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Abstract—Automatic testing and reverse engineering of in-
vehicle components have become topics of significant interest as
they allow industry professionals to get a better understanding
of component behaviour and attack surfaces. In this work we
pursue the automatic testing of in-vehicle instrument clusters.
These devices may be subject to attacks that may mislead the
driver regarding the current state of the car. Understanding
the feasibility of such attacks requires the ability to determine
the behaviour of the cluster in response to specific instructions
received from the CAN bus. For this purpose we use fuzz testing
and a camera in order to remove manual intervention and set
room for automatic learning of the commands that can be sent to
the cluster. This enables the automatic detection of the commands
with little or no human intervention. We test our framework
on three clusters from real world vehicles and determine in an
automatic manner a sufficiently large number of commands and
responses that they trigger.

Keywords-instrument cluster, fuzz testing, cybersecurity test-
ing, CAN bus, automotive engineering

I. INTRODUCTION AND MOTIVATION

In-vehicle components and networks are somewhat unpre-
pared for malicious adversaries as recent investigations have
proved, e.g., [1], [2], [3], etc. In order to discover potential
vulnerabilities in CAN messages, to which the car instrument
cluster responds, or to check how easy an attacker might
discover the commands sent to the cluster, we pursue the
design of an automated system which uses fuzzing over all
possible standard CAN identifiers (IDs) on 11 bits and a range
of payloads. Such an analysis will give a comprehensive idea
of how easy is to reverse engineer an instrument cluster by
adversaries.

In order to understand the relevance of instrument clusters,
a few words on the history of these devices are useful. At
first, rudimentary instrument clusters were used for monitoring
oil level, water pressure or coolant temperature [4]. With
technological advancements, instrument clusters also evolved.
In the 50s, additional information on the speed, fuel level,
oil pressure and coolant temperature were displayed, while
warning lights were introduced only later replacing some of
the gauges [5]. Currently, most clusters are equipped with LCD
panels. Clusters produced for most low to mid-range vehicles
use one central LCD display along with mechanical needle
gauges, while in high-end cars a full LCD instrument cluster
is preferred.

The instrument cluster is a relevant component for the safety
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Fig. 1. Overview of the proposed system

and security of the whole car. This is because the driver is
continuously informed on the state of the car by observing
information displayed on the instrument cluster. This includes
information on the speed at which the car is travelling, the
need to refuel as well as various warning messages that
indicate malfunctions. Clearly, an adversary manipulating such
messages can misled the driver, possibly causing accidents
making the driver drive at an unwanted speed or making the
driver stop in undesired circumstances, e.g., on a highway, by
injecting false messages on the CAN bus. It is well known
and already proved by many works that the CAN bus has
no intrinsic security and thus injecting messages on the bus
is a simple task. The only problem is for an adversary to
learn the instructions, i.e., the CAN identifiers and specific
payloads, to which the cluster instrument will respond by
changing the information displayed on the panel. For a better
understanding of this task, Figure 1 depicts an overview of
the system which we use. Briefly, we use a motion detection
algorithm which processes the images recorded by a camera
and checks for various events such as moving needles, steady
or blinking lights. The camera is coupled to a laptop which
uses a RaspberryPi board in order to communicate with the
cluster and observe its behaviour. More details on this setup
will be given in the forthcoming sections.

The rest of our work is organized as follows. In Section
II we discuss some related works on reverse engineering car
components. Section III presents the laboratory setup in which
we test three instrument clusters from common passenger
cars. Section IV presents the design of the automatic fuzz
testing mechanism detailing the concept, implementation and978-1-6654-7933-2/22/$31.00 ©2022 IEEE



experimental results. Finally, Section V holds the conclusion
of our work.

II. RELATED WORK

Reverse engineering CAN messages inside a car network
was the target of multiple research works. Existing works on
this subject use different fuzzing techniques, big data analysis
or manual reverse engineering of messages. In what follows
we try to briefly account for some of these works.

