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Effective Intrusion Detection and Prevention
for the Commercial Vehicle SAE J1939 CAN Bus

Camil Jichici, Bogdan Groza, Radu Ragobete, Pal-Stefan Murvay, Tudor Andreica

Abstract—Detecting and preventing intrusions on in-vehicle
buses is a topic of great importance which may have an
even greater significance in the context of commercial vehicles
that are liable for the security of the demanding tasks they
carry, passengers or goods not least. In this respect, the SAE
J1939 protocol, which is a CAN based higher-layer protocol
for commercial vehicles, requires special attention due to the
existence of both specific procedures in the standard, e.g., address
claims and multi-frame transmissions, as well as due to sharp
specifications regarding the content of messages which may
facilitate the deployment of a more targeted intrusion detection
system. Needless to say, most of the research works on CAN
intrusion detection are treating in-vehicle traffic as black-box
with no concerns over the actual meaning of the frames content.
In this context, we pursue the development of a targeted solution
for J1939 buses. We collect real-world traffic from a commercial
vehicle bus, compliant to the J1939 standard, and make a
comprehensive analysis of its structure and content. This allows
us to design an effective intrusion prevention system that detects
and eliminates in real-time all frames that were manipulated
by an adversary by overriding them with error flags. To prove
the correctness of our approach, we present results with a
proof-of-concept implementation on high-end automotive-grade
controllers.
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I. INTRODUCTION AND MOTIVATION

As the number of Electronic Control Units (ECUs) em-
ployed inside vehicles has drastically increased in the past
decades, so did the complexity of in-vehicle networks. Cur-
rently, the communication between in-vehicle ECUs is medi-
ated by several communication interfaces such as the classical
Controller Area Network (CAN) or the more recent 100Base-
T1 Ethernet which is capable of much higher data-rates. But
despite recent advances, CAN is by far the most commonly
used communication layer and provides a very good cost-
performance ratio for most applications. A contemporary
extension of it, i.e., CAN-FD, allows much higher data-rates
and larger packets which sets room for the endurance of CAN
even in the decades that follow.

However, a common issue of all in-vehicle communication
interfaces is their lack of security. This led to several reported
attacks, e.g., [1], [2], [3], and such attacks may have life-
threatening consequences for vehicle passengers or for traffic
participants. Unsurprisingly, most of the reported attacks so far
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Fig. 1. Targeted setup: a typical commercial vehicle J1939 CAN bus (present
inside tractors, buses, etc.)

on in-vehicle buses are due to the insecurity of the CAN bus
and many of them are mounted from the On Board Diagnostic
(OBD) port which easily exposes at least part of the in-vehicle
network. This is graphically suggested in Figure 1 which gives
a brief visual representation of the setup that we address: an
adversary that plugs on the CAN bus of a commercial vehicle
network, being able to read or write messages on the bus. In-
vehicle networks are not always flat. Usually, multiple ECUs,
that implement related functionalities, are grouped on the same
bus and multiple buses are linked by gateways in a hierarchical
topology. However, the network inside the heavy-duty vehicle
that we study is flat as indicated by the traffic collected
from the OBD port which contains information that is not
related to vehicle diagnosis, proving that there is no gateway
to filter incoming traffic. In case of hierarchical architectures,
the solution that we design can be applied to each sub-bus,
while gateway ECUs that usually have higher computational
resources can take care of the more demanding functionality
in our protocol, i.e., detecting the intrusions and destroying
the adversarial frames with error flags. Numerous research
works emerged in response to these attacks (we discuss some
of them later) but most of the research efforts so far targeted
CAN in the context of passenger cars. The commercial vehicle
sector brings on specific challenges due to both its liability for
the security of multiple passenger or goods, as well as due to
its technical particularities.

