the same value
also changes the amplitude of the noise. As further clarifications,
in Figure 10 we show the audio data from four phones as recorded
by the car infotainment unit. The left side of the figure shows the
original data and the right side of the figure shows the data after
we scale it in order to remove differences due to the volume level.
The classification works correctly at the same volume level, but it
appears that the classifier is again dependent on the volume level.
We return to the results obtained with the classifiers later. After
the data was scaled to remove differences in volume levels (the
right side of the picture), the noise level seems again to be the
bigger discriminant. Noise is present during intervals when the
speaker is silent and when scaling the data the noise also scales up
creating a bigger discriminant. To remove measurement problems
due to the poorly calibrated microphones in the car Android unit
we also performed measurements with a calibrated microphone
UMIK-1 from MiniDSP4. An example is shown in Figure 11.

4. https://www.minidsp.com/
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(i) 0°

(ii) 45°

(iii) 90°

Fig. 10. Recorded signal (left) and scaled (right) on four phones for
a periodic tone of 1kHz at 500ms periodicity (recordings by in-vehicle
headunit)

Fig. 11. Recorded signal on four phones for a periodic tone of 1kHz at
500ms periodicity with a HiFi setup microphone UMIK-1

While the noise level is clearly much smaller and the signal level
is also higher due to the higher sensitivity of the microphone, the
classification results were similar to the case of the infotainment
unit. Also, since periodic signals have a much simpler frequency
domain representation we were not comfortable with using them in
the rest of our experiments. In Figure 12 we show the influence of
the speaker placement and background material on a periodic tone
(this can be contrasted to Figure 15 which shows the much more
complex power spectrum of sweep signals). The figure shows the
recorded signal from the five speakers for a periodic tone of 1kHz
with 500ms periodicity. The signal is very poorly defined when the
speakers are placed on the acrylic board (left) or on the damping
material (middle). The signal gains clarity when the speakers are
placed in the smartphone case (right). The power spectrum is
shown in the bottom of the figure and it consists of a large spike
at 1kHz.

Regarding the use of more classical machine learning algo-
rithms, such as KNN, another limitation that we noticed was that
when using the 500 samples dataset their performance was visibly
lower than that of neural networks. Of course, there are many other
traditional machine learning classifiers and various optimizations
are possible, but we cannot address so many algorithms in a single

work, a reason for which we chose to focus our contribution on
the use of two newly designed deep neural networks that provided
excellent results on the collected data. As a brief comparison
with the deep-learning approach proposed in this work, we also
add later some results for the KNN, SVM and Random Forest
classifiers in the worst case scenario of our analysis, i.e., speech
affected recordings, to serve as a comparison.

4 FINGERPRINTING SPEAKERS BASED ON ROLL-
OFF SLOPES

We now proceed to analyzing speakers based on their roll-off
characteristics. Subsequently, for comparison, we also perform an
analysis based on periodic signals that exhibit rising and falling
edges at a faster rate for which we use more demanding machine
learning algorithms. Finally, we analyze the impact of noise on
fingerprinting speakers.

4.1 Roll-off characteristics on distinct smartphones

For a more comprehensive analysis of the signals recorded by the
Erisin headunit we use the Matlab environment. To get a clear
image on the recorded data we also use the Signal Analyser App
from Matlab’s Signal Processing Toolbox. Our analysis is based
on the power spectrum of the signal, i.e., the frequencies of the
spectral estimates from the power spectrum, which is extracted by
calling the pspectrum(data, sample rate) function on
the audio data and the corresponding sample rate.

Figure 13 shows plots of the power spectrum when using three
volume levels: 100% volume (blue), 75% volume (orange), and
50% volume (red). The shape of the signal remains similar, but, as
expected, the signal is shifted on the vertical axis, a reason which
may lead to misclassification when the user (or an adversary)
changes the volume level of the phone. When computing the
slope of the signal by linear approximations, unwanted noise
may affect the result. For this reason we also tried to reduce the
noise by using a smoothness filter. This was achieved by using
a moving mean filter which is implemented in the toolset by the
smoothdata(sampled data, ‘movmean’) function that
has as parameter the sampled data and the moving average method,
i.e., ‘movmean’. We also tried other options, e.g., ‘movmedian’
or ‘gaussian’ but did not yield better results. Finally, for the
neural networks used in Section 5 there was no need to remove
the noise from the signal since it did not affect the accuracy of the
result.

Based on observations from Figure 13 we analyse the fre-
quency in the range of 700Hz – 11kHz. We split this frequency
range into three sectors that are relevant for the roll-off charac-
teristics: the first sector is between 700Hz and 3kHz, the second
sector is between 3kHz and 7kHz and the last sector is between
7kHz and 11kHz as we show in figure 3 for each smartphone
Samsung S7 (blue), Samsung J5 (red), LG (orange) and Allview
(magenta). To separate between signals, we apply a linear approx-
imation for each of the three sectors. For the linear approximation
function, in Matlab we use the polyfit(frequencies,
power spectrum, degree) which has as parameters the
frequencies of the spectral estimates from the power spectrum, the
power spectrum in decibels and the degree of the approximation
polynomial (which is 1 in our case). The function returns the
coefficients of an approximation polynomial of degree 1. We
can also use the polyval(polynomial coefficients,
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(i) periodic tone of 1kHz at 500ms periodicity

(ii) power spectrum of 1kHz at 500ms periodicity

Fig. 12. Recorded signal on the five speakers on acrylic board (left), on damping material (middle) and inside the smartphone case (right) and
power spectrum for a periodic tone of 1kHz at 500ms periodicity (recordings by in-vehicle headunit)

Fig. 13. Power spectrum of the audio signal at distinct volume levels
100% volume (blue), 75% volume (orange) and 50% volume (red) for
Samsung J5 (up) and Allview (down)

points) function, which has as parameters the coefficients of
the polynomial to query at evaluation points. The function returns
the values of the polynomial for each point.

