
1

Security shortcomings and countermeasures for
the SAE J1939 commercial vehicle bus protocol

Pal-Stefan Murvay, Bogdan Groza

Abstract—In the recent years, countless security concerns
related to automotive systems were revealed either by academic
research or real life attacks. While current attention was largely
focused on passenger cars, due to their ubiquity, the reported
bus-related vulnerabilities are applicable to all industry sectors
where the same bus technology is deployed, i.e., the CAN bus. The
SAE J1939 specification extends and standardizes the use of CAN
to commercial vehicles where security plays an even higher role.
In contrast to empirical results that attest such vulnerabilities in
commercial vehicles by practical experiments, here we determine
that existing shortcomings in the SAE J1939 specifications open
road to several new attacks, e.g., impersonation, DoS, DDoS,
etc. Taking advantage of an industry-standard CANoe based
simulation, we demonstrate attacks with potential safety critical
effects that are mounted while still conforming to the SAE J1939
standard specification. We discuss countermeasures and security
enhancements by including message authentication mechanisms.
Finally, we evaluate and discuss the impact of employing these
mechanisms on the overall network communication.

Index Terms—J1939, commercial vehicles, security, authenti-
cation.

I. INTRODUCTION

VEHICLES incorporate a multitude of systems which
work together with the goal of making their usage an eas-

ier and safer experience. One important step in the evolution
of the automotive industry was the adoption of bus systems for
organizing module interconnections as an in-vehicle network.
Various network technologies such as the Local Interconnect
Network (LIN), Controller Area Network (CAN), FlexRay
and more recently 100Base-T1 Ethernet were designed to
cope with the requirements given by the increasing traffic
requirements. However, CAN is still the most commonly used
network in automotive applications as it provides suitable
performance and acceptable cost for the majority of modules.
More recently, CAN-FD (CAN with Flexible Data-Rate) was
created as an improvement of CAN that allows bigger payloads
(64 bytes data field instead of 8) and higher transmission
speeds for the data field.

All of the commonly used protocols for in-vehicle com-
munication share the same lack of support for security func-
tionalities. As the security of vehicular networks became an
intensely studied topic, car security was substantially explored
in the past few years. Extensive experimental analysis done by
various research groups, e.g. Koscher et al. [1], Checkoway

Pal-Stefan Murvay and Bogdan Groza are with the Department of Automat-
ics and Applied Informatics, Politehnica University of Timisoara, Romania,
e-mail: {pal-stefan.murvay, bogdan.groza}@aut.upt.ro

Copyright (c) 2017 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

et al. [2] and later Miller and Valasek [3], decisively proved
the lack of proper security mechanisms on passenger cars. As
expected, since CAN is the most employed communication
protocol, the majority of the reported attacks are using CAN
as an entry point.

Extending the aforementioned context, our work focuses on
the commercial vehicle sector and, in particular, on the security
shortcomings of the J1939 protocol, a higher layer protocol
which uses CAN at the physical and data-link layers. We first
discuss recently reported shortcomings of J1939 that were used
to mount various types of denial of service (DoS) attacks.

A. Recently reported attacks on J1939

While most of the research efforts so far were focused
on passenger cars, it was only recently that the commercial
vehicle sector come to attention.

Dariz et al. [4] discuss general security aspects of higher
level CAN-based protocols employed in heavy duty vehicles
(eg. J1939 and ISOBUS) and the outlook of migrating to
Ethernet-based in-vehicle networks. Burakova et al. present
their findings in analyzing the security of SAE J1939 networks
on commercial vehicles [5]. Their research was focused on in-
ject and replay attacks that were already reported for consumer
vehicles. This category of attacks is common to all CAN based
networks regardless of the higher layer applications. Specific
J1939 protocol vulnerabilities were not considered in their
work.

Mukherjee et al. take the first steps into determining the
exploitable features of the J1939 protocol [6] and present
three DoS attacks. Only two of these attacks are validated
on actual commercial vehicle modules. The first one consists
in sending a large number of requests to a target node in an
attempt to increase its computational load to a point in which
it cannot fulfil the timing requirements of cyclic message
transmission. The second attack targets the usability of the
J1939 transport protocol (employed for sending multi-frame
messages) preventing further requests for such messages from
being answered by establishing never ending connections.

Their third attack is also aimed at multi frame messages
sent by the J1939 transport protocol, but is mounted only on
self built nodes not on the real-world modules of their setup.
However, this attack may be based on a wrong assumption,
i.e., that once a node establishes a connection with a second,
a third node could intervene misleading the second node to
allocate a smaller receive buffer which will yield and overflow
when the first node sends the larger amount of data. However,
according to standard specifications in Chapter 5.10.3.2 from

2

[7] the first connection should be aborted by the legit initiator
node as a result of the clear-to-send message sent for the
second connection request and thus no buffer overflow should
occur. In one of the attacks that we discuss, we specifically
use clear-to-send messages to abort connections. Moreover,
even if the initiator node does not abort the connection due
to a faulty protocol implementation, the receiver node should
be able to detect the faulty behaviour based on the packet
sequence numbers which would be out of order or exceeding
the maximum number of packets declared in the second
connection request.

B. Related work on CAN bus security

The subject of securing CAN-based communication has
drawn lots of attention following the multitude of attack
reports. As a result, various approaches for providing authen-
ticated communication in CAN networks were proposed.

The MaCAN authentication protocol proposed in [8] uses
an authentication scheme based on message authentication
codes (MACs), the protocol was later found to be flawed
by formal verification [9]. Similarly, Vecure [10] and LeiA
[11] rely on symmetrically shared keys and MACs for data
authentication. Groza et al. studied trade-offs for a TESLA-
based authenication protocol [12]. LiBrA-CAN provides au-
thentication based on key sharing in groups of nodes [13].
More recently, group key-sharing is addressed by Jain and
Guajardo [14] with keys that are securely exchanged by
exploiting physical properties of the bus, a technique that was
initially proposed by Mueller and Lothspeich [15]. Kurachi
et al. propose the use of additional hardware mechanisms for
discarding malicious frames that do not pass the authentication
test [16]. A security-aware mechanism for signal allocation on
CAN frames is discussed by Lin et al. in [17] and [18].

With the introduction of CAN-FD, more efficient transmis-
sion of bigger payloads is possible, paving the way for new se-
curity mechanisms. Woo et al. propose a security architecture
that can provide confidentiality, authentication, access control
and key management for CAN-FD communication [19]. A
previous report from the same authors discusses attacks and
countermeasures on the CAN bus [20]. We also take advantage
of CAN-FD and propose an authentication mechanism to
mitigate the exploitable weaknesses of the J1939 protocol.

The rest of this paper is structured as follows. Section 2
sets the background by introducing technical details of the
CAN and SAE J1939 protocols. We continue with a security
analysis of the SAE J1939 protocol specification and present
the attacks that we identified in section 3. In section 4 we
propose countermeasures for the identified vulnerabilities by
using authentication mechanisms. The feasibility of the pre-
sented attacks and the performance impact of the introduced
authentication mechanisms are evaluated in section 5 using a
J1939 network simulation.

II. BACKGROUND

We first give some context information on CAN and the
SAE J1939 specification.

A. Controller Area Network

The CAN [21] protocol specification, initially developed
by BOSCH, has been widely adopted by the automotive
industry. Newer versions of the CAN protocol developed for
various physical layers are defined in the ISO 11898 standard
family for which ISO 11898-1 [22] describes the general
architecture of CAN. Most commonly, CAN is used as a
two wire differential bus that can support baudrates of up to
1Mbit/s.

CAN was designed to provide broadcast transmission with
collision avoidance features but it offers no security-related
mechanisms. The access to the CAN bus is priority-based
depending on the message identifier and is decided in the
arbitration phase of the message transmission. The lower the
value of the CAN identifier, the higher the priority. The
CAN frame, tailored to achieve these features, consists of
the following main fields: start of frame, arbitration field
(which includes the message identifier), control field (which
includes payload length), data field up to 8 bytes in size, CRC,
acknowledgement field and end of frame. In its initial version,
the CAN specification accounted for standard frames with 11-
bit identifiers. Starting with the CAN 2.0 specification Part B
extended frames were introduced which use 29-bit identifiers
by adding 18 bits in the arbitration field. Figure 1 illustrates a
simplified representation of an extended CAN frame with an
emphasis on the arbitration field structure.

Standard and extended frames can coexist on the same CAN
bus as long as its implementation complies with version 2.0
or newer of the CAN specification.

Fig. 1. Simplified representation of an extended CAN frame

The increasing bandwidth demands of the automotive in-
dustry lead to the development of CAN-FD which improves
on the shortcomings of CAN by offering a higher data field
of up to 64 bytes in size and bit rates for the data field of up
to 8Mbit/s.

The CAN specification only describes the physical and
data link layer allowing the usage of application-specific
higher layer protocols. The industry is relying mostly on
manufacturer-specific upper-layer protocols which are not dis-
closed to the public in an attempt to increase security through
obscurity. Only a handful of higher layer protocols based on
CAN are standardised, some of which are widely used in
all sectors of the automotive industry such as the diagnostic
protocols, e.g., Unified Diagnostic Services (UDS). Other
protocols target specific industry areas such as commercial
vehicles for which the Society of Automotive Engineers (SAE)
defined the J1939 protocol.