The SAE J1939 is a higher layer protocol built on top of
the CAN specification for commercial vehicles. SAE J1939
standardizes CAN-based communication in commercial ve-
hicles adding message formatting and network management
mechanisms. Of course, similar to the case of standard CAN,
security was not considered when designing SAE J1939 and
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this enables a series of attacks targeting specific J1939 features
[4]. However, the comprehensive specifications of J1939 buses
can be exploited in a positive manner since they set room
for designing specialized procedures to assure the security of
the bus. Specific details such as node addresses and message
structure (or content) can be more thoughtfully examined
so that intrusions can be more efficiently detected. Intrusion
detection systems (IDS) are components that monitor networks
for malicious traffic, some of them also having the ability
to respond to such intrusions by actively blocking them.
These later systems are typically referred to as intrusion
prevention systems. The system designed in our work is mixed
allowing the detection of malicious frames by their content
and encrypted addresses and also their destruction by error
flags if frame classification can be done in real-time by a
high-end ECU (this later functionality is demonstrated in
our experiments by using a high-end automotive-grade ARM
Cortex R5 platform). While most of the research works on
CAN intrusion detection addressed in-vehicle traffic in a black-
box manner, the J1939 standard specifications allow for a
crisper view on protocol details. Our work goes in this vein
as we develop an effective intrusion prevention system for
J1939 buses that is able to detect intrusions and react in real-
time by efficiently removing adversarial frames from the bus.
The contributions of our work can be briefly summarized as
follows:

1) we design an intrusion detection and prevention system
that specifically targets J1939 specifications (so far, an
intrusion detection and prevention system tailored for
J1939 buses is missing from the research literature),

2) a special feature of the proposed system is the ability to
destroy intrusion frames immediately, without the need
of specialized hardware by using the input capture unit
(ICU) to bypass CAN buffers and interpret CAN frames
right before the acknowledgment bit is placed,

3) we use a realistic testbed with traffic collected from a
real-world J1939 heavy-duty vehicle that allows us to
make an accurate assessment of the intrusion detection
rates of the proposed system,

4) to assess the applicability of the proposed solution,
we provide computational results on four represen-
tative automotive-grade platforms: a high-end 32-bit
S6J32GEKSN from the Cypress’s Traveo family, two
high-end Infineon Tricore platforms and a low-end
Freescale S12XF512 controller,

5) the frame destruction capabilities in real-time are demon-
strated on attacks performed in a laboratory setup with the
more powerful Traveo S6J32GEKSN development board
using traffic collected by us from a real-world J1939
heavy-duty vehicle.

The remainder of this paper is organized as follows. We
briefly discuss the related work in Section I.A) focusing mostly
on existing intrusion detection systems for the CAN bus. In
Section II we discuss some background on CAN and the
J1939 specifications. Section III presents our data collection
procedure and a careful analysis of the collected in-vehicle
traffic. In Section IV we present the design of the proposed

solution and in Section V we discuss experiments. Finally,
Section VI holds the conclusion of our work.

A. Related work
J1939 security. Several lines of work employed different

approaches for the security analysis of the SAE J1939 pro-
tocol. Burakova et al. [5] demonstrated that injection and
replay attacks previously reported in standard CAN networks
are also effective for attacking J1939 based communication
in commercial vehicles. Mukherjee et al. [6] are the first
to look at attacks specific to the SAE J1939 protocol and
illustrate a DoS attack on the transport protocol employed
for transmitting multi-frame messages. An in-depth analysis
of the J1939 protocol specification, presented in [4], reveals
a number of attacks involving the address claim procedure,
and transport protocol mechanisms capable of constraining the
communication capability of compliant nodes.

Steps were also taken towards securing J1939 communi-
cation. An authentication protocol for J1939 is designed and
evaluated in [4]. The downside of this proposal comes from
the high communication overhead which would make it more
suitable for CAN-FD communication. The use of encrypted
J1939 communication was also evaluated [7] but only in
the context of diagnostic messages. Another line of work
[8] investigates the use of precedence graph-based anomaly
detection for detecting malicious messages in J1939 traffic
while the use of machine learning is applied for intrusion
detection in SAE J1939 networks in [9].

CAN intrusion detection. Numerous security solutions for
CAN communication were proposed in the recent years, an
overview can be found in [10]. The industry is aware of
the security shortcomings of CAN buses and recent stan-
dards, such as the AUTOSAR standard for Secure On-board
Communication [11], try to alleviate this problem by adding
cryptographic payloads, i.e., a truncated Message Authentica-
tion Code (MAC), to each frame. This type of cryptographic
protection can be traced back to earlier papers such as [12],
[13], [14]. However, in case of J1939 specifications, the entire
datafield of most frames is already fully loaded with signals
and there is no space left to introduce security elements such
as truncated MACs. For this reason, to eliminate the need for
security bits inside frames, our work takes a different approach
by using encrypted addresses which will hinder an adversary
in injecting correct IDs in the network and by using encrypted
payloads which, due to the avalanche effect of block ciphers,
set room for effective intrusion detection by range checks.