In Figure 14 we show how four phones cluster in a Cartesian
coordinate system where the ordinate represents the slope of the
high roll-off and the abscissa is the slope of the low roll-off at
distinct volume levels (i) and distinct angles (ii). The plots account
for three distinct volume levels on each phone, i.e., 50%, 75% and
100%, the size of the chart element depends on the volume level
(bigger elements correspond to higher volume). Similarly, for the
angle of the recording we considered three values 0◦, 45◦ and
90◦, we kept the size of the chart element inversely proportional
with the angle, i.e., higher elements correspond to 0◦. It is easy to
see that the four phone cluster distinctly. Volume level has some
influence on clustering, but the only phone which may be misclas-
sified is the J5 at 50% volume level which overlaps with the AV in
one of the measurements. The angle has less influence and there
are no overlaps between the results. To correctly separate between

phones that are closer more measurements are likely needed. The
results were very similar with or without the smoothness filter,
to avoid overloading the paper we will generally present only the
plots for the original signal (without smoothness).

4.2 Identifying speakers from the same smartphone
model
We now consider to separate between different speakers from the
same smartphone model which is the more challenging problem.
For the Samsung Galaxy J5 we first obtained 5 identical speakers
(labels A to E) on which our initial analysis is focused, then
we extended this set with another 11 identical speakers (labels
F to P). The speakers came from second-hand phones and were
disassembled, soldered to new wires and connected to the same
smartphone for the tests that followed. Many different factors may
have contributed to measurable differences between the speak-
ers, including manufacturing variations, material aging, physical
stress, the different volume levels at which they were usually
played, or other environmental affects during the use of those
second-hand phones. However, these effects occur in the real-
world use of smartphones, and thus our measurements are good
indicators for practical scenarios.

We pursue three experiments in which the first five speakers
are placed against three distinct background materials: an acrylic
board, a sound damping material (felt) and inside the smartphone
case which is the main use case. In Figure 15 we show the
influence of the speakers placement and the background material.
It can be easily seen that the smartphone case boosts frequencies
below the 7KHz range which are poorly defined on the acrylic or
damping boards. This shows that the case has a major influence
over the sound of the speaker. Fortunately, for the same smart-
phone model the case will be identical. It is out of scope for
our work to evaluate differences due to physical damage of the
smartphone case or use of different outer shells.

We further investigate the separation based on low and high
roll-offs against the three distinct background materials. Figure 16
shows the separation by using the first and third separation sectors.
The five speakers seem to separate based on the slope of their roll-
offs. The separation becomes clearer when they are placed in the
original case, but it is also obvious when they are placed on the
sound damping material. There is a higher amount of confusion
between the speakers when they are placed on the acrylic board



9

(i) recordings at distinct volume

(ii) recording at various angles

Fig. 14. Clustering based on low-high roll-offs: at disctinct volume levels
50%, 75%, 100% (i) and various angles 0◦, 45◦, 90◦ (ii) - for the four
phones S7 (red), J5 (blue), LG (green) and Allview (orange)

which may be due to sound reflections that are more pronounced
on the acrylic board.

By looking closer at the result for the original case, which is
also more relevant for practice, the separation between speakers
B, D and E has to be more carefully addressed since the overlap
is more pronounced. To achieve this, we first performed 100
measurements with each speaker. The clustering is depicted in
Figure 17. By computing the Euclidean distance of each sample
to the mean of the samples from the same speaker, i.e., the intra-
distance, and to the mean of the samples from the other speaker,
i.e., the inter-distance, we obtain the following separation ratios:
83% between B and D, 77% between B and E, 73% between D and
E. The separation becomes obvious with repeated measurements

although outliers may be present.
We now make a brief quantitative analysis on the inter-

distances and intra-distances that can be extracted from the slopes
of the roll-offs. Figure 18 shows the inter-distances and intra-
distances between the 12 distinct smartphones both as a heatmap
to the left and as numerical values to the right. The distances were
computed as the average Euclidean distances between the planar
coordinates formed by the slopes of the low and high roll-offs.
The inter-distances are clearly greater, staying above 10−3 (with
the exception of two identical J5 phones), while the intra-distances
are always below this threshold. The diagonal of the matrix,
representing intra-distances is also easy to distinguish in the
heatmap. Figure 19 shows the inter-distances and intra-distances
between the 16 identical J5 speakers both as a heatmap to the left
and as numerical values to the right. In this case, while the intra-
distances are almost always below the 10−3 threshold (speaker
D is the only exception), it may happen for the inter-distances to
drop below this threshold as well. Consequently, separation based
on the slope of the roll-offs alone is more difficult. The heatmap
is also more noisy and the diagonal, i.e., the intra-distances, while
still visible, is harder to distinguish.

As a partial conclusion, the slopes may provide sufficient clues
for separating between distinct smartphones but they may become
problematic when identical speakers/phones are used. For this
reason we will use in Section 5 deep neural networks to separate
between identical speakers.

4.3 Noise influence on roll-offs slopes
Having in mind that in a real-world scenario environmental noise
is present and can influence the fingerprinting process of the
speakers, we consider to analyze the influence of noise as well.
We consider two types of noise that are relevant: the additive
white Gaussian noise (AWGN) which mimics the effects of many
random processes that exist in nature and may also account for
noise inside cars and the street noise which is specific for our car
related scenario. The additive white Gaussian noise was also used
to simulate the attenuation of the signal from the speaker to the
microphone in [13].