3

B. SAE J1939

Even though the SAE J1939 standard collection also con-
tains definitions for the lower layers of the protocol (physical
and data link) the protocol is basically built on the CAN layers
with the introduction of additional rules that are implemented
in software. SAE J1939 specifies baudrates of 250Kbit/s and
500Kbit/s and the use of extended 29-bit CAN identifiers. The
presence of standard frames is allowed on the bus but SAE
J1939 messages are only sent as extended CAN frames.

The SAE J1939 frame format and transport protocol are
presented in the J1939-21 document [7]. The SAE J1939
frame format breaks down the identifier field into three main
components: priority, Parameter Group Number (PGN) and
source address as shown in Figure 2. PGNs are values that
uniquely identify a parameter group which encapsulates a
set of signals with a common context. This grouping of
signals related to a common process and sharing the same
transmission rate is destined for an efficient utilization of the
message payload as most signals are up to a few bytes in
length.

Fig. 2. J1939 breakdown of the extended CAN identifier field

The PGN field is composed of two bits denoting the
data page, a Protocol Data Unit (PDU) format and a PDU
specific field. Currently only two data pages are used in J1939
selectable by the Data Page bit while the Extended Data Page
bit should always be set to 0. The PDU format field determines
the format of the PDU and is one of the fields used to
determine the PGN. If the value of the PDU field is below 240
(PDU1 format) then the PDU specific field is interpreted as a
destination address. If its value is 240 to 255 (PDU2 format),
then it is considered to be a group extension. The destination
address defines the specific recipient of the message. Note that,
even though by the nature of the CAN protocol all nodes will
receive the message, it should be ignored by all except for
the designated recipient. To send a message to all nodes the
global destination address 255 should be used in this field.
Sending destination specific messages is not possible when
using PDU2 format.

J1939-71 defines signals and PGNs for commonly used
functionalities [23] along with their specific cycle times and
default priority. Some PGNs are allocated for protocol specific
operations such as requesting information from other nodes,
acknowledging protocol services, address management and the
transport protocol needed for multi-frame messages.

Request messages can be sent globally or to a specific des-
tination. A special use-case for the request PGN functionality
is the address allocation procedure specified by the J1939-81
Network management document [24]. Each device in a J1939
network is required to have a valid address and an unique name
(denoted as NAME). Besides uniquely identifying each node

in the network, the NAME also denotes information about the
industry sector for which the device is meant, its functionality
and manufacturer as shown in Figure 3. Before participating in
network communication a node should successfully complete
the address claim procedure. This is somewhat similar to
the IPv4 address conflict detection mechanism [25]. This
procedure is usually done at system start-up but it can also be
done any time a node is added to an already operating network.
A request message sent for the Address Claimed PGN should
result in all destination nodes transmitting an Address Claimed
message with the address they successfully claimed or with the
null address (254) if they were not able to claim any address. In
case a node has not yet attempted to claim an address it should
do so at this point by sending an Address claimed message
with the desired address as the source address and the NAME
in the data field. Upon receiving this message, any node
claiming the same address should send a similar message with
their own NAME. The sender with the lowest value NAME
wins the address claim and signals this by sending another
claim message while the others have to signal their claim loss
by sending a Cannot Claim Source Address message. Upon
claiming failure, depending on their configuration, some nodes
may attempt to claim another address while other nodes will
be limited to trying to retry claiming the same address.

Fig. 3. Illustration of the NAME field

The SAE J1939 protocol allows the transmission of param-
eter groups of more than 8 bytes in length. Due to the nature
of the CAN frame, the only way to accommodate this feature
is to divide the data in several 8 byte chunks that can be sent
individually in a CAN message. J1939 describes the Transport
Protocol (TP) that should be used for this purpose. Two PGNs
are used for this specific task: Transport Protocol Connection
Management (TP.CM) and Transport Protocol Data Transfer
(TP.DT). One of two transport protocol variants should be used
depending on whether the multi packet message is sent to a
specific or a global address:

1) Connection Mode Data Transfer - With this protocol
variant the sender node initiates a connection to the
receiver. The receiver can control the way in which the
messages are sent. At any point the connection can be
aborted by either the sender or receiver.

2) Broadcast Data Transfer - In this case messages are sent
to all nodes and the message flow is only controlled by
the sender.

When using the connection mode, several types of TP.CM
messages are used:

• Request to Send (RTS) - sent by the transmitter to signal
another node the intent to connect with it.

• Clear to Send (CTS) - flow control message used by the
receiver in response to RTS and to specify the amount of
data it can receive at a certain point.

4

• End of Message Acknowledgement (EoMsgAck) - used
by the recipient of a large message to signal the trans-
mitter that the entire message was successfully received.

• Connection Abort (ConnAbort) - can be used by either
the receiver or the transmitter to signal the end of the
connection.

The concept of Working Sets is introduced by the J1939
specification to serve distributed applications where several
nodes act together reacting to messages sent to the same
destination address to fulfil a single functionality. This feature
was particularly employed for agricultural implements where
several nodes need to cooperate as a single one. To set up the
working set one node must assume the role of the master. The
master node must first send a message that declares it as the
master and specifies the number of members of the working
set. This message is followed by a series of messages that
nominate the other set members. After this set-up phase all
working set members will listen to messages addressed to the
master node. Additional logic is needed to distinguish between
messages intended for the working set and messages specific
to the master.

III. SECURITY SHORTCOMINGS OF THE J1939

All the specific vulnerabilities of the CAN protocol are
also inherited by J1939. Probably the most important is a
consequence of the arbitration mechanism which allows the
possibility to mount a DoS attack by continuously sending
frames with the identifier field set to the lowest possible
value (0). By analyzing the J1939 protocol specification we
were able to identify several shortcomings that leave room for
interpretation and potential misuse. These specification flaws
can be exploited to mount DoS and even masquerade attacks
by only using the higher level J1939 protocol features. We
continue by presenting the capabilities required to undertake
malicious actions on the J1939 protocol and discuss each
identified vulnerability in the following sections.

Some of the discussed vulnerabilities may not apply for
systems that do not implement relevant parts of the J1939 pro-
tocol. For example, the J1939 support in the latest AUTOSAR
(4.2.2) specification does not include the use of Request2 and
Transfer PNGs [26] or the possibility to change node addresses
(not even with a Commanded Address PNG) or NAMEs [27].
A more drastic example comes from the specification of the
CAN interface for bodywork in Scania trucks [28] which states
that large parts of the J1939 protocol are not implemented:
no network management is used as addresses are statically
allocated, requests, acknowledgements and commands are
not supported and only one of the diagnostics messages is
employed. Such practical deployments may be incidentally
more secure, but here we focus on attacks that come from
following standard specifications which should be the norm.

A. Attacker capabilities

We assume that the attacker node is able to gain access
to the bus which connects the nodes targeted by the attack,
either by compromising an existing node or by connecting as
a new one. The malicious node should be capable of entirely

altering its NAME and address according to the needs. It is
also possible for the attacker to build any J1939-compliant
message with complete control over all configurable message
fields (eg. priority, PNG and address) and to transmit it even
if it may be an out of order message (e.g., a doubled CTS
when using connection mode for transmitting long messages).
This node should be able to analyze all J1939 traffic without
any message being filtered-out even when having other nodes
as destination. These capabilities are withing reach as proved
by numerous practical attacks and we demostrate the attacks
by using an industry-standard CANoe simulation.

B. Disrupting address claims by genuine nodes
The standard specifies that the address claiming procedure

should be completed by each node with a successful claim
before allowing any other traffic from that node. Address
claiming usually takes place in an initialization phase at power-
on but it is allowed at any time in order to accommodate the
case of subsequently added nodes. This will enable a malicious
node to claim the address of an honest node and win it by
declaring a NAME field with a lower value and hence a higher
priority. By continuously preventing the honest node to obtain
an address in the described manner, the malicious node would
successfully mount a DoS attack. If directed to safety critical
modules such as the engine control unit or the braking system
while the vehicle is in operation, this attack could have serious
consequences. The only safety measure mentioned by the spec-
ification is the use of address-to-NAME correspondence tables
for safety critical modules to ensure they are assigned at some
expected addresses. A malicious node could easily counteract
this by declaring a valid NAME value which reflects the same
field values as the node targeted for attack but with a lower
identity number to ensure wining the address claim. Figure 4
illustrates the address claim attack on legit nodes that claim a
single predefined address (a) and nodes that can dynamically
select addresses (b). In both cases the legit node attempts to
claim an address while the attacker prevents it by claiming
the same address with a smaller value and therefore higher
priority name, i.e. Legit name > Fabricated name.

Fig. 4. Preventing address claiming: a) for a node which has a single address
assigned to it, b) for a node that independently searches for an available
address

Besides preventing a node to serve its function, by following
this procedure, a malicious node could gain the identity
of the targeted node and influence the vehicle operation
by providing erroneous parameter values or sending control
messages. Sending messages that should be sent by another
node would also be possible without claiming its address with
a valid NAME however, rendering the targeted node unable to
communicate assures no interference from legit messages.

5

C. High busload by frequent requests for address claimed

When a global request for a PGNs is made, it should be
answered by all the nodes that can provide an answer for
it. The J1939 specification recommends sending at most 3
requests for a parameter group per second without making
this mandatory or specifying countermeasures for requests
sent more frequently. This allows a malicious node to mount
Distributed DoS (DDoS) attacks by sending frequent requests
that lead to an increased network traffic when responded to by
all the recipients. The burst of responses will introduce delays
for messages with lower priorities and higher value PGNs with
a potential for being completely blocked if such requests are
made frequently enough.