The design of IDS is a specific area of interest which has
recently emerged in a number of papers. A comprehensive
overview of IDS implementation on the CAN bus is provided
in [15]. The authors investigated several IDS proposals from
the literature taking into consideration important aspects in
the detection approach, the deployment strategies, the attack
technique and technical challenges. Neural networks based
intrusion detection systems are proposed in [16] and [17]. A
change detection approach for Controller Area Network built
on a density ratio estimation method is proposed in [18].

Further intrusion detection mechanisms employing deep
learning techniques are presented in [19] and [20]. In the
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latter, the authors propose the extension of on-board detection
mechanisms with cloud-based computational offloading in
order to overcome the high processing demands. Wang et al.
presented a real-time anomaly detection framework in [21],
making use of hierarchical temporal memory (HTM) learning
algorithm.

An intrusion detection methodology based on remote frames
is discussed in [22]. The detection method examines the
response offset ratio and time interval of the remote frames
responses to detect intrusions. A dynamic ensemble selection
system (DESS) for anomaly detection in metro trains braking
control system is described in [23]. The proposed anomaly
detector relies on two-class and one-class classifiers and is
able to detect, without expert knowledge, known and unknown
fault types.

Choi et al. proposed VoltageIDS in [24] which is based
on the inimitable characteristics of electrical CAN signals.
VoltageIDS is easy to install and its feasibility was validated
on real vehicles being in motion. Another work that uses
physical characteristics of voltage CAN signals for intrusion
detection is [25]. The proposed approach uses Local Outlier
Factor (LOF) algorithm which efficiently detects intrusions
and has a low false detection rate. The use of Bloom filtering
for intrusion detections on CAN-bus was examined in [26].
Intrusion detection mechanisms based on entropy analysis are
suggested in [27], [28] and [29]. An optimized information
entropy based IDS is proposed in [30] and a graph-based
approach that follows the sequences of messages is suggested
in [31].

A light-weight IDS for CAN-bus relying on the analysis
of time intervals of messages is discussed in [32]. The work
proved that the timestamps of the messages can be efficiently
used to detect messages injected on the CAN bus. A per-
formance comparison of four light-weight intrusion detection
methods for in-vehicle networks is performed by the authors
of [33]. The compared approaches detect intrusions based on:
information entropy [27], clock skews [34], ID sequence [35]
and throughput [36].

II. BRIEF OVERVIEW OF CAN AND J1939 SPECIFICATIONS

This section gives a brief overview on CAN and the SAE
J1939 standard arrangements, outlining details regarding the
frame identifier, address claiming procedure and multi-frame
transmissions which are specific to J1939 implementations.

A. CAN overview

The CAN protocol was introduced by BOSCH [37] in
the 80s. Subsequently, the specification was standardized as
the ISO 11898 standard which covers details of the various
protocol layers, e.g., [38] for generic data-link and physical
layer and [39] for high-speed CAN medium access unit. At
the physical layer CAN is implemented as a two-wire (CAN-
High, CAN-Low) bus which employs differential signaling.
The already introduced Figure 1 illustrates a two-wire CAN
bus which enables communication between ECUs inside a
commercial vehicle.

Fig. 2. Extended CAN Data Frame Format

Fig. 3. Structure of the J1939 Message Identifier

Bit rates of up to 1 Mbit/s can be achieved using high-
speed CAN. Figure 2 shows the structure of the extended
CAN data frame. Each CAN frame begins with a dominant
SOF bit and ends with a recessive EOF bit. The arbitration
field holds the frame identifier ID, which is 11 bit long in
standard frames and 29 bits in extended frames, along with
the SRR, IDE and RTR bits. This field is employed as part of
the arbitration mechanism used to assure a collision-free bus
access. In particular, in case of commercial vehicles, it denotes
the message content according to J1939 standard specification.
The control field consists of two reserved bits and the DLC
which indicates the number of bytes that will be enclosed in
the data field. The frame data field can hold up to 8 bytes. A
check regarding the correctness of the frame is done through
a 15-bit CRC which ends with a recessive CRC delimiter bit.
The sender transmits a recessive bit in the ACK slot which
will be overwritten by the receiver with a dominant (0) bit in
case of correct reception.