We apply an AWGN signal over the clean recordings with a
noise level proportional to the original signal power, i.e., by setting
the SNR (signal-to-noise ratio) to 0dB. The clean recordings
contain the signal recorded by the infotainment unit and played
by the Samsung J5 speakers (the speakers were placed inside the
smartphone case as described previously). In Figure 20 we depict
the audio signal recorded and the signal with AWGN in the time
domain (up) and the power spectrum of the signals (down).

We now analyze the influence of the AWGN on the linear
sweep signal played by the first five speakers of the Samsung J5.
Based on the power spectrum of the audio signal with AWGN, we
analyze the frequency in the range of 700Hz – 11kHz and split
it in three sectors as we did in the previous sections. Figure 21
shows plots from two experiments with the linear fit of the power
spectral signals for the first sector (up) and the third sector (down).
Each plot shows the five speakers of the Samsung J5 with 100%
volume level. Based on the slope of the linear approximation for
each of the three sectors we can separate between the speakers.
Figure 22 shows the separation based on the low and high roll-
offs. The results still show some clustering when AWGN is added
but overlaps are more visible.

To analyze the influence of the street noise on fingerprinting
the speakers, we pursue experiments with the infotainment unit
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Fig. 15. Power spectrum for the recorded signal on the five speakers on acrylic board (left), on damping material (middle) and inside the smartphone
case (right) for linear sweep (recordings by in-vehicle headunit)

(i) speakers on acrylic
(ii) speakers on felt (iii) speakers in original case

Fig. 16. Separation based on low-high roll-offs for the first five identical J5 speakers A to E

(i)
separation between speakers B and D (ii) separation between speakers B and E (iii) separation between speakers D and E

Fig. 17. Separation based on low-high roll-offs for the three closer J5 speakers B, D and E with 100 samples

T7 J5′ J5′′ LE N8 A21 X3 X7 S7 J5′′′ LG AV
T7 0.0001 0.0053 0.0034 0.0059 0.0031 0.0019 0.0018 0.0069 0.0031 0.0036 0.0097 0.0038
J5′ 0.0053 0.0003 0.0022 0.0037 0.0083 0.0061 0.0062 0.0081 0.0085 0.0018 0.0141 0.0059
J5′′ 0.0034 0.0022 0.0004 0.0045 0.0065 0.0040 0.0046 0.0078 0.0065 0.0005 0.0127 0.0051
LE 0.0059 0.0037 0.0045 0.0004 0.0079 0.0075 0.0056 0.0048 0.0087 0.0041 0.0121 0.0039
N8 0.0031 0.0083 0.0065 0.0079 0.0001 0.0039 0.0023 0.0067 0.0013 0.0067 0.0068 0.0044
A21 0.0019 0.0061 0.0040 0.0075 0.0039 0.0002 0.0035 0.0088 0.0032 0.0044 0.0108 0.0057
X3 0.0018 0.0062 0.0046 0.0056 0.0023 0.0035 0.0004 0.0054 0.0031 0.0047 0.0081 0.0025
X7 0.0069 0.0081 0.0078 0.0048 0.0067 0.0088 0.0054 0.0001 0.0080 0.0076 0.0080 0.0030
S7 0.0031 0.0085 0.0065 0.0087 0.0013 0.0032 0.0031 0.0080 0.0002 0.0068 0.0078 0.0055
J5′′′ 0.0036 0.0018 0.0005 0.0041 0.0067 0.0044 0.0047 0.0076 0.0068 0.0002 0.0128 0.0050
LG 0.0097 0.0141 0.0127 0.0121 0.0068 0.0108 0.0081 0.0080 0.0078 0.0128 0.0002 0.0083
AV 0.0038 0.0059 0.0051 0.0039 0.0044 0.0057 0.0025 0.0030 0.0055 0.0050 0.0083 0.0005

Fig. 18. Slope inter-distances and intra-distances for the 12 distinct smartphones as heatmap (left) and numerical values (right)

inside the car in a parking lot near an urban road with four
lanes on a two-way street with tram lines. The infotainment unit
was placed in the middle of the car dashboard and records the
linear sweep signal played by the five speakers of the Samsung
J5. The Samsung J5 was held by the passenger, pointing toward
the infotainment unit microphone, at a distance of about 50
centimeters. To maximize the street noise, the front left window
was left open. Separately, we also recorded street noise with the
infotainment unit from the car with the front left window opened
in the same parking lot. As proposed in [13], the recorded street
noise is applied to the recorded audio signal and played by the
first five speakers of the Samsung J5 placed inside the smartphone
case as described in Section 3. When identical noise is added to
the recording, the separation between speakers was still visible.
However, with repeated measurements inside the car with the left
window open, the separation became less clear as shown in Figure

23. This is very likely due to distinct street noises at each new
measurement, e.g., traffic may vary between each measurement, a
horn may ring, a tramway may pass nearby, etc.

This suggests that adding synthetic noise does not lead to a
very good simulation of a real-world scenario, but it is by no
means easy to test a high number of speakers on the street. For this
reason, with the 16 identical speakers we will later use synthetic
AWGN noise as employed in various related works.