In [6], the authors send high volume of random or mal-
formed data to the Display Interface ECU (Electronic Control
Unit), i.e., the ECU controlling the instrument cluster, and
reactions are recorded for later analysis. More precisely, the
injected data consists of CAN messages with IDs in the 0–
2047 range and payload bytes randomized over the full 64-
byte range. Messages are sent at a rate of one packet per
millisecond, using a PC based CAN fuzzer developed by the
authors in a previous paper, but due to the system’s processing
time, the response to the message is delayed. The fuzzing
procedure runs multiple times over the messages, with a binary
search algorithm, to reduce the number of messages on each
try, until the message producing the desired effect is found.
Afterwards, the payload is analyzed in the same manner,
sending the same message ID and varying only the bytes of
the message payload. This work does not use a camera to
automatically detects changes.

An automated method for reverse engineering the car’s
cluster is proposed in [7]. This is done through different
fuzzing techniques. In order to capture the instrument cluster’s
output, the authors use light sensors. Using this approach
the authors were successful in reverse engineering real and
simulated instrument cluster and the time performance of
several fuzz testing algorithms were measured. A simulated
cluster is also used in [8], to prove the success of fuzz testing
on an automotive component, and in [9], to show the tools
and methodology needed to hack an instrument cluster.

Another approach is to analyze sniffed logs from the car
in order to discover the CAN messages that are used for
instrument cluster control. For example, in [10] the authors
crashed a car in a controlled environment and recorded the
CAN traffic preceding the accident. Afterwards, the authors
analyzed the traffic knowing the behavior before the crash
(speed, time of the crash, breaking time, etc.) and pieced to-
gether all these information to obtain meaningful information
about the employed messages. In [11], the authors performed
a man-in-the-middle attack and spoof CAN messages in order
to take control of the cluster. In [12], collected CAN bus
traffic was analyzed by different message filtering techniques
for several car models.

Emulating part of instrument cluster’s firmware is also an
option for reverse engineering, exploited in [13]. Demonstra-
tions of how different vulnerabilities can lead to malicious
attacks on clusters were shown in [14], where an Android
head unit accessible with root privileges was used for injecting
malicious messages. Also, in [15] an OBD2-to-Bluetooth
device and an Android malicious app were used to insert
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malicious CAN frames. Attacks on the entire car and attempts
of reverse engineering CAN messages were also performed
in [2] or in [16]. Procedures for automated fuzzing CAN
frames were not used only for attacking or reverse engineering
purposes, but also for testing and checking the behavior of
clusters in [17], [18] or [19].

As potential protection mechanisms, one way to circumvent
the automated fuzzing of the instrument cluster would be
to use identifier randomization. This procedure has been
proposed by a number of recent works, e.g., [20], [21], [22],
[23], as a protection against frame injection attacks. However,
such a procedure, while effective, is not yet adopted by
manufacturers.

III. LABORATORY SETUP

In this section we first discuss some background on CAN
buses, then we proceed to the description of our experimental
setup in which we test the three in-vehicle clusters.

A. CAN buses background on instrument clusters

Within the car network architecture, the instrument cluster
represents a critical component. It may be connected to one
or several CAN networks where rogue nodes may reside, or
where an On-board diagnostics (OBD) port exists and can be
used as an attack surface [24]. The Bosch Group started the
development of the Controller Area Network (CAN) protocol
in 1983 and its specification was released three years later,
in 1986. Since then it has become an automotive standard,
published in 1993 as ISO 11898. Due to its low cost, robust-
ness, speed and flexibility the CAN bus is widely used by
ECUs found in automotive networks, including the instrument
cluster.