CAN with Flexible Data-Rate (CAN-FD), an extension of
the standard CAN specification was more recently developed
to cope with the data throughput limitations given by the
maximum 8 byte payload and 1Mbit/s bit rate. This newer
extension, CAN-FD, supports payloads of up to 64 bytes
and higher bit rates for the data field (i.e. currently available
transceivers are capable of up to 8Mbit/s rates). The commer-
cial vehicle that we analyze has however a regular CAN bus
with 8 byte data-frames.

B. Particularities of SAE J1939

As stated, the commercial vehicles sector (trucks, buses,
tractors, mobile cranes, excavators etc.) of the automotive
industry employs the SAE J1939 standardization for the CAN
protocol. At the physical layer, SAE J1939 uses the ISO
11998 standard specification with some minimal additions
such as limitations regarding bit rates. Other specific features
are defined at the upper layers of the communication stack
such as data link layer features which are specified in SAE
J1939-21 [40].

Structure of the ID according to J1939 specifications.
One essential particularity of the SAE J1939 specification
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is the use of extended CAN frames only (i.e. frames with
identifiers of 29 bits rather than 11 bits). A specific format is
defined for the ID field as depicted in Figure 3. The J1939
message identifier is divided into six fields: priority, extended
data page (EDP), data page (DP), protocol data unit format
(PF), protocol data unit specific (PS) and source address. Four
of these fields, i.e., EDP, DP, PF, PS, are used to form the
Parameter Group Number (PGN) which uniquely identifies
a parameter group (PG) indicating that a set of specific
parameters, e.g., data, acknowledgments etc., are contained
into a J1939 frame. The J1939-71 white paper [41], defines a
comprehensive set of standardized J1939 frames, along with
the corresponding PG values, covering the needs of most
standard ECU types found in commercial vehicles while also
allowing for OEM specific frames. The data field of a J1939
frame (i.e., the signals that are included in each data frame) can
be decoded based on the standard specifications as long as the
particular frame type is not OEM specific. The J1939 Digital
Annex document [42] complements the standard and presents
specific information in an easily accessible form. Moreover,
this document includes the preferred addresses for ECUs by all
J1939 targeted areas, e.g., agricultural and forestry equipment,
on-highway equipment, etc. The PDU format classification
is done according to the value of the PDU format field. In
this context, there are two types of PDU formats labeled as
PDU1 and PDU2, respectively. The PDU1 format is used when
the PF field value is below 240, while the PDU2 format is
recognized when the PF value is between 240 and 255. The
most significant difference between these formats is related to
the interpretation of the PS field which contains a destination
address (DA) for PDU1 and a group extension (GE) for PDU2.

Node address and address claims. Node addresses, used
as frame source and destination, represent unique identifiers
assigned to each node within a J1939 network. For broad-
cast addressing (i.e., transmission to all nodes), the value
0xFF will be employed as the DA. Only nodes that own
an unique address are permitted to communicate. According
to the J1939 network management specification defined in
SAE J1939-81 [43], nodes can secure an address through the
address claiming procedure which takes place before initiating
the communication within the J1939 network. Usually, this
procedure takes place during the system power-up sequence.
Nodes that are later added to the network or initialized upon
request will undergo the address claiming procedure once
started. According to [43], the CAN frame that uses PGN
(60928) is associated with the address claiming procedure
and is transmitted on request. Consequently, this request (a
specific frame with PGN 59904) can be sent by any node from
the network. Each request can be sent to the global address
(DA=0xFF) or to a specific destination address. A node should
claim his own address by sending a frame, with PGN 60928,
containing its NAME and requested address, before sending
any kind of message. If this request is addressed globally, then
all ECUs within the network should respond with a message
with the Address Claiming PGN (60928), its particular NAME
and address, in case the node has already claimed an address.
If a node fails to successfully claim his address, it specifies
the null address (254) in the address field to indicate failure

Fig. 4. Frames exchange sequence during the J1939 address claiming
procedure

in claiming an address. The NAME is a parameter, unique
to each node, which reveals information about the ECU’s
functions, manufacturer code, identify number and industry
sector. An example of address claiming procedure is depicted
in Figure 4. In this example a Initiator Node claims his own
address and then sends a broadcast request for a PGN that is
associated with Address Claim by using the global address. As
a response, all ECUs within the J1939 network, that already
claimed an address, send an Address Claim message indicating
their own source address.