5 A FINER-GRAINED ANALYSIS WITH NEURAL NET-
WORKS

In the previous section we used a linear approximation of the
roll-offs which is a simple and effective procedure but has short-
comings in separating identical speakers, i.e., an accuracy of only
70-80% was achieved between identical speakers B, D and E. In
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A B C D E F G H I J K L M N O P
A 0.0002 0.0035 0.0006 0.0037 0.0037 0.0021 0.0014 0.0009 0.0019 0.0014 0.0021 0.0011 0.0008 0.0020 0.0016 0.0018
B 0.0035 0.0009 0.0031 0.0013 0.0008 0.0046 0.0037 0.0038 0.0044 0.0038 0.0047 0.0032 0.0034 0.0032 0.0031 0.0029
C 0.0006 0.0031 0.0003 0.0032 0.0032 0.0025 0.0017 0.0014 0.0023 0.0017 0.0025 0.0013 0.0011 0.0021 0.0016 0.0018
D 0.0037 0.0013 0.0032 0.0011 0.0010 0.0050 0.0041 0.0041 0.0048 0.0041 0.0051 0.0035 0.0037 0.0036 0.0035 0.0033
E 0.0037 0.0008 0.0032 0.0010 0.0005 0.0048 0.0039 0.0040 0.0046 0.0039 0.0049 0.0033 0.0036 0.0033 0.0032 0.0030
F 0.0021 0.0046 0.0025 0.0050 0.0048 0.0008 0.0014 0.0014 0.0009 0.0014 0.0010 0.0019 0.0017 0.0022 0.0020 0.0022
G 0.0014 0.0037 0.0017 0.0041 0.0039 0.0014 0.0003 0.0006 0.0008 0.0004 0.0011 0.0008 0.0007 0.0011 0.0008 0.0011
H 0.0009 0.0038 0.0014 0.0041 0.0040 0.0014 0.0006 0.0003 0.0010 0.0007 0.0012 0.0008 0.0005 0.0015 0.0011 0.0014
I 0.0019 0.0044 0.0023 0.0048 0.0046 0.0009 0.0008 0.0010 0.0003 0.0008 0.0006 0.0014 0.0013 0.0016 0.0015 0.0017
J 0.0014 0.0038 0.0017 0.0041 0.0039 0.0014 0.0004 0.0007 0.0008 0.0003 0.0011 0.0008 0.0008 0.0011 0.0008 0.0011
K 0.0021 0.0047 0.0025 0.0051 0.0049 0.0010 0.0011 0.0012 0.0006 0.0011 0.0005 0.0016 0.0015 0.0018 0.0017 0.0019
L 0.0011 0.0032 0.0013 0.0035 0.0033 0.0019 0.0008 0.0008 0.0014 0.0008 0.0016 0.0004 0.0005 0.0011 0.0006 0.0008
M 0.0008 0.0034 0.0011 0.0037 0.0036 0.0017 0.0007 0.0005 0.0013 0.0008 0.0015 0.0005 0.0002 0.0013 0.0008 0.0011
M 0.0020 0.0032 0.0021 0.0036 0.0033 0.0022 0.0011 0.0015 0.0016 0.0011 0.0018 0.0011 0.0013 0.0005 0.0007 0.0006
O 0.0016 0.0031 0.0016 0.0035 0.0032 0.0020 0.0008 0.0011 0.0015 0.0008 0.0017 0.0006 0.0008 0.0007 0.0002 0.0004
P 0.0018 0.0029 0.0018 0.0033 0.0030 0.0022 0.0011 0.0014 0.0017 0.0011 0.0019 0.0008 0.0011 0.0006 0.0004 0.0001

Fig. 19. Slope inter-distances and intra-distances for the 16 identical J5 speakers as heatmap (left) and numerical values (right)

Fig. 20. The audio signal recorded and the signal with AWGN in time
domain (top) and the power spectrum of the signals (bottom)

Fig. 21. Linear fit results over the audio signal recorded from 2 experi-
ments (up, down) depicting five speakers of the Samsung J5 in the low
(left) and high sector (right).

Fig. 22. Separation based on low-high roll-offs in case when the original
signal is overlap with AWGN

Fig. 23. Separation based on low-high roll-offs in case of street recording

this section we proceed to a finer-grained analysis based on convo-
lutional neural networks (CNN) and bi-directional long short-term
memory networks (BiLSTM) which gives an identification success
rate close to 100%.

5.1 The deep neural network architectures

We now present the two deep neural network architectures that
we employ in for analyzing the collected audio samples. During
training, validation and testing, each of our network architectures
receives as input 1914 features which are the values of the power
spectrum between 700Hz and 11kHz at ∼5Hz resolution. We
choose to rely on the 700Hz-11kHz since as shown by the previous
power spectrum plots this is the most significant portion of the
sweep signal, i.e., it is the portion which carries most of the signal
power. Our datasets are however over the entire 20Hz-20kHz range
and future works may attempt to use distinct portions of the sweep
as well.
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Fig. 24. The proposed CNN (left) and BiLSTM (right) architectures

CNN Classifier Architecture. We begin with the classifier
that we built based on Convolutional Neural Networks (CNN).
For each speaker i, we induce a binary classifier that is responsible
for authenticating it (i.e., classify it as ’speaker i’ or ’other’). The
left side of Figure 24 shows the architecture of the CNN-based
network. The following settings were used in our experiments.

• Each classifier includes three convolutional layers followed
by max pooling to reduce the size. We evaluated the clas-
sifiers’ performance with a larger number of convolutional
layers (4 to 6 layers) and number of filters (16 to 32 filters)
and no significant gain in accuracy was obtained.

• All convolutional layers use the rectified linear unit (ReLU)
as an activation function.

• A Sigmoid layer with a single unit is attached. This layer is
aimed at producing the probability that a given example is
associated with the speaker.

During the training phase, a dropout parameter was set to 0.5
to avoid overfitting. In addition, we used the Root Mean Square
Propagation (RMSProp) optimization algorithm with a decay rate
set to 0.9 which is the default in the Keras API. The training
process is stopped when the loss function reaches its minimum.
The experiments were performed on a computer with an Intel
Core i7 processor at 2.11GHz and 16GB RAM, the GPU was not
used.