Fig. 5. The result of sending a Request for address claimed

We now consider the case of global requests for Address
Claimed messages. Such a request has to be responded-to
by all nodes on the bus with an Address claimed message
generating an additional 8 byte data frame for each respondent
as illustrated in Figure 5. The request as well as all the answers
will have the destination address (DA) parameter set to the
global address (255) and the source address (SA) set to either
the address they have successfully claimed or the null address
(254) if they did not yet claim an address. To ensure the request
transmission at specific moments without being delayed by
other higher priority traffic, the attacker could always send
it with the highest priority (0). The effectiveness of such
an attack greatly depends on the number of nodes and the
communication speed and is based on the ability to generate
a 100% bus load. For example, on a CAN bus with 30 nodes
communicating at 250Kbit/s it will take at least 15.48ms (in
the best case scenario when no bit stuffing is needed) for
all the Address Claimed responses to be sent. In this case a
DDoS attack can be mounted on traffic with lower priority than
Address Claimed messages by sending a request for Address
Claimed roughly every 15ms. If the same setup would have
only 5 nodes then the attacker node would have to resend
the request every 2.58ms. These two examples do not account
for the existence of other traffic of higher priority that also
contribute to the high bus load.

Similar attacks can be tailored for specific networks by
analysing traffic and identifying requests that generate the most
response traffic preferably with messages of highest possible
priorities. Requests for multi-frame messages could also be
considered but as the specified inter-packet interval can be up
to 200ms the amount of resulting traffic would spread over a
greater period in time reducing the influence on the bus load.

D. Transport protocol interruptions

The J1939 transport protocol allows the transmission of data
packets longer than 8 bytes in size. While sending a message
to a specific destination in connection mode, the connection
can be aborted by both the sender and the receiver. An attacker
node could use these features to interrupt the connection. To
interrupt the connection a malicious node can send an abort
message directed to either the sender or the receiver. If the
abort message is sent to the receiver this node will cease to
listen for further messages assuming the abort was issued by
the legit sender, while the sender will finish the transmission of
the previously specified number of frames and abort afterwards
due to the lack of further control messages from the receiver.
Alternatively, if the abort message is sent to the connection
initiator, it will immediately stop sending further messages
while the receiver will consider the connection interrupted due
to timeout. Another way of generating a connection abort is for
an attacker to send an additional clear to send control message
after the one sent by the receiver.

E. Connection hijacking with impersonation by address claim

As a consequence of mounting an address claim attack on
a node that is currently involved in a legit connection, the
connection could be hijacked. To mount the attack, a malicious
node must monitor the traffic and wait for the connection to
be established, i.e. a RTS is transmitted by the initiator and
responded to with a CTS. At this point the attacker should send
an address claim message claiming the address of the node
which it wishes to impersonate and declaring a higher priority
NAME. Successfully claiming the address of the target node at
this point assures that this node is prohibited from sending any
messages in case it identifies transfer protocol misbehaviour.
If it takes over the role of the initiator it will be able to send
spoofed information to the receiver. In case it impersonates the
receiver it could keep the connection blocked by continuously
asking the initiator for data retransmission in a similar manner
to the attack described in [6], the advantage in our approach
being that it can prevent connections to a certain node even if
a honest node has already managed to establish a connection
with it.

F. Exclusion from working sets

A J1939 node cannot be a member of more than one
working set at once. If a master defines a working set that
includes a certain node which is already a member of another
working set, then this node will end its membership in the
previous working set and become a member of the newly
defined one. A malicious node could use this behaviour to
prevent a node from retaining membership of a legit working
set and, as a consequence, block it from listening for messages
sent to this working set.

IV. AN AUTHENTICATION MECHANISM FOR J1939

All of the previous attacks have a unique cause: the lack
of cryptographic authentication on genuine J1939 messages.

6

Consequently we now discuss a potential authentication pro-
tocol and later provide experimental evidence for its feasibility
on a J1939 network. To remove all potential attacks, the
protocol extends over all J1939 messages and not only over
the restricted case of the previously discussed functionalities.

A. Protocol description

Given J1939 particularities, e.g., well-assigned function-
alities for each node, as well as the nature of commercial
vehicle manufacturing, where multiple producers contribute to
a single vehicle, it is clear that authentication should rely on
public key infrastructure (PKI). Only PKI can facilitate secure
deployment of components in the vehicle without relying on
secret keys that cannot be exchanged over the insecure CAN
bus and are inconvenient to embed during manufacturing (as
this will require the manufacturer to store secret keys for
each vehicle incurring even higher security risks). Thus, each
node must be in possession of a public-key certificate that is
digitally signed by the OEM and by using this certificate it can
also validate the public keys of the other nodes. The security
designated ECU may be physically present as a distinct entity
on the bus or its functionalities can be implemented by one
of the existing nodes, e.g., the gateway node.

Briefly, we envision a 4 stage process as illustrated in Figure
6. First, in step 1, the OEM distributes signed certificates to the
component manufacturer which are embedded and uniquely
assigned to each ECU. These certificates are hard-coded on
each ECU in step 2. Then in step 3 the OEM releases a security
designated electronic control unit SeCU which has its own
PKI certificate. Subsequently, in step 4 authenticated J1939
communication takes place inside the vehicle with initializa-
tion relying on the existing PKI infrastructure. We defer the
discussion on specific concerns regarding the adoption of PKI
on in-vehicle ECUs and related procedures for the following
subsection, while here we stay to the protocol outline. For
ECUs that can not handle public-key operations we consider
that a token is used which links to a secret master key that will
be used to exchange the ephemeral session keys. While using
a symmetric master key can raise security concerns, for nodes
that cannot handle PKI there is no alternative. The master-
key will be hard-coded by the manufacturer on each ECU.
The same key must be also known to SeCU a reason for
which it is returned via a secure channel to the OEM in step
2’ as a token to be hard-coded in the SeCU as well. Secure
communication between the OEM and manufacturers is part
of the usual production cycle so it is out of scope to discuss
how this key will securely reach the OEM. We consider the
secret-key based version of the protocol only as a transition
step until all ECUs inside a car will be capable of public-key
operations.

The protocol that we envision, J1939−ACAN, relies on
two components: a more demanding initialization sub-protocol
Init−J1939−ACAN and a faster, real-time authentication sub-
protocol RunTime−J1939−ACAN. While Init−J1939−ACAN
is demanding from a computational perspective we assume
that this procedure is done rarely, i.e., when the car exits
production, when a component is replaced or if for some

Fig. 6. Security setup and stages: (1) the OEM releases security designated
ECU, (2) release certificates for component manufacturer (signed by OEM),
(3) ECUs with signed certificates are deployed in the vehicle and (4) J1939
authentication communication takes place

TABLE I
SUMMARY OF NOTATIONS

KD key derivation process
Sig digital signature
e public key encryption

MAC authentication tag, e.g., computed via HMAC
tSeCU current time on the security designated ECU
tsnd time on the sender ECU
trcv time on the receiver ECU
cnti individual counter for each sender ECU
rnd random material
� broadcast, i.e., message sent to all nodes
→ unicast, i.e., message sent to individual node

CertOEM certificate of the OEM
CertECUi certificate of ECUi, i = 1..n
ECUi the i-th ECU with i = 1..n
SeCU security designated ECU
Kses the secret session key
Ksync a secret key for time-syncronization
Km the secret master-key

security reasons a new session key is desired. In case one
node loses synchronization, the synchronization steps of Init−
J1939−ACAN can be individually run between the node and
the security designated controller SeCU. The synchronization
steps are simple and rely only on symmetric cryptographic
functions that require very little computational and commu-
nication overhead. Under normal running conditions, only the
RunTime−J1939−ACAN is carried. In what follows we give the
description of the two sub-protocols while in the experimental
section we give experimental proofs on the feasibility of both
components Init−J1939−ACAN and RunTime−J1939−ACAN.
The protocol description that follows is generic and we discuss
concrete instantiations for it in the following subsections.

We define the J1939−ACAN protocol as the following set
of actions for each node:

I) Init−J1939−ACAN is the initialization stage which gathers
procedures for broadcasting certificates, achieving time syn-
chronization and establishing a session key. This procedure
is run between each ECUi∈[1,n] and the security designated
controller SeCU in a sequential fashion as follows:

1) SendCert(ECUi∈[1,n],SeCU) in which each ECU in pos-

7

session of a digital certificate announces his presence to
the security designated controller SeCU by sending his
certificate CertECUi along with some fresh random value
rnd ′i to assure freshness:

ECUi∈[1,n] → SeCU : CertECUi , rnd
′
i

2) SendSKey(SeCU,ECUi∈[1,n]) in which the security des-
ignated controller SeCU sends to each ECU, i ∈ [1, n]
the current session key and a synchronization key en-
crypted with the the ECU’s public key. These keys will
be sent only to ECUs that have proved that they are
authorized for this network by previously showing their
signed certificate:

SeCU→ ECUi∈[1,n] : epbkECUi

(
Kses ,Ksync

)
,

SigSeCU(epbkECUi

(
Kses ,Ksync

)
, rnd ′i)

where the session key Kses is a randomly generated
session key common for all nodes that are authorized
for the network and Ksync is a random key that is
uniquely generated for each ECU and used for time
synchronization. The content is signed to ensure the
ECUs about the origin of the packet and includes rnd ′i
to prove the freshness of the keys.

3) SendToken(ECUi∈[1,n],SeCU) in which each ECU (that
does not own a certificate) announces his presence to
the security designated ECU by sending the token along
with some fresh random value rnd i to assure freshness
of the forthcoming session key:

ECUi∈[1,n] → SeCU : Token, rnd ′i

We assume that the token contains an identifier for the
node, an identifier for the network that he belongs to and
information on the master key. All these can be easily
encrypted by the OEM in the token with a key that is
known to SeCU.