Multi-frame transmissions. An additional feature included
by the J1939 protocol, is the use of transport protocols that
allows the transmission of payloads of up to 1785 bytes
through multi-frame messages [40]. Since a CAN frame can
carry up to 8 data bytes, messages longer than 8 bytes can
only be sent by fragmenting the data in several CAN frames.
This is possible due to the existence of several specific J1939
messages (Table I) which are part of the Transport Protocol
Connection Management (TP.CM) and Transport Protocol
Data Transfer (TP.DT). TP.CM messages are used in order to
initiate connection and control the frame exchange between the
sender and receiver nodes while TP.DT messages are employed
for the actual data transfer. These can be used for two types
of data transfer:

1) Broadcast Data Transfer as outlined in Figure 5 (i).
Here, in the first step the initiator node sends a BAM
(Broadcast Announce Message) which informs the net-
work that a multi-packet message will follow. Next, the
same node transmits the DT (Data Transfer) messages.
The message exchange is controlled only by sender node.

2) Connection Mode Data Transfer as depicted in Figure
5 (ii). Here a connection between the sender and receiver
nodes is established through an RTS (Request to Send)
- CTS (Clear to Send) message exchange, followed by
the DT messages. The end of a multi-packet message
transmission is indicated by the receiver node through
an End of Message Acknowledgment (EndOfMsgACK)
message. The connection between initiator and receiver
node can be interrupted at any moment by a specific
message, i.e. Connection Abort (Conn Abort) message.
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Fig. 5. Multi-frame transmissions: Broadcast Data Transfer (left) and
Connection Mode Data Transfer (right)

TABLE I
J1939 SPECIFIC TRANSPORT PROTOCOL MESSAGES

Message PF PS Description

TP.CM BAM 236 FF broadcast message which inform the
nodes about a specific PG and a fixed

number of data bytes that will enclosed
within a multi data packet message

TP.CM RTS 236 DA is used by a node which intends to
initiate a connection with another node

TP.CM CTS 236 DA is sent by receiver node being used as
a response to TP.CM RTS message,
and inform the connection initiator

node that it is ready to receive a fixed
number of data bytes

TP.CM EndOfMsgACK 236 DA is used by the receiver node in order to
inform the sender node that all data

bytes are received successfully
TP.Conn Abort 236 DA can be employed by sender or receiver

in order to close a connection before
the data transmission is finished

TP.DT 235 DA is used by the initiator node in order to
transmit the data packets

III. DATA COLLECTION AND ANALYSIS

In this section, we present the data collection methodology
and then we examine the collected CAN traffic to outline
specific details from it.

A. Data retrieval from the J1939 9-PIN Diagnostic Port

As a practical instantiation of J1939 traffic, we decided
to collect traffic from a modern agricultural vehicle from a
reputable manufacturer. For confidentiality reasons, we do not
specify the identity of the manufacturer but the collected data
perfectly match the J1939 specifications.

To avoid unnecessary complications, first we performed
a quick examination with the help of an oscilloscope to
determine if CAN traffic is exposed on the 9-PIN diagnostic
port specific to J1939 implementations [44]. Figure 6 depicts
the schematic of the diagnostic port connector according to
J1939 specifications indicating the pins employed for CAN
communication. We analyzed the presence of traffic on both
CAN channels (pairs C-D and H-J) and we determined that
traffic is available only on the the main channel (pin pair
C-D) which used a bit rate of 250 Kbps. No traffic was
observed on the second CAN channel (pin pair H-J) which is
reserved for OEM (original equipment manufacturer) specific
implementations. After interfacing with the J1939 diagnostics
connector, we started to log the CAN bus traffic for about half
an hour. During this period, various generic driving-related

Fig. 6. The 9 PIN Diagnostic Port of J1939

Fig. 7. Experimental setup employed for data collection

and tractor-specific actions were performed such as: driving
forward/backwards, manipulating the bucket, etc. All these
were done in an attempt to trigger as much events as possible
which will result in a more complete set of CAN data frames.

Figure 7 depicts our data acquisition setup inside the tractor
which consists in a Vector VN1640 USB-to-CAN interface, the
CAN cable and the logging application (based on the Vector
XL Driver Library) running on a laptop. The VN1640 is a
device produced by Vector Informatik, a major provider for
automotive networking solutions, and is part of the VN1600
family. This device allows interfacing computers with CAN,
LIN, K-Line, J1708 communication lines and is supported
by several traffic analysis and testing applications such as
CANoe and CANape. The XL Driver Library provides a
freely available API (Application Programming Interface) for
interfacing with Vector devices allowing basic functionalities
such as baud rate configuration, channel configuration, frame
transmission/reception etc. We did not inject any adversarial
frames on the vehicle bus in order to avoid inflicting any
sort of damage to the vehicle. For each received frame, we
record a time-stamp (in nanoseconds), the ID, the DLC and
the actual data field and store these in our experimental trace.
More details on the collected data follow.