BiLSTM Classifier Architecture. To serve as a comparison
to CNNs, we also used a Bidirectional Long Short-Term Memory
(BiLSTM) Network. The structure of the network is presented in
the right side of Figure 24. The proposed neural network contains
an input layer followed by a BiLSTM layer with 1914 hidden
units, a fully connected layer, a dropout layer, a softmax layer and
a classification layer. Distinct to the CNN architecture, we noticed
that the dropout parameter set to 0.25 gave better results than a
dropout of 0.5 which resulted in a visible loss of accuracy. The
optimization algorithm that we used was the stochastic gradient
descent with momentum (SGDM) having the momentum value
increased to 0.95, which represents the contribution from the
previous step. The last layer of the network also returns the
probability that the tested speaker belongs to one of the speakers
that the network has learned. The maximum number of epochs to
use for training was set to 100. These experiments were performed
on a laptop with an Intel Core i7 processor at 2.6GHz and 16GB
of RAM, the GPU was not used.

In what follows we analyze the performance of these two deep
learning architectures in separating the 16 identical Samsung J5
speakers.

5.2 Results on clean recordings

Given our potential goal to apply this in authentication scenarios,
each classifier’s performance was evaluated in terms of False
Rejection Rate (FRR) and False Acceptance Rate (FAR). FAR
is the probability of unauthorized loudspeakers to be accepted as
legitimate and FRR is the probability of authorized loudspeakers
to be incorrectly rejected. We have computed the FAR and FRR
as follows: FAR = FP

TN+FP ; FRR = FN
TP+FN , where TP is true

positive, FP is false negative, TN is true negative and FP is false
positive.

First, in Figure 25 we present experiments for the CNN net-
work in which we set tr ∈ [30, 120, 210, 300, 390], and randomly
pick tr training samples from the dataset of 500 recordings that
are uniformly distributed upon speakers B, D and E which caused
problems in the slope separation tests. We used the basic rule
of the thumb and set 70% of these for training and 30% for
validation. It can be seen that excellent results are gained when
using more than 300 samples for training. The trained models
were able to authenticate a smartphone with a high level of
accuracy, i.e., close to 100%. We also mention that to account for
possible environmental changes, the 500 recordings were collected
over distinct days in chunks of 100 measurements each time
for a speaker. For this reason, the 500 measurements dataset
is more challenging. Figure 26 summarizes the FRR and FAR
for the same number of training samples for the BiLSTM, i.e.,
tr ∈ [30, 120, 210, 300, 390] out of which less than 30% were
reserved for validation. For a small number of samples, i.e., 30
samples, the FRR is similar for both CNN and BiLSTM at around
30%. This is also close to the accuracy of the linear approximation
technique in the previous section. The FAR is however better with
the BiLSTM at around 15%. Interestingly, the BiLSTM performs
much better than the CNN at 120-210 samples where the FRR and
FAR quickly drop below 10%. At 300 and 390 samples the results
are nearly identical with both CNNs and BiLSTMs. In particular
for 390 samples, with both CNN and BiLSTM we achieve a
FRR and FAR of 0-2% which we believe to be good enough for
practical purposes.

We continued by testing the two proposed deep neural network
architectures over all the 16 identical Samsung J5 speakers. For
this, we collected a new set of 100 linear sweeps from each
of the speakers from F to P. This time, all measurements were
taken continuously for the same speaker. This makes the second
dataset more stable. The 5 speakers from the previous experiment,
i.e., labels A to E, were also used in this newer experiment but
we relied on the first 100 measurements out of the previously
taken 500 measurements. We split this dataset for each speaker
into the following number of samples for training and validation:
tr ∈ {15, 20, 35, 50, 55}, v ∈ {5, 10, 15, 20, 25}. The rest of the
samples are used for testing, i.e., 80% down to 20% was used to
compute the acceptance and rejection rates.

Figure 27 presents the results both as heatmaps and as nu-
merical values for both the CNN and BiLSTM networks. Notably,
for some of the speakers, e.g., F, G, H, I, J and K, the miss-
identification is always 0 with the BiLSTM regardless of the size
of the training set. For the CNN the situation is a bit different,
there is limited confusion between these, but no confusion between
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Fig. 25. FRR (left) and FAR (right) with CNN as a function of the training samples number

Fig. 26. FRR (left) and FAR (right) with BiLSTM as a function of the training samples number

tr. A B C D E F G H I J K L M N O P
15 0. 0. 0. 0. 0. 0. 0. 0.0375 0.0125 0.0375 0.0125 0. 0. 0.0250 0.0125 0.0125
20 0. 0. 0. 0. 0. 0. 0. 0.0429 0.0286 0.0429 0.0429 0.0143 0.0143 0.0143 0.0143 0
35 0. 0. 0. 0. 0. 0. 0. 0.0400 0. 0.0400 0.0200 0. 0.0800 0.0200 0.0200 0
50 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.0333 0
55 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.0500 0

(i) FRR’s clean signal for CNN
tr. A B C D E F G H I J K L M N O P
15 0. 0. 0. 0. 0. 0. 0. 0.0025 0.0075 0. 0.0133 0.0008 0.0025 0. 0.0108 0.0017
20. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.0248 0. 0.0010 0
35 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.0013 0
50. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.0220 0. 0. 0. 0. 0
55 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0

(ii) FAR’s clean signal for CNN
tr. A B C D E F G H I J K L M N O P
15 0. 0. 0. 0. 0.0125 0. 0. 0. 0. 0. 0. 0.0250 0.0500 0. 0.0250 0.0125
20 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.0428 0.1000 0.0142 0.0571 0.
35 0. 0. 0. 0.0800 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
50 0. 0. 0. 0.0333 0.0666 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.0333
55 0. 0. 0. 0.0500 0. 0. 0. 0. 0. 0. 0. 0. 0.1000 0. 0. 0.