4) SendSKeySym(SeCU,ECUi∈[1,n]) in which the security
designated controller SeCU sends to each ECU, i ∈ [1, n]
(that does not own a public certificate and has instead
presented a token) the current session key and a synchro-
nization key encrypted with the the ECU’s symmetric
master key:

SeCU → ECUi∈[1,n] : eKm

(
Kses ,Ksync , rnd

′
i

)
These keys will be sent only to ECUs that had their
tokens registred to the OEM and were authorized to be
part of the network.

5) RqTimeSync(ECUi∈1..n,SeCU) is the procedure in
which each ECU requests a time synchronization to the
security designated controller SeCU by sending a fresh
random value along with a MAC computed on it with
the synchronization key:

ECUi∈[1,n] � SeCU : rnd ′′i ,MACKsync
(rnd ′′i)

6) SendTime(SeCU,ECUi∈1..n) in which the security des-
ignated controller SeCU sends the current time and
authenticates it with a MAC computed with the syn-
chronization key along with the random value received
from the ECU:

SeCU � ECUi∈[1,n] : tSeCU,MACKsync (tSeCU, rnd
′′
i)

for correct establishment of the current time, each
ECU, i ∈ [1, n] sets the current time as tSeCU + εi when
receiving tSeCU where εi is the synchronization error of
ECUi computed as the time elapsed from sending rnd ′′i
in step SendCert(ECUi) up until receiving tSeCU in step
SendTime(SeCU) (note that at this point the current time
at SeCU is in the interval [tSeCU, tSeCU + εi]).

II) RunTime−J1939−ACAN is the runtime stage in which
the secret session key is used to provide authentication
on all messages including the address claiming procedure
SndAddrClaim and requesting for an abort of the transport
protocol TP.Conn Abort:

1) SendJ1939(ECUi,ECUj ∨ All) is the regular sending
procedure for J1939 messages, denoted by mj1939, no
modifications required.

2) SendTagJ1939(ECUi,ECUj∨All) by which ECUi sends
an accompanying authentication tag in addition to any
of the regular J1939 messages mj1939 along with the
current time-stamp:

ECUi=1..n � All : IDm , tsnd ,

cnt i,MACKses
(mj1939, tsnd , cnt i)

here by mj1939 we denote the entire J1939 message for
which the tag is being constructed (i.e., the identifier and
data fields of this message), and by IDm the identifier
of the message being authenticated.

As a general rule over protocol messages, any
ECUi∈[1,n] ignores any requests from ECUj∈[1,n], e.g.,
TP.Conn Abort(ECUj) or SndAddrClaim(ECUj), in
case when the request has failed the authentication test.
Checking for authenticity implies, besides verification of the
authentication tag, that each node checks for freshness of the
message by validating that |tsnd − trcv | < δ + ε, where δ is
a fixed propagation delay and ε the synchronization error,
and that cnt i > cnt ′i where cnt ′i is the last received message
counter from ECUi.

A short motivation on the use of both sender time tsnd and
local counter cnt i for each authentication tag is in order. To
check for freshness the receiver will need to verify that |tsnd−
trcv | < δ+ ε, as he needs to account for both the propagation
delay δ and synchronization errors. This opens door for a reply
attack as a message along with its tag MACKses

(mj1939, tsnd)
can be replayed for as long as |tsnd − trcv | < δ + ε holds
(note omission of the counter in this example). To avoid this,
while still allowing burst periods from honest ECUs we use
an individual counter cnt i that is incremented each time a
new frame is sent. For each of the received messages, the
receiver must check that cnt i > cnt ′i where cnt ′i is the last

8

received message counter from ECUi. This way it is possible
to discern between burst periods in which frames are sent at
short time intervals (shorter than the propagation delay plus
the synchronization error) and replay attacks. The counter can
be allowed to reset when the maximum value is reached, we
simply need to account for messages that are sent during a very
short period of δ + ε (i.e., an interval in which the counter
simply must not repeat). We use 32 bits for this counter in
our experiments with CAN-FD, but much shorter values can
be used (a 10 bit counter is proposed for the 2 frame CAN
authentication). By experiments (as detailed in a forthcoming
section) we determined that the shortest delays between two
frames, i.e., in a burst period, is around a dozen microseconds.
The use of time-stamps alone would not be sufficient as the
synchronization errors are usually higher than this.

B. Feasibility of PKI and related procedures

The adoption of PKI is unavoidable for assuring fresh
session keys between components that do not share a common
production history. This is generally the case in the absence
of a secure environment were the same secret shared keys can
be imprinted to all components. While it is clear that not all
ECUs inside contemporary cars are able to handle public-key
cryptography, we provide arguments on why the adoption of
PKI should be a realistic step for in-vehicle ECUs. There are
three main arguments as we point out next: the requirement
for PKI in inter-vehicular networks, the support for public-key
operations in the AUTOSAR cryptographic specifications [29],
[30] and the spread of open-source libraries for embedded
devices that provide extensive support for public-key cryptog-
raphy.

Relying on PKI is not an unusual demand for the auto-
motive industry and is clearly within reach since numerous
modern applications related to vehicle-to-vehicle or vehicle-
to-infrastructure communication are depending on this as well.
There a number of research works that address this [31], [32],
[33], [34] and recently the Office of the Federal Register has
published a request for information on credential management
systems for vehicle to vehicle communication [35]. All these
specifically address procedures for certificate distribution and
certificate revocation, etc. Thus the related infrastructure will
be in place at least for V2X communication modules. This
makes the main requirement of our protocol for a security
designated unit SeCU that supports PKI to be realistic.

For all other ECUs except SeCU, provided that they have
sufficient computational power, the support for public-key op-
erations is immediate from both existing standards or existing
cryptographic libraries for embedded devices. Indeed, current
specifications for automotive-grade cryptographic libraries in-
side the AUTOSAR standard [29], [30] provide interfaces for
all asymmetric functionalities: encryption, signing and key
exchange. Thus, mere compliance with current standards will
assure support for public-key operations. Also, open source
cryptographic libraries provide lots of support for such func-
tionalities. For example, the WolfSSL library that we use in the
experimental section [36] provides support for DSA, Diffie-
Hellman key-exchange and their elliptical-curve derivatives.

As for PKI related functionalities such as certificate issuing
and revocation these will go in the usual way. For example,
certificate revocation will be based on certificate revocation
lists (CRL). The security designated ECU can maintain an
updated list of revoked certificates by remote connectivity
to the OEM server. Remote connectivity via 3G is already
common inside cars. The size of the list should not cause
concerns since SeCU can store only the IDs of the certificate,
or their hash value. Once the certificate of a node is revoked
it must be immediately changed. Since this requires an update
to the software of the corresponding ECU, given the nature of
the automotive domain this should be done in an authorized
garage. A remote procedure may be also put in place via
secure channels such as SSL/TLS. But it is out of scope for
the current work to illustrate specific procedures. Nonetheless,
PKI related procedures are well studied in the literature and
many current proposals exist, e.g., [34], which can be modified
to specific needs or even straight-forwardly adopted.

C. Practical instantiations of Init−J1939−ACAN
Using standard CAN frames to send messages specific to the

proposed authentication protocol would require some trade-
offs between performance and security as the 8 byte payload
of a single CAN frame is not sufficient to send large messages
containing signatures or bigger authentication tags. Since there
exists active interest in mapping J1939 messages to CAN-
FD frames [37], we find it appropriate to study the possible
use of CAN-FD for providing J1939 authentication while also
discussing solutions for coping with the limitations of CAN
frames.

By proper choice of parameters, the 64 byte frame of CAN-
FD has the appropriate size for carrying signed messages.
An RSA signature leads to 1024-2048 bits, this is too much
even for CAN-FD frames. A DSA signature however, by
proper choice of parameters, could fit in one CAN-FD frame.
According to current specifications on key sizes [38], the DSA
secret key size is set at 224 bits over a 2048 bit modulus for
a validity from 2011-2030. Since the size of the signature is
double this size, it leads to 448 bits which leaves room for
an extra 64 bits. That is, one CAN-FD frame could carry one
signature plus the existing 64 bit CAN data. This ensures a
good implementation perspective. As for beyond 2030, a key
of 256 bits is needed for DSA and a modulus of 3072 bits
instead of 2048 bits. Alternatively, a 256 bits elliptical curve
will attain the same security at a more compact size reducing
frame and memory overheads. These are manageable by high-
end cores as we argue in the experimental section were we
provide experimental results.

We now provide concrete quantifications for the size of the
packets involved in the handshake to set way for performance
evaluation of Init−J1939−ACAN. The following quantifications
are based around standard DSA signatures which can be
further improved by ECC. The hand-shake implied by Init−
J1939−ACAN is suggested in Figure 7 for nodes supporting
public-key operations and in Figure 8 for non-PKI nodes. On
each arrow corresponding to a sent message the required CAN-
FD or CAN packets are numbered. It feels natural to assume

9

that nodes supporting PKI will be present on the newer CAN-
FD layer. The image can be immediately adapted for the case
of regular CAN but the number of packets increases by the
expected factor of 8. Similarly for the case of non-PKI nodes
we assume a regular CAN bus but it straight-forward to port
this on the larger CAN-FD frames and the overhead will be
reduced to 1 frame for each round of the protocol.