The CAN bus is a serial communication protocol with a
physical layer implemented using two dedicated wires, CAN-
High and CAN-Low. An 120 ohm resistor is used as a
terminator at each end of the bus. Each node, usually referred
as Electronic Control Unit (ECU), which has to communicate
on this bus, must be linked to these two wires. A basic



Fig. 4. Experimental setup with the components near a car-on-bench setup (left) and detailed view of the setup with two instrument clusters, the camera
and a RaspberryPi used to send messages to the cluster (right)

representation of the CAN bus architecture can be seen in
Figure 2. At the physical layer, bits are represented as voltage
differences. When one recessive bit, i.e., logical 0, is sent, both
lines have 2.5 volts, having a differential voltage of about 0
volts. When a dominant bit is sent, i.e., logical 1, CAN-H has
about 3.5 volts, while CAN-L has about 1.5 volts, resulting
in a differential voltage of about 2 volts. The CAN bit rate is
limited to 1 Mbit/s while its newer embodiment with flexible
data-rates, CAN-FD, allows up to 8 Mbit/s for the data-field.
All the tested clusters in our experiments employed the same
bit rate, i.e., 500kbit/s.

All the CAN data is structured in frames as represented
in Figure 3, where Start-of-frame denotes the start of frame
transmission, CAN ID is a unique identifier representing
the message priority, RTR the remote transmission request,
Control specifies data size and message ID length, Data is
the actual data sent, CRC stands for cyclic redundancy check,
ACK is the acknowledgement of a valid frame and End-of-
frame marks the end of the frame transmission. In our work
we make use of the two blocks of bits marked with gray,
i.e., the ID and Data fields, as we explain later in the paper.
The range for the ID field is from 0 to 2047 for standard 11-
bit IDs, while the Data field can hold up to 8 bytes. Extended
IDs are 29 bits long which would make fuzzing more difficult.
However, this type of IDs are commonly used in heavy-duty
vehicles and remain uncommon for passenger cars.

B. Setup

In this section we present the clusters that were used in our
setup and their connectivity. For our setup we used the fol-
lowing components: a laptop with USB and WiFi connection,
an external webcam, a Raspberry Pi development board and
three distinct instrument clusters. The laptop is connected via
USB to an external webcam and via WiFi to the Raspberry Pi
board. Further, the Raspberry Pi board is directly connected to
the instrument cluster. For taking pictures we used the webcam

Fig. 5. The connection pinout for Cluster B

and the C# VideoCaptureDevice class.
In our experiments we used three clusters. In order to avoid

disclosing information that could be used for any potential
harmful actions we will keep the manufacturers anonymous.
We will refer these clusters as Cluster A, B and C. The first
and the second clusters are from more recent cars, produced
after 2010. The third cluster was from an older car model,
produced in 2001. The entire setup with all the three clusters
can be seen in Figure 4.

To determine the pin-out, we had to search the internet for
specific manuals and instructions. These were easy to retrieve
and follow as there were basically four pins that need to be
connected: the power supply, ground, CAN-High and CAN-
Low wires [25], [26]. Further the Raspberry PI was linked to
a CAN controller since it does not natively supports CAN bus
communication. A CAN transceiver was employed to interface
the bus with the CAN controller. The power supply, CAN-Low
and CAN-High wires were linked to the cluster as indicated
in Figure 5.



IV. DESIGNING THE AUTOMATIC FUZZ TESTING
MECANISM

This section presents the procedure that we designed for
the automatic fuzz testing along with some of the difficulties
encountered at the design time.

A. Concept and implementation

A C# application, that was deployed on a laptop, is in
control of the entire fuzz testing process. The application
communicates with a server implemented on the RaspberryPi
board through TCP/IP sockets. This just acts as a proxy and is
used for sending CAN message to the cluster using SocketCan
utilities1. We choose to send the CAN messages using a
RaspberryPi instead of using another dedicated USB-to-CAN
converter from the PC since the RaspberryPi CAN extension
provided a finer grain control for message transmission on the
CAN bus.

The fuzz testing procedure starts with taking an initial photo
of the cluster that will be used as a baseline for comparison.
This photo, like subsequently taken photos, is converted to
grayscale for easier processing. The basic fuzz testing process
consist in sending CAN frames starting from ID 0. The ID
field is incremented for each subsequent transmission while
the payload consists in 8 randomly generated bytes. A 200
millisecond waiting time is allowed for the cluster to react
after each transmission. Afterwards, 3 pictures are taken in
burst mode and their grayscale version is compared with the
baseline image. If any change is identified, the new images
are saved in a folder named after the ID of the message used
to trigger the effect.