(iii) FRR’s clean signal for BiLSTM
tr. A B C D E F G H I J K L M N O P
15 0. 0. 0. 0.0008 0. 0. 0. 0. 0. 0. 0. 0.0033 0.0016 0.0008 0.0008 0.0008
20 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.0066 0.0028 0. 0. 0.0047
35 0. 0. 0. 0. 0.0053 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
50 0. 0. 0. 0.0044 0.0022 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.0022 0.
55 0. 0. 0. 0. 0.0033 0. 0. 0. 0. 0. 0. 0.0066 0. 0. 0. 0.

(iv) FAR’s clean signal for BiLSTM

Fig. 27. FRRs (up) and FARs (down) as heatmap (left) and numerical values (right) for the CNN and BiLSTM networks (100 samples, 16 speakers)

speakers A to G. It is always interesting to see that different neural
network architectures behave slightly different. Speakers B, D, E
are more easy to distinguish in this dataset which clearly points
out that the experimental conditions may influence the results,
though in all datasets high accuracy can be obtained. Finally, with
both networks by increasing the size of the training set the FAR’s
and FRR’s are generally kept at 0% or close with 2 exceptions in

which the FRR gets to 10%. In all of the experiments, the accuracy
computed over the entire dataset was 95-100%.

To further improve on usability we considered reducing the
number of frequencies used in the sweep signal. According to
recent results in the field of psychoacoustics, frequencies in the
range of 2kHz-7kHz are considered annoying for human years.
Concretely, the work in [51] shows the sounds with high unpleas-
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tr. A B C D E F G H I J K L M N O P
15 0.0125 0.675 0.0125 0.5375 0. 0. 0.0250 0.0375 0.0500 0.0375 0.3125 0.1625 0.0750 0.0250 0.0750 0.0500
20 0.0571 0. 0. 0. 0. 0. 0. 0.0429 0. 0.0429 0.0571 0.0286 0.0286 0.0143 0.0286 0.0143
35 0. 0. 0. 0. 0. 0. 0. 0.0400 0.0400 0.0400 0.0200 0.0400 0. 0.0200 0.0400 0.
50 0. 0. 0. 0. 0. 0. 0. 0.0667 0. 0. 0. 0.0333 0. 0. 0.0333 0.
55 0. 0. 0. 0. 0. 0. 0. 0. 0.0500 0. 0. 0.0500 0. 0. 0.0500 0.

(i) FRR’s with 2-7kHz removed for CNN
tr. A B C D E F G H I J K L M N O P
15 0. 0. 0. 0. 0. 0. 0. 0. 0.0100 0. 0.0017 0. 0.0242 0. 0.0008 0.0017
20 0. 0. 0. 0. 0. 0. 0.0010 0. 0. 0. 0. 0. 0.0010 0. 0.0010 0.0010
35 0. 0. 0. 0. 0. 0. 0.0013 0. 0. 0. 0. 0. 0. 0. 0. 0.
50 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.0022 0. 0. 0.
55 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.0033 0. 0. 0.0033

(ii) FAR’s with 2-7kHz removed for CNN
tr. A B C D E F G H I J K L M N O P
15 0. 0. 0. 0. 0. 0. 0. 0. 0.0125 0. 0. 0.0250 0.0750 0.0250 0.0125 0.
20 0.0142 0. 0. 0. 0. 0. 0. 0. 0.0285 0. 0. 0.0142 0.0714 0.0285 0.1142 0.0142
35 0. 0. 0. 0. 0. 0. 0. 0.0200 0.0400 0. 0. 0.0400 0.0800 0.0200 0.0600 0.
50 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.0666 0. 0.0333 0.0333
55 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.0500 0.

(iii) FRR’s with 2-7kHz removed for BiLSTM
tr. A B C D E F G H I J K L M N O P
15 0. 0. 0. 0. 0. 0. 0. 0.0008 0. 0. 0. 0.0050 0.0016 0. 0. 0.0025
20 0. 0. 0.0009 0. 0. 0. 0. 0.0019 0. 0. 0. 0.0047 0.0009 0.0009 0.0009 0.0085
35 0. 0. 0.0009 0. 0. 0. 0. 0.0019 0. 0. 0. 0.0047 0.0009 0.0009 0.0009 0.0085
50 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.0044 0. 0.0022 0.0022 0.
55 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.0033

(iv) FAR’s with 2-7kHz removed for BiLSTM

Fig. 28. FRRs (up) and FARs (down) as heatmap (left) and numerical values (right) for the CNN and BiLSTM networks with 2-7kHz band removed

antness, e.g., knife or fork on bottle, chalk on blackboard, to be
in the range of 2kHz and up to 7kHz. Also, the authors in [52]
point to the range of 2kHz-4kHz as being annoying for human
years. For this reason, we choose to cut the frequencies in the
range of 2kHz-7kHz and present the results in Figure 28. It can be
easily seen that the FARs and FRRs are only slightly affected by
the frequency removal and in general it is the same speakers that
caused minor confusions.

Besides generating just part of the sweep signal, which will
reduce authentication time and potentially cause less hearing
discomfort to humans, the sweep signal can be used only to
complement traditional authentication methods in order to re-
enforce security with physical tokens in special circumstances,
e.g., when authorizing a secondary device to pair on Bluetooth
with the headunit or to give access to more critical functionalities.