The use of DSA allows us to take advantage of fixed
parameters for the entire system. In case of operations over
Zp the common parameters are the modulus p, the generator
g and q which is the divider of p− 1. The same holds for the
use of elliptical curves since all nodes can use the same curve.
Thus we consider that all nodes share these parameters and
they don’t need to be exchanged over the network. Once our
setup is fixed around DSA signatures, the usual way to obtain
an asymmetric encryption (required by the SendSKey step) is
to rely on the Diffie-Hellman key-exchange [39] protocol. To
avoid man-in-the-middle attacks, which are feasible on the ba-
sic Diffie-Hellman key-exchange, we prefer to modify one of
its immediate derivatives, the security enhanced STS protocol
[40]. The modifications consist in reducing the certificate size,
which in practical instantiations could reach several kilobytes,
to a certificate that contains the public key, some information
from the OEM that confirm that this is the intended network
for the ECU, e.g., a network and node ID, and the signature of
the security controller SeCU (this signature will be embedded
by the OEM which is the issuer of SeCU). In principle, this
is a pre-shared public-key version of the Diffie-Hellman key-
exchange similar to the ElGamal encryption [41] and helps
both in avoiding man-in-the-middle attacks and in reducing
the size of the certificate. As for symmetric encryption in
what follows we consider that AES with 128 bit key is used,
while for the MAC the HMAC construction with SHA256.
Experimental results will be provided for all these primitives.

Frame allocation with DSA and ECC versions. We now
explain frame allocation as presented in Figure 7. In the first
step each node will have to announce his public-key certificate,
i.e., the Diffie-Hellman key share gxmodp along with the
information that proves it is part of the network and the
signature of the OEM (the security designated controller SeCU
is able to verify such signatures). For a 2048 bit modulus the
value of gxmodp will require 4 CAN-FD frames, i.e., frames
f1–f4. The additional information is present along with some
random material rnd ′ is included in frame f5. For the SHA256
based DSA signature, two 256 bits values are generated during
signing and these fit in the 512 bit frame, thus frame f6 holds
this signature of the OEM. In the second step the security
designated controller SeCU replies with the freshly generated
gymodp which again takes 4 frames, i.e., frames f7–f10. The
Diffie-Hellman session key is now K = gxymodp and this
is used to encrypt a signature and the two keys Kses , Ksync .
Thus, frame f11 is needed to carry the DSA signature and
frame f12 to carry the encrypted keys Kses , Ksync . Encrypting
this payload causes only small computational overheads and
requires no additional bandwidth. For security reasons a CBC
mode of operation on AES can be used which requires 128
bits for the initialization vector IV and fortunately there is
enough room for this since the two secret keys Kses , Ksync

Fig. 7. Authentication-synchronization sequence (STS-based protocol) for
nodes supporting public-key operations (CAN-FD frames)

Fig. 8. Authentication sequence for non-PKI nodes (regular CAN frames)

require only 256 bits out of the 512 bits of the frame. Then
the ECU responds with a fresh random value rnd ′′ plus a
MAC computed with the synchronization key Ksync which
require one more frame, i.e., f13. Finally, the security controller
answers with the current time and a MAC which fit in frame
f14. We consider a time kept on 64 bits and a MAC of 256
bits or less which is secure enough for our purpose. Since a
compact 256-bit curve offers more or similar security to the
2048-bit modulus, the size of the shares gx and gy decreases to
the coordinates of these points on the curve making a reduction
from 4 frames to 2. Instead of 14 frames, 10 frames will be
sufficient for the ECC based initialization. Consequently, the
public-key version of Init−J1939−ACAN requires 10–14 CAN-
FD frames.

Frame allocation for non-PKI nodes. We explain frame
allocation for non-PKI compliant nodes as presented in Figure
8. For nodes not supporting public-key operations, the first
message consists in the token along with a first random value
rnd ′. We consider the token to be 192 bits and the random
value 64 bits, requiring a total of 4 frames, i.e., f1–f4. The
192-bit token can hold an identifier for the node, an identifier
for the associated network and a link to the master key or
the master keys itself - all these encrypted with a key known
only to the OEM and SeCU. For all these 192 bits seem
sufficient. Subsequently the security controller SeCU replies
with the encrypted session key and the synchronization key.
Since encryption must be performed in a secure mode of
operation such as CBC, the first frame, i.e., frame f5, must

10

hold an initialization value or counter for which 64 bits are
sufficient. Assuming the keys Kses and Ksync are 128 bits each
they require 4 more frames, i.e., f6–f9. To ensure freshness
for the response the random value from the previous round
must be also included, hence the requirement for frame f10.
Subsequently, a new random value is sent for time synchro-
nization along with a MAC. Considering that MACs can be
safely truncated to 64 bits we need two more frames for the
random value and the MAC, i.e., f11–f12. Finally, the current
time represented on 64 bits along with a new MAC on it, again
truncated to 64, require two more frames, i.e., f13–f14.

D. Practical instation of RunTime−J1939−ACAN
Since the initialization stage of the protocol Init −

J1939−ACAN is done only once at start-up, despite depending
on a high number of CAN frames, it will not impede regular
traffic. Of more concern for real-time needs is the authentica-
tion during the run-time stage RunTime−J1939−ACAN.

We propose the following practical instantiation when using
CAN-FD: 24 bytes for the authentication data field containing
29 bits for the ID of the authenticated message, 64 bits for
the authentication tag, 64 bits for the time-stamp, 32 bits for
the counter and 3 additional padding bits to obtain the 8 bit
alignment.

Figure 9 (a) illustrates the authentication message compo-
nents as organized in the data field of a CAN-FD frame and
suggests their distribution into three CAN frames. Sending
the authentication information through CAN frames will lead
to a considerable increase in busload since for every J1939
message 3 additional CAN frames would be needed. An
improvement could be made, at the cost of a reduced security
level, by decreasing the size of the authentication message
components so that it can be sent through only 2 CAN frames
as illustrated in Figure 9 (b).

(a)

29bit 3bit 32bit 64bit 64bit

IDm pad cnti tsnd MACKses
(mj1939, tsnd , cnti)

1st CAN frame 2nd CAN frame 3rd CAN frame

(b)

29bit 10bit 25bit 16bit 48bit

IDm cnti tMSB
snd tLSBsnd MACKses

(mj1939, tsnd , cnti)

1st CAN frame 2nd CAN frame

Fig. 9. Full authentication message organization in a CAN-FD frame and
indication on data splitting between three CAN frames (a). Reduced size
authentication message split in two CAN frames (b)

E. Message allocation according to J1939 specifications

Introducing security to the J1939 protocol would require
sending security-related information, such as authentication
or key exchange data, using messages that comply with the
protocol specification. Since security-related messages were
not included in the J1939 protocol (besides the ones used
for diagnostic functions), specific messages will have to be
defined for this purpose. This will call for the allocation of
dedicated PGNs to identify the information transmitted within
these messages. Both global and specific addressing would be
needed depending on the nature of the messages to which the
security mechanism is applied. For example an authentication
data generated for a specific address message would also

have to be sent with a specific address. The same applies
to a global message for which an authentication message
should also be global. This limits the choice of PGNs since
some can only be used for global addressing. One possible
approach would be to use the proprietary PGNs defined by
the J1939 specification but there are only two such PGNs
(Proprietary A and Proprietary A1) that can be used for
specific addressing which might not be enough to support for
all needed security services. On the other hand, the proprietary
PGNs were assigned for producer specific functionalities while
the J1939 specification recommends requests for adding PGNs
of general interest to the list of predefined PGNs. This suggests
a second, more suitable approach which is to reserve new
PGNs in the specification for security services as they would
be of general interest for all manufacturers.

An interely different approach suitable for sending the
authentication tag, which is applicable when using CAN-FD
frames, would be to send the authentication data along with
the corresponding message in a single frame. This would be
possible since the CAN-FD data field can accommodate up
to 64 bytes. However, using this approach would offer no
backwards compatibility with current implementations of the
J1939 protocol.

V. EXPERIMENTAL RESULTS

The feasibility of the presented attacks and the effect of
introducing the proposed mechanism were evaluated using the
simulation environment available in CANoe, a comprehensive
tool for the analysis, development and testing of automotive
networks.

A. Setup
We built our tests on the J1939 system demo setup provided

in the CANoe environment [42]. The setup consists in a
simulated sub-network bus with 6 simulated nodes each
implementing basic vehicle functionalities: Engine Manage-
ment System (EMS), Electronic Brake system (EBS), Vehi-
cle GateWay (VGW), Transmission Electronic Control Unit
(TECU), Instrument Cluster (IC) and Tire Pressure Monitoring
System (TPMS) as depicted by Figure 10. The VGW node is
responssible for relaying the traffic to and from other vehicle
subnetworks. This subnetwork setup is consistent with real-
life architectures such as the networks employed by Scania
trucks [43] in which subnetworks consist of 3 to 7 nodes. The
communication bit rate is set at 250Kbit/s, while the network
nodes and associated messages with corresponding PNGs are
defined as recommended by the J1939 specification [23]. The
specific behaviour of each node is implemented in CANoe
using CAPL scripts while the J1939-related behaviour is
handled by the J1939 interaction layer which assures protocol
compliant message mapping and transmission behaviour (eg.
address claiming and transfer protocol).

We implemented the behaviour needed to evaluate the J1939
protocol vulnerabilities in CAPL scripts using support from
the J1939 interaction layer and added new messages where
needed. The resulting network behaviour was analysed by
studying the CANoe message trace after running the simu-
lation.