We improved on this basic approach with the aim of
identifying specific bits that are responsible with changing
indicators on the cluster. For each ID that was found to produce
an effect we sent a series of messages each having a single bit
(out of the 64 bits available in a CAN frame) set to 1. A total
of 64 messages are sent in this step, one for each bit position
in the CAN data field. This approach was inspired by the fact
that most indicator lights displayed on a cluster are generated
based on corresponding flags in the frame. A detailed flow
chart our fuzzing system implementation is illustrated in the
Figure 6

During the development phase we encountered several un-
expected issues that we had to cope with. As presented in the
beginning of this section, after we send the CAN message, we
had to take three photos in burst mode. We do this because we
observed that in the case of blinking indicators (e.g., turning
lights), a single picture may miss the exact moment when the
LED was on, and only capture the moment when it was off.
This would falsely indicate that the message transmission had
no effect and lead to skipping an ID that actually produces
an effect. Another problem caused by blinking lights was that
once they were activated by a CAN message and kept blinking,
the system could falsely report subsequent CAN messages as
producing an effect (e.g., stop blinking). A solution was to

1https://www.kernel.org/doc/html/latest/networking/can.html
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Fig. 6. The software flow chart for ID search (up) and the flowchart for
algorithm adapted for message search (down)

physically cover these lights once the corresponding message
was identified.

B. Experimental results

This section sums up the experimental findings for each of
the clusters that we tested.

All the results are summarized in Table I, where the first
column indicates the cluster that was tested and the second
one indicates the ID of the message that was found to generate
an effect. The third column indicates whether we discovered
the message automatically, using our algorithm, or manually
using information publicly available on the internet. The fourth
column shows the message that produces the effect described
in the fifth column.

For Cluster A our automated approach led to the discovery
of 12 IDs with 39 messages which produce multiple effects,
from turning on different lights, e.g., seat-belt, high beam, low
beam, etc., to changing the speedometer or RPM needles.

For Cluster B our algorithm discovered 7 IDs and a total
of 14 messages. Moreover, by using information from various



sources such as [27], we managed to find combinations of
messages which triggered different effects like glow plug or
check engine lights. To test this we sent two consecutive
messages with different IDs and random payload. We found
two such cases, i.e., ID 15 followed by 08 and 13 followed
by 0E as illustrated in Table I.

For Cluster C, due to the fact that it was from an older
car model, the automated discovery only revealed an ID and
two messages. Using additional information available on the
internet we were able to validate another message that controls
the built-in speaker and we also managed to control the
speedometer by applying a rectangular signal at the input of a
specific pin. This also led to changes in the mileage indicator
according to the input speed.

As part of our analysis we also measured the automated
test duration. All the operations involved with a single message
required less than one second. These include: taking a picture,
converting it to grayscale and byte array, sending the CAN
message, waiting 200ms for the cluster to react, taking three
new pictures with a 100ms delay and converting them to
grayscale and byte array. Consequently, for analyzing the
effect of all 2048 IDs it took approximately 30 minutes.

V. CONCLUSION

In this work we tried to design an automated fuzzing
solution for reverse engineering the instrument cluster and we
obtained reasonably good results for a first attempt. We tested
the proposed approach on 3 different instrument clusters and
identified between one and twelve messages IDs employed by
these clusters. By further analyzing the effects of the payload
content we discovered a series of functionalities that can be
activated with these IDs. This proves that this methodology
is feasible for automatic discovery of some of the commands
for in-vehicle clusters. The development in this work gives a
better idea on the difficulty of reverse engineering messages
that target the instrument cluster and on designing automatic
tests that may allow checking the resilience of such clusters
against adversaries. As future work we may conduct similar
analysis on more complex vehicle clusters.
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