5.3 Results on recordings influenced by noise
We now carry more tests on the deep neural network classifiers
by providing them with sample datasets that are affected by
synthetic AWGN. As mentioned in an earlier section, AWGN is
not a perfect replacement for environmental noise, but this type
of synthetic noise was also used by related works, e.g., [14],
when fingerprinting microphones. Clearly, this type of noise will
negatively influence the accuracy of the classifiers. Fortunately, as
we show below, the effects are only small when AWGN with an
equal power to the original signal is used.

Figure 29 presents the results in terms of heatmaps and
numerical values when using the 16 speaker dataset (consisting in
100 measurements for each speaker) after applying the synthetic
noise to each of the measurements. The performance degradation
is visible when comparing to the same values obtained for the
clean signal in Figure 27. But both networks still manage to
classify the speakers with very high accuracy. The more significant
difference when adding noise, is that the BiLSTM appears to
struggle a bit with distinguishing between speakers L and M. The
CNN also has some problems with L and M, but it improves with
the number of samples, while the BiLSTM doesn’t. This may be
also due to the lower number of layers in the BiLSTM which may

lead to a lower representation power. The overall loss in accuracy
between the clean signals and the ones affected by noise was in the
range of 1-4% as only a small percentage of the speakers caused
classifications keeping the overall accuracy always above 95%. For
the CNN all the FARs and FRRs are kept below 5% with the larger
training sets. The fact that neural network classifiers can recognize
speakers with high accuracy even when the recordings are affected
by noise seems very promising for practical deployments.

Given the nature of the scenario that we target, i.e., an
in-vehicle authentication setup, we also consider to analyze a
more challenging scenario: the effect of human speech over the
identification of each smartphone. To achieve this, we use the
recordings from a phone in the Mobiphone dataset [53] which
records the speech of 24 persons from a public database on
smartphones. The smartphone recorded voice of the 24 persons
in the Mobiphone dataset was evenly distributed over the 100
samples that we collected. The results can be seen in Figure 30.
In this case it can be easily seen that the results are affected to a
higher extent. This indicates human speech to be more harmful for
phone recognition. Still, the FAR is generally well below 2% and
the FRR occasionally reaches 20% at 55 samples which will lead
to a higher rejection rate for legitimate devices (this is expected
because of the noise). Also, the results with the CNN have higher
false rejection rates and lower false acceptance rates than for the
BiLSTM, but this is explainable as we used distinct separation
thresholds in the two implementations, i.e., 0.5 for the CNN and
0.1 for the BiLSTM.

The influence of other environmental factors such as tem-
perature on speakers has been poorly studied so far. There are
only a limited number of research works that have considered the
influence of temperature on voice coils [54] and nano-materials
in speakers [55]. We may consider experiments involving such
environmental changes as future work.

To serve as additional evidence for the advantage in using
deep learning neural networks, we also add three classical machine
learning classifiers KNN, SVMs and Random Forests to serve as
reference in our analysis. As can be seen in the barcharts plots
with the FAR and FRR in Figures 31 and 32 the problem with



15

tr. A B C D E F G H I J K L M N O P
15 0.0125 0. 0. 0.1250 0. 0. 0. 0.0500 0.9900 0.1250 0.0625 0. 0. 0. 0.9900 0.
20 0. 0.8571 0.1000 0.1857 0. 0. 0. 0. 0.0286 0. 0. 0. 0. 0.0143 0.0143 0
35 0. 0.0200 0. 0.0600 0.1200 0. 0. 0.0200 0.0800 0. 0. 0. 0. 0. 0.0400 0.1200
50 0. 0. 0. 0.0667 0.0333 0. 0. 0. 0. 0. 0. 0.0310 0. 0. 0.0010 0.
55 0. 0.0033 0. 0. 0.0500 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

(i) FRR’s with AWGN (0db) for CNN
tr. A B C D E F G H I J K L M N O P
15 0. 0.0050 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.0667 0.0650 0.0192 0. 0.0100
20 0. 0. 0. 0. 0.0219 0. 0.0057 0.0819 0.0267 0.0667 0. 0.0667 0.0667 0. 0.0714 0.0067
35 0. 0. 0. 0.0067 0. 0. 0. 0. 0. 0. 0. 0.0347 0.0200 0. 0. 0
50 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.0110 0. 0.0020 0
55 0. 0. 0. 0.0033 0. 0. 0. 0. 0. 0. 0. 0. 0.0200 0. 0. 0

(ii) FAR’s with AWGN (0db) for CNN
tr. A B C D E F G H I J K L M N O P
15 0.0125 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.3500 0. 0. 0. 0.
20 0.0142 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.2571 0.0571 0. 0. 0.
35 0.0200 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.3600 0.0200 0. 0. 0.0200
50 0.0333 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.3333 0. 0.0333 0. 0.
55 0. 0. 0. 0. 0.0500 0. 0. 0. 0. 0. 0. 0.1500 0.1000 0. 0. 0.

(iii) FRR’s with AWGN (0db) for BiLSTM
tr. A B C D E F G H I J K L M N O P
15 0. 0. 0.0008 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.0233 0. 0. 0.
20 0. 0. 0.0009 0. 0. 0. 0. 0. 0. 0. 0. 0.0038 0.0171 0. 0. 0.
35 0. 0. 0.0013 0. 0. 0. 0. 0. 0. 0. 0. 0.0013 0.0240 0. 0.0013 0.
50 0. 0. 0.0022 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.0222 0. 0. 0.0022
55 0. 0. 0. 0.0033 0. 0. 0. 0. 0. 0. 0. 0.0066 0.0100 0. 0. 0.