11

Fig. 10. CANoe simulation powertrain J1939 network

B. Testing J1939 vulnerabilities by industry-standard simula-
tions

Address claim DoS. During the simulation startup each node
tries to claim its associated address. Our address claim DoS
attack implementation claims the addresses already claimed
by other nodes by declaring lower value addresses. Running
this attack on the simulation succeeded in overtaking addresses
of other nodes and preventing them to successfully claim an
address.

Request for address claim DDoS. For mounting the DDoS
attack using the request for address claim approach we used
a node that cyclically sent the request. To evaluate the attack
effects we monitored the bus load depending on the request
cycle time. The normal simulation bus load stays below 20%
without any traffic generated by the attack. Sending the request
for address claimed message cyclically at 100ms the bus load
rises to around 22%. At this point the CANoe trace already
informs that the request is sent more often than recommended
by the J1939 spec (more than 3 times/s). Changing the cycle
time to 10ms increases the busload to 52% while at 4ms
the busload increases to 88% causing more than half of the
messages not to be sent due to disruptions in prescribed cycle
times.

Transport protocol DoS. For testing the attacks on the TP
we were not able to use the CANoe J1939 layer functionality
as it automatically handles transmission of messages longer
than 8 bytes. Our attempts to send TP-related messages using
J1939-specific functions resulted in errors being displayed and
no actual message being sent. We therefore had to mount our
attack using the CAN layer. Our attacker routine was designed
to wait for the Clear to Send signal from the receiver of a
specific message and send an abort message (declaring the
reason as insufficient resources) immediately after it.

When the abort message is directed to the message origi-
nator the sender manages to send the first data frame in the
intended sequence before interpreting the abort command. The
receiver does not receive all the message parts within the
expected time and sends another abort message due to timeout.
In this case the CANoe trace identifies the sent data frame and
the second abort frame as violations to the J1939 protocol.
If the abort message has the receiver as the destination, the
sender sends all message parts specified in the CTS message
(6 in our case) while the receiver immediately declares the
connection as closed. For this test CANoe identified all the
data frames as protocol violations.

We also tried using an additional CTS to cause the connec-
tion abortion and found that if the injected CTS was the first
to reach the bus, the legit receiver waited for the transmitter to

finish serving this CTS before sending its own CTS message
which will not be seen as invalid, even though it asks for
the same data, as it is considered as a retry request. When
the injected CTS is sent after the legit one the transmitter
manages to send one message in the expected sequence after
which it immediately sends an abort message with reason code
0xFF (undefined reason). The injected CTS frame is in this
case seen as an invalid occurrence in respect to the J1939
protocol. While trying out various CTS parameters we came
upon an undefined behaviour in the case when CTS specifies
that 0 messages should be sent. Upon sending this message the
sender will send one sequence from the large message starting
from the one specified by the CTS but this will be reported
as a J1939 protocol violation in the CANoe trace.

Connection hijacking. We tested the connection hijacking
by having a node monitor bus traffic for transfer protocol
connections and making an address claim for the address of
either one of the connected parties. The result, in both cases,
was that the target node transmitted a message indicating
that it cannot claim an address followed by a connection
abort message with reason 0xFF (undefined). Aborting the
connection upon loosing the claim on the address is the logical
approach, however, this behaviour is in contradiction with the
specification since it is clearly stated that a J1939 node cannot
transmit messages other then address claims unless they are
successful in claiming an address.

Exclusion from working sets. We found that the CANoe
J1939 interaction layer has no integrated support for automatic
handling of working set messages. Therefore, we could not test
this attack using the simulation.

Attacks on authenticated traffic. When employing the pro-
posed authentication scheme nodes will process a received
message only if authentication succeeds. Otherwise they will
ignore and discard the message. Therefore, any of the attempts
to mount the described attacks fail since the attacker node
is not a legit network node and has no ability to send
authenticated messages.

DoS attacks. We do note that all of the previously discussed
attacks are a form of DoS. The security mechanisms that we
provided are concerned with protection against attacks caused
by impersonations, exclusion from working sets, disrupting
address claims, etc., which may be viewed as DoS attacks at
a logical level. However we are not concerned with resource-
exhaustion DoS attacks caused by a more or less powerful
node. DoS by resource-exhaustion cannot be prevented since
an adversarial node can always write dominant bits on the bus
preventing the other nodes from gaining access to the bus (as a
resource). Moreover it can induce unnecessary cryptographic
operations, e.g., signature or MAC verifications that fail by
altering frames or injecting frames of his own. Such attacks
cannot be prevented by cryptographic security.

C. Computational overheads of cryptographic primitives
We considered for evaluation a set of 5 platforms from

the low (RL-78, S12), mid (MPC5606) and high-performance
(TC297, RH850) areas. The scope was to determine how each
category copes with the computational requirements of the
proposed scheme.

12

TABLE II
COMPUTATIONAL OVERHEADS OF PUBLIC-KEY OPERATIONS ON TC297

Memory Diffie-Hellman DSA2048 ECDSA256
allocation Key gen Key agree Sign Verif Sign Verif

Static 540ms 550ms 240ms 490ms N/A N/A
Dynamic 1.02s 1.06s 300ms 580ms 88ms 122ms

TABLE III
COMPUTATIONAL OVERHEADS FOR SYMMETRIC PRIMITIVES

Cryptographic Platform
primitive RL78 D1A S12XDT MPC5606B TC297 RH850G3M

SHA1 6.15ms 2.94ms 578.75µs 14µs 56.95µs
SHA256 2.20ms 6.21ms 563.75µs 41µs 37.54µs

SHA3-256 120.9ms 46.55ms 19.13ms 66µs 2.57ms
AES-128 0.71ms 0.40ms 427µs 18µs 42.03µs

For the asymmetric cryptographic primitives required by the
Init−J1939−ACAN stage we used wolfSSL (version 3.12.0)
[36], an embedded SSL library which provides a wide range of
cryptographic algorithms. From this library we used the Diffie-
Hellman, DSA and ECDSA implementations. Unsurprisingly,
while trying to port these on our target platforms, we found
that only the high-end devices could cope with public key
cryptography. The other platforms failed in providing enough
RAM memory (and Flash in some cases) to accommodate
the implementations. High-end microcontrollers were ready
for running asymmetric primitives while the low and mid-
end side could achieve this only if equipped with dedicated
hardware modules. Larger memories are available on low-end
cores but computational performance will still be considerably
lower.

As a reference for the high-end devices performance, we
provide experimental results obtained on the AURIX TC297
microcontroller in Table II. Here, the Diffie-Hellman Key gen
stands for the session key generation while Key agree stands
for the shared key derivation (computationally speaking these
2 operations are equivalent). We evaluated both static and
dynamic memory allocation settings of the library to illustrate
effects of the speed-memory tradeoff.

For the devices not capable of handling public key primi-
tives we evaluated the overhead of using AES-128. The last
line in Table III shows the time needed to encrypt one AES-
128 block on each platform.

We give the computational overheads for generating hashes
over J1939 messages on the evaluated automotive platforms
in Table III. The experimental data for each platform was
obtained using a 512 bit input (which fits for the size of the
extended ID, 8 byte data field, time-stamp, counter and key).

Execution times for HMACs can be easily inferred based on
this table since HMAC involves exactly two hash operations,
i.e., HMAC(K,m) = H((K

′⊕opad)||H((K
′⊕ ipad)||m)).

On the low-end RL78 and S12 platforms, authentication
delays given by the computational needs are in the order of
milliseconds less than 10 ms for SHA1 or SHA2 and less
than 150 ms for SHA3. This would make it possible to sustain
authenticated communication only for periodic messages that
have cycles larger than this computational effort. In the case of

TABLE IV
INIT-J1939-ACAN PER NODE COMMUNICATION OVERHEAD

Bit rate CAN CAN-FD
Data rate: 1Mbit/s Data rate: 4Mbit/s

250Kbit/s 7.28ms 10.86ms 4.02ms
500Kbit/s 3.64ms 10.00ms 3.15ms

the other platforms sending authenticated messages via SHA1
or SHA2 based HMAC will not be problematic. The newer
standard SHA3 seems to be quite demanding and likely not
suitable for the real-time nature of in-vehicle communication.
Fortunately SHA256 offers sufficient security when used in
HMAC.

D. Performance evaluation of Init−J1939−ACAN
The initialization stage consists in the transmission of

four messages for each node on the bus (besides the secu-
rity ECU): SendCert/SendToken, SendSKey/SendSKeySym,
RqTimeSync and SendTime. Table IV holds the maximum
communication overheads (considering the maximum number
of stuffing bits) involved in running the initialization stage for
one node depending on the employed protocol. This requires
the transmission of 14 CAN frames (for non-PKI nodes as per
Figure 8) or 14 CAN-FD frames (for PKI nodes as per Figure
7) with a data field of 8 and 64 bytes respectively. For CAN-
FD each row indicates the arbitration phase bit rate while the
separate columns include results for 1 and 4Mbit/s data phase
bit rates.

In Figure 11 we depict overheads for a regular CAN bus,
while in Figure 12 for a CAN-FD bus with 250kbps bit
rate during arbitration. The overheads are depicted based on
the computational time and bus delays that were previously
determined based on experimental measurements. As a general
rule for all these figures, the plots on the left are showing
the time required to send the initialization frames on the
bus alone, while the plots on the right depict the complete
initialization time which also accounts for the computational
time. The computational overheads induce more time than the
busload, especially in the case of the more expensive public-
key operations. The number of computations that we account
for follows directly from the proposed instantiations of the
protocol in Figures 7 and 8. In the symmetric setup, these sum
up to 2 MAC computations and 2 MAC verifications and 2
decrypted blocks for frames f1–f3 then 3 encrypted/decrypted
blocks for frames f5–f10. In the asymmetric setup, the higher
costs are induced by the public key-encryption (step 2), the
2 signature verifications (steps 1 and 2) and signing (step 2).
Two MAC computations and verifications are also added to
this. Moreover encryption extends over frames f11–f12 and
since each frame carries 512 bits we have a total of 1024
bits which require 8 AES block encryptions/decryptions (this
is still a very small amount of time compared to public-key
operations).

CAN-based initialization considers a bus-load from 125kbps
to 1Mbps and up to 32 nodes. Initialization time tops at around
2.1s in case of 32 nodes and 125kbps. Figures 11 (a) and
11 (b) show the transmission time and the full initialization

13

(a) (b)

(c) (d)

(e) (f)

Fig. 11. Transmission time for non-PKI initialization frames on CAN: (a)
variation of bus-time with bit rate and number of nodes, (b) variation of full
initialization time with bit rate and number of nodes, (c) variation of bus-time
with bit rate at 32 nodes, (d) variation of full initialization time with bit rate
at 32 nodes, (e) variation of bus-time with the number of nodes at 500kbps
bit rate and (f) variation of full initialization time with the number of nodes
at 500kbps bit rate

time (including computational overheads) as they vary with
bandwidth and the number of nodes. Then in 11 (c) and (d) we
keep the number of nodes constant at 32 and show the variation
of the transmission time (c) and full initialization time (d) with
the bandwidth. Finally in 11 (e) and (f) we keep the bandwidth
constant at 500kbps and show the variation with the number
of nodes. Since the number of computations increases linearly
with the number of nodes it is expected that the highest delay
of around 2.1s is achieved when the number of nodes reaches
32.

We structure similarly the depictions for CAN-FD in Figure
12. Again, 12 (a) and 12 (b) show the transmission time and
the full initialization time (including computational overheads)
as they vary with the data phase bit rate and the number of
nodes. Then in 12 (c) and 12 (d) we keep the number of
nodes constant at 32 while 12 (e) and 12 (f) we keep the data
phase bit rate constant at 2Mbit/s. Due to the more intensive
public-key operations, the initialization time tops at around
57.3s but this happens for a high number of nodes (32) and
low data phase bit rate (1Mbps). This should be acceptable
if initialization is done rarely, e.g., during production or in a
specialized garage once a component is replaced.

We have also experimented with 500kbps during arbitration
but the results were almost identical to the case of 250kbps.
This is expected since it is the larger data-field that causes
the overhead and it benefits from the extended bit-rate of
CAN-FD regardless of the bit rate during arbitration. The
initialization time is smaller for CAN than for CAN-FD, but
CAN initialization is done without the more expensive public-
key operation and thus the security implications are distinct.

(a) (b)

(c) (d)

(e) (f)

Fig. 12. Transmission time for PKI initialization frames on CAN-FD (250kps
during arbitration): (a) variation of bus-time with bit rate and number of nodes
(b), variation of full initialization time with bit rate and number of nodes, (c)
variation of bus-time with bit rate at 32 nodes, (d) variation of full initialization
time with bit rate at 32 nodes, (e) variation of bus-time with the number of
nodes at 2Mbps bit rate and (f) variation of full initialization time with the
number of nodes at 2Mbps bit rate

E. Performance evaluation of RunTime−J1939−ACAN
In this section we discuss the impact of the run-time stage

RunTime−J1939−ACAN of the authentication protocol on the
bus-load and resulting delays. Distinct tests were made in
which the authentication tag was sent within the same frame as
the J1939 message and as a separate message over both CAN
and CAN-FD frames. Since for the moment there is no support
for J1939 over CAN-FD in CANoe, the CAN-FD authenti-
cation frames are sent using the CANoe CAN layer support
in our experiments. The CAN-FD authentication frames were
sent using an arbitration phase bit rate of 250Kbit/s and data
phase bit-rates of 1 and 4Mbit/s while 250Kbit/s was used for
the standard CAN authentication data as well as for the J1939
traffic. To ensure the timely reception of the authentication tag
higher priority identifiers were selected for the frames carrying
this information.

Sending the authentication tag along with the actual data
in a single CAN-FD frame shows little to no effect on the
busload as the higher data phase bit rate compensates for the
longer message. As expected, the introduction of an additional
authentication frame for each J1939 frame sent on the bus
leads to an increased busload. The busload measured when our
simulation runs without authentication support is at 19.39%.
This value increases to 38.79% when adding the CAN-FD
authentication frames, an increase which is consistent with
a practically doubled traffic by the additional authentication
frames. Sending the authentication tags as separate CAN
frames has an even bigger impact on the busload increas-
ing it to 58.18% with two CAN authentication frames and
77.57% when using three CAN authentication frames. The
achieved busload can be improved by using a bigger bit rate.

14

For example, when using a 500Kbit/s bit rate the normal
traffic load decreases to 9.7% while introducing the CAN-
FD authentication frame leads to a busload of 18.45%. In this
case CAN authentication leads to a 29.09% busload for two
CAN frames and 38.79% for three CAN frames.

Scalability of busload results. As shown by the experimental
results, the busloads resulted from the introduction of ad-
ditional authentication frames show an increase proportional
to the number of additional frames. This makes the results
scalable allowing the estimation of the maximum feasible
busload generated by normal unauthenticated traffic to allow
the usage of the proposed mechanism depending on each ap-
proach of sending authentication tags. Since, when sending the
authentication tag together with the actual message in the same
CAN-FD frame with higher data rate results in a negligible
effect on the busload there is practically no real limitation in
the amount of J1939 traffic for this approach. When sending
the tag in a separate frame the non-authenticated traffic is
limited to 50%, 33.33% and 25% for an authentication tag
sent trough a CAN-FD frame, two CAN frames and three
CAN frames respectively.

We now discuss the impact of the authentication delays
between regular J1939 frames and the additional CAN-FD
authentication frames. Fortunately, as proved by the CANoe
simulation, these delays are at around 460µs for a 24 byte at
a data phase bit-rate of 1Mbit/s. This is small enough to avoid
impeding with normal protocol operations.

Figures 13 and 14 show the delays and their distribution on
the bus for 20 and 24 byte authentication frames when using
either 1Mbit/s or 4Mbit/s data-rate. Delays obtained when
using the same data-rate are similar as well as their statistical
distribution. Thus reducing the data-field of the authentication
frame by 4 bytes cuts the delays by 10–50 µs, this is a
very small gain. By increasing the data-rate 4 times, from
1Mbit/s to 4Mbit/s, the delay between frames almost halves,
from 420–480 µs to 260–280 µs. This is expected as the
data-rate increases 4 times only during the data-field but not
for the arbitration. The histogram distribution from Figure
14 shows a normal distrbution for the first 20.000 frames
which clarifies that the recorded delays are the norm. On the
4Mbit/s variant the statistical distribution of the values is a
bit sparse. This likely comes from the slightly lower traffic
load obtained in this case. The statistical distribution does not
affect the efficiency of the authentication mechanism since
delay variations are in the order of a dozen microseconds, too
small to be practically relevant.

VI. CONCLUSION

We evaluated the shortcomings of the J1939 protocol spec-
ification and identified a series of issues that can be exploited
to mount address impersonations and DoS attacks. By using
an industry-standard CANoe simulation for the power-train of
a commercial vehicle we successfully validated the mounted
attacks (with one exception which revealed a behaviour non-
compliant with the SAE J1939 protocol specification). As
countermeasure for this, we proposed an authentication mech-
anism and evaluated its effect on the same network simulation

100 120 140 160 180 200
frame400

410
420
430
440
450
460
470
480
δ(µs)

(a)
100 120 140 160 180 200

frame245
250
255
260
265
270
275
280
δ(µs)

(b)

100 120 140 160 180 200
frame400

410
420
430
440
450
460
470
480
δ(µs)

(c)
100 120 140 160 180 200

frame245
250
255
260
265
270
275
280
δ(µs)

(d)

Fig. 13. Delays between regular frames (first 200) and the corresponding
authentication frame with authentication field set to: 20 bytes and data-rate
1MBit/s (a), 20 bytes and data-rate 4MBit/s (b), 24 bytes and data-rate 1MBit/s
(c), 24 bytes and data-rate 4MBit/s (d)

422 424 426 428 430
δ(µs)

1000

2000

3000

4000
frames

(a)

261.5 262 262.5 263263.5 264
δ(µs)

2000
4000
6000
8000
10 000

frames

(b)

460 462 464 466 468 470 472
δ(μs)

1000

2000

3000

4000
frames

(c)

274 274.5 275 275.5 276 276.5 277
δ(μs)

2000

4000

6000

8000

10000
frames

(d)

Fig. 14. Distribution of delays between regular frames (first 20.000) and the
corresponding authentication frame with authentication field set to: 20 bytes
and data-rate 1MBit/s (a), 20 bytes and data-rate 4MBit/s (b), 24 bytes and
data-rate 1MBit/s (c), 24 bytes and data-rate 4MBit/s (d)

by using CAN-FD frames to send the additional authentication
data while also discussing the option of using CAN for this
purpose. Our results show that the introduction of the proposed
security mechanism does not have considerable effects on the
bus communication reliability and CAN-FD proves to be an
excellent layer for carrying the additional authentication data.
As proved by our experiments, from a computational point of
view, even low-end automotive-grade controllers are capable
of handling symmetric cryptography. While low-end cores are
limited to non-PKI operations, high-end cores can easily han-
dle public-key cryptographic algorithms as demonstrated by
the experimental section. The proposed solution tries to cope
with both these scenarios. Since the PKI is quickly entering
the automotive domain, as suggested by the introduction of
public-key operations in the AUTOSAR specifications or in
the requirements for V2X communications, future automotive-
grade microcontrollers should easily handle all the operations
required by our protocol.