(iv) FAR’s with AWGN (0db) for BiLSTM

Fig. 29. FRRs (up) and FARs (down) as heatmap (left) and numerical values (right) for the CNN and BiLSTM networks with AWGN affected signal

tr. A B C D E F G H I J K L M N O P
15 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
20 1. 0. 0. 1. 0.1286 0. 0. 1. 1. 0. 1. 0.9429 1. 1. 1. 1.
35 0. 0.4400 0. 0.0800 1. 0.1000 0. 0.0200 1. 1. 0. 0.9400 0.2600 0. 1. 1.
50 0. 0. 0. 0.1333 0.1667 0. 0. 1. 1. 0. 0. 0.2667 0. 0. 0.0667 0.9000
55 0.0500 0. 0. 0. 0.2000 0. 0. 0. 0.0500 0. 0. 0.2000 0. 0. 0.1000 0.

(i) FRR’s with speech for CNN
tr. A B C D E F G H I J K L M N O P
15 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
20 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
35 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
50 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.0022 0. 0. 0.
55 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.0167 0. 0. 0.

(ii) FAR’s with speech for CNN
tr. A B C D E F G H I J K L M N O P
15 0. 0. 0.0125 0.1875 0.4500 0. 0.0250 0.0125 0.4875 0.0750 0.5375 0.3750 0.5125 0.0625 0.0875 0.3750
20 0.0142 0.0285 0. 0.1000 0.1000 0. 0. 0.0142 0.4000 0.0285 0.4428 0.2000 0.1857 0.0714 0.0714 0.0857
35 0. 0.0400 0.0200 0.0200 0.0200 0. 0. 0.0200 0.0600 0. 0.0800 0.2400 0.1200 0.0800 0.0400 0.0800
50 0. 0. 0.0333 0.0333 0.0666 0. 0. 0.0333 0.0333 0. 0. 0.2666 0. 0.0333 0. 0.0333
55 0. 0. 0. 0.0500 0. 0. 0. 0. 0.1000 0. 0. 0.2000 0.0500 0.0500 0. 0.

(iii) FRR’s with speech for BiLSTM
tr. A B C D E F G H I J K L M N O P
15 0.0033 0.0025 0. 0.0275 0.0125 0.0041 0. 0.0016 0.0333 0. 0.0358 0.0325 0.0233 0.0125 0.0233 0.0008
20 0.0009 0.0038 0. 0.0028 0.0085 0. 0.0019 0. 0.0295 0. 0.0247 0.0123 0.0180 0.0057 0. 0.0076
35 0. 0.0013 0. 0. 0.0040 0. 0. 0. 0.0053 0. 0.0040 0.0080 0.0213 0.0040 0. 0.0066
50 0. 0.0044 0. 0. 0.0022 0. 0. 0. 0. 0. 0.0022 0. 0.0177 0. 0.0088 0.
55 0. 0. 0. 0. 0.0033 0. 0. 0. 0. 0. 0.0066 0.0033 0.0133 0. 0.0033 0.

(iv) FAR’s with speech for BiLSTM

Fig. 30. FRRs (up) and FARs (down) as heatmap (left) and numerical values (right) for the CNN and BiLSTM networks with speech affected datasets
(using MOBIPHONE speech)

these classical classifiers is that they do not enough improvements
after increasing the number of training samples from 15% to 55%
while the carefully designed deep neural networks did significantly
improve once the number of samples has been increased. With a
lower number of samples, KNN performed worst in terms of the
false acceptance rate, while RF and SVM did somewhat similar
to the BiLSTM. The CNN needed a higher number of training
samples since for 15% training all speakers were rejected (this
is due to the aforementioned 0.5 separation threshold used for
the CNN while for the BiLSTM it was set to and 0.1). Notably
however, even with 55% training rate all three classical algorithms
KNN, SVM and RF have serious problems with speakers F, G
(visible as pink bars in Figure 32 under the respective classifier)
resulting in 70-80% false rejections. Such problems do not occur
with the deep learning alternatives where both the FRRs and

FARs drop by increasing the number of training samples. Whether
this problem of traditional classifiers can be tackled by careful
tuning of various parameters would be out of scope for the current
communication and we leave it as future work.

6 CONCLUSION

We explored an efficient fingerprinting methodology that can be
easily implemented to recognize smartphones based on speaker
roll-off characteristics. Our results show that speaker roll-offs
provide a good fingerprint that is also more resilient to changes
in volume levels. In contrast, it seems that the volume level may
be misleading in case of other approaches. While the slope of
the roll-offs alone was sufficient to distinguish between distinct
smartphones, for speakers coming from identical smartphone
models a more careful analysis with deep-learning algorithms was
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Fig. 31. FRR (left) and FAR (right) with CNN, BiLSTM, KNN, RF and SVM for 15% training
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Fig. 32. FRR (left) and FAR (right) with CNN, BiLSTM, KNN, RF and SVM for 55% training

necessary. The CNN and BiLSTM neural network architectures
allowed us to distinguish between such identical speakers with
an accuracy of 95-100%. The described techniques along with
existing methodologies from the literature can be used to fin-
gerprint smartphones and further enable their use as smart keys.
One such particular scenario is their use inside vehicles, a reason
for which most of the experiments that we carried used an in-
vehicle headunit to record the audio output of the smartphones
(a calibrated microphone was occasionally used as a reference).
The identification has high success rates regardless of the recorder
which suggests that in-vehicle headunits are practical for this sce-
nario. Further experiments addressing various in-vehicle settings,
e.g., passenger/phone locations, as well as various environmental
noises, e.g., speech or traffic sounds, may be future work for us.
Clearly, practical deployment in cars calls for more experiments
but these are out of reach for us in the current communication.
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