ACKNOWLEDGMENT

This work was supported by a grant of the Roma-
nian National Authority for Scientific Research and Innova-

15

tion, CNCS-UEFISCDI, project number PN-II-RU-TE-2014-
4-1501 (2015-2017).

REFERENCES

[1] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway
et al., “Experimental security analysis of a modern automobile,” in 2010
IEEE Symposium on Security and Privacy. IEEE, 2010, pp. 447–462.

[2] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham,
S. Savage, K. Koscher et al., “Comprehensive experimental analyses
of automotive attack surfaces.” in USENIX Security Symposium, 2011.

[3] C. Miller and C. Valasek, “Adventures in automotive networks and
control units,” DEF CON, vol. 21, pp. 260–264, 2013.

[4] L. Dariz, M. Ruggeri, G. Costantino, and F. Martinelli, “A survey over
low-level security issues in heavy duty vehicles,” in Automotive Cyber
Security Conference. ESCAR, 2016.

[5] Y. Burakova, B. Hass, L. Millar, and A. Weimerskirch, “Truck Hacking:
An Experimental Analysis of the SAE J1939 Standard,” in 10th USENIX
Workshop on Offensive Technologies (WOOT 16), 2016.

[6] S. Mukherjee, H. Shirazi, I. Ray, J. Daily, and R. Gamble, “Practical
DoS Attacks on Embedded Networks in Commercial Vehicles,” in
Information Systems Security. Springer, 2016, pp. 23–42.

[7] “J1939-21 – Data Link Layer,” SAE International, Standard, Dec. 2010.
[8] O. Hartkopp, C. Reuber, and R. Schilling, “MaCAN-message authenti-

cated CAN,” in 10th Int. Conf. on Embedded Security in Cars, 2012.
[9] A. Bruni, M. Sojka, F. Nielson, and H. R. Nielson, “Formal security

analysis of the MaCAN protocol,” in Integrated Formal Methods.
Springer, 2014, pp. 241–255.

[10] Q. Wang and S. Sawhney, “Vecure: A practical security framework
to protect the can bus of vehicles,” in Internet of Things (IOT), 2014
International Conference on the. IEEE, 2014, pp. 13–18.

[11] A.-I. Radu and F. D. Garcia, “Leia: A lightweight authentication protocol
for can,” in 21st European Symposium on Research in Computer
Security, ESORICS. Springer, 2016, pp. 283–300.

[12] B. Groza and S. Murvay, “Efficient protocols for secure broadcast in
controller area networks,” IEEE Trans. Ind. Inf., vol. 9, no. 4, pp. 2034–
2042, Nov 2013.

[13] B. Groza, S. Murvay, A. V. Herrewege, and I. Verbauwhede, “LiBrA-
CAN: Lightweight Broadcast Authentication for Controller Area Net-
works,” ACM Trans. Embed. Comput. Syst., vol. 16, no. 3, pp. 90:1–
90:28, Apr. 2017.

[14] S. Jain and J. Guajardo, “Physical layer group key agreement for
automotive controller area networks,” in Conference on Cryptographic
Hardware and Embedded Systems, 2016.

[15] A. Mueller and T. Lothspeich, “Plug-and-secure communication for
CAN,” CAN Newsletter, pp. 10–14, 2015.

[16] R. Kurachi, Y. Matsubara, H. Takada, N. Adachi, Y. Miyashita, and
S. Horihata, “CaCAN - centralized authentication system in CAN
(controller area network),” in 14th Int. Conf. on Embedded Security in
Cars (ESCAR 2014), 2014.

[17] C.-W. Lin, Q. Zhu, C. Phung, and A. Sangiovanni-Vincentelli, “Security-
aware mapping for CAN-based real-time distributed automotive sys-
tems,” in 2013 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD). IEEE, 2013, pp. 115–121.

[18] C.-W. Lin, Q. Zhu, and A. Sangiovanni-Vincentelli, “Security-aware
modeling and efficient mapping for CAN-based real-time distributed
automotive systems,” IEEE Embed. Syst. Letters, vol. 7, no. 1, pp. 11–
14, 2015.

[19] S. Woo, H. J. Jo, I. S. Kim, and D. H. Lee, “A Practical Security
Architecture for In-Vehicle CAN-FD,” IEEE Trans. Intell. Transp. Syst.,
vol. 17, no. 8, pp. 2248–2261, Aug 2016.

[20] S. Woo, H. J. Jo, and D. H. Lee, “A practical wireless attack on the
connected car and security protocol for in-vehicle CAN,” 2014.

[21] CAN Specification Version 2.0., Robert BOSCH GmbH, 1991.
[22] ISO 11898-1. Road vehicles - Controller area network (CAN) - Part

1: Controller area network data link layer and medium access control,
International Organization for Standardization, 2015.

[23] “J1939-71 – Vehicle Application Layer,” SAE International, Standard,
Mar. 2011.

[24] “J1939-81 – Network Management,” SAE International, Standard, Apr.
2003.

[25] S. Cheshire, “IPv4 Address conflict detection,” Internet Requests for
Comments, RFC Editor, RFC 5227, July 2008. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc5227.txt

[26] Specification of a Request Manager for SAE J1939, AUTOSAR, 2015,
release 4.2.2.

[27] Specification of Network Management for SAE J1939, AUTOSAR, 2015,
release 4.2.2.

[28] CAN interface for bodywork, Scania CV AB, 2016, issue 1, Available:
https://til.scania.com/groups/bwd/documents/bwm/mdaw/ntuw/∼edisp/
bwm 0001091 01.pdf.

[29] Specification of Crypto Abstraction Library, 4th ed., AUTOSAR, 2015.
[30] Specification of Crypto Service Manager, 4th ed., AUTOSAR, 2015.
[31] M. Raya and J.-P. Hubaux, “Securing vehicular ad hoc networks,”

Journal of Computer Security, vol. 15, no. 1, pp. 39–68, 2007.
[32] H. Hartenstein and L. Laberteaux, “A tutorial survey on vehicular ad

hoc networks,” IEEE Com. Mag., vol. 46, no. 6, 2008.
[33] X. Lin, R. Lu, C. Zhang, H. Zhu, P.-H. Ho, and X. Shen, “Security in

vehicular ad hoc networks,” IEEE Com. Mag., vol. 46, no. 4, 2008.
[34] W. Whyte, A. Weimerskirch, V. Kumar, and T. Hehn, “A security

credential management system for v2v communications,” in Vehicular
Networking Conference (VNC), 2013 IEEE. IEEE, 2013, pp. 1–8.

[35] National Highway Traffic Safety Administration, Department of Trans-
portation, “Vehicle-to-vehicle security credential management system;
request for information,” Office of the Federal Register, 2014.

[36] “wolfSSL Embedded SSL/TLS Library kernel description,” https://www.
wolfssl.com/, accessed: 2017-09-30.

[37] H. Zeltwanger, “Mapping of J1939 to CAN FD,” CAN Newsletter, vol. 2,
pp. 30–31, 2016.

[38] E. Barker and A. Roginsky, “Transitions: Recommendation for tran-
sitioning the use of cryptographic algorithms and key lengths,” NIST
Special Publication, vol. 800, p. 131A, 2011.

[39] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE
Trans. Inf. Theory, vol. 22, no. 6, pp. 644–654, 1976.

[40] W. Diffie, P. C. Van Oorschot, and M. J. Wiener, “Authentication and
authenticated key exchanges,” Designs, Codes and cryptography, vol. 2,
no. 2, pp. 107–125, 1992.

[41] T. ElGamal, “A public key cryptosystem and a signature scheme based
on discrete logarithms,” IEEE Trans. Inf. Theory, vol. 31, no. 4, pp.
469–472, 1985.

[42] “CANoe tool,” https://vector.com/vi canoe en.html.
[43] General information on CAN, Scania CV AB, 2016, issue 1, Available:

https://til.scania.com/groups/bwd/documents/bwm/mdaw/ntux/∼edisp/
bwm 0001111 01.pdf.

Pal-Stefan Murvay is an assistant professor at
Politehnica University of Timisoara (UPT). He grad-
uated his B.Sc and M.Sc studies in 2008 and 2010
respectively and received his Ph.D. degree in 2014,
all from UPT. He has a 9-year background as a
software developer in the automotive industry as
former employee of Continental Corporation (2005-
2014). His current research interests are in the area
of automotive security and works as a postdoctoral
researcher in the CSEAMAN project.

Bogdan Groza is an associate professor at Po-
litehnica University of Timisoara (UPT). He received
his Dipl.Ing. and Ph.D. degree from UPT in 2004
and 2008 respectively. In 2016 he successfully de-
fended his habilitation thesis having as core subject
the design of cryptographic security for automotive
embedded devices and networks. He has been ac-
tively involved inside UPT with the development of
laboratories by Continental Automotive and Vector
Informatik, two world-class manufacturers of auto-
motive software. He currently leads the CSEAMAN

project, a 2 years research program (2015-2017) in the area of automotive
security.