B. Analysis of J1939 specific elements from traffic

The collected CAN traffic contained 51 IDs, out of which
only 41 occur at runtime (the other 10 IDs occur only at
startup). These IDs were interpreted by us according to the
J1939 ID breakdown. For brevity, we present the detailed
breakdown in Table VI which is deferred to the Appendix
of this paper. Based on the ID analysis, we extracted distinct
source addresses to reveal the ECUs present in the CAN
network that are exposed to the outside through the diagnostic
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port. We found that the collected traffic contained three
different SAs as follows: 0x00, 0x03 and 0x21. These are
specified in the J1939 Digital Annex document [42]. Based
on this document, we identified the ECUs that are present
in the CAN network of the test vehicle as responsible for
the following tasks: ECM (Engine Control Module - 0x00),
TCM (Transmission Control Module - 0x03) and BCM (Body
Control Module - 0x21). A brief description of the identified
ECUs may be in order:

1) ECM (Engine Control Module) - is one of the most impor-
tant ECUs inside vehicles, it retrieves values from several
engine sensors and interprets them in order to control
the engine actuators through the following parameters:
air-fuel ratio, fuel injection, ignition and variable valve
timing for achieving the maximum engine performance.

2) BCM (Body Control Module) - is the central ECU that
covers several specific body functions such as: exterior
and interior lighting, power windows, seat position, cli-
mate control and central locking.

3) Transmission Control Module (TCM) - is responsible for
automatic transmission and has as inputs values from
sensors such as: turbine speed, wheel speed, throttle
position, etc. The TCU uses those inputs in order to adjust
the gears in order to achieve an efficient performance.
This is done through several outputs such as: torque
converter, clutch solenoid, shift lock, etc.

The recorded trace also contains multi-frame messages that
are J1939 specific and we identified that, as expected, the
Broadcast Data Transfer protocol was employed. To avoid
overloading the main body of the work, we present some
details regarding the collected IDs and their structure in Tables
VI and VII from Appendix A.

C. A quantitative analysis of network traffic

The previous analysis outlined elements at a logical level
according to the J1939 specifications which are helpful for
traffic reconstruction. We now focus on a quantitative analysis
of the recorded traffic that will allow us to set some limits on
the intrusion detection and prevention system.

Generally, in-vehicle ECUs are broadcasting frames with
specific IDs at fixed cycle times. The J1939 deployment that
we study is no exception to this. By careful examination of
the traffic we determined that the IDs are broadcast at 20, 25,
50, 100, 500 ms. There are also several slower ID that are
broadcast at 1s. Multi-frame IDs arrive rarely, e.g., at 5s, and
as expected are followed by a burst of frames. The plots in
Figure 8 show that the arrival time is generally stable with
very small fluctuations for IDs arriving at: (i) 20, (ii) 25, (iii)
50, (iv) 100 and (v) 500 ms. The multi-frame transmission
exhibits a different behavior with a slow cycle time of 5s
followed by quick bursts as can be seen in part (vi) of Figure
8. Nonetheless, it is relevant to point on the delays between
frames in the entire trace since the security mechanism has to
cope with this constraint. Figure 9 shows the delays between
the reception of two consecutive frames for the first 1000
frames in the trace (to avoid overloading the figure). The right
part of the Figure shows their histogram distribution for the

(i) 20 ms

(ii) 25 ms

(iii) 50 ms

(iv) 100 ms

(v) 500 ms

(vi) multi-frame

Fig. 8. Recorded inter-frame delays and their histogram distribution for IDs
arriving at: 20, 25, 50, 100, 500 ms and a multi-frame transmission

entire trace. The delays can get as lower as 500µs which is
roughly the time spent on the bus by a CAN frame at 250
Kbps. In principle, this means that any employed security
mechanism has to be executed in at most 500µs in order to
set the ECU ready for the next frame.

IV. PROPOSED MITIGATION TECHNIQUE

In this section we present the complete solution that we
envision for protecting J1939 communications.

A. Adversary model

The adversarial actions typically considered in the develop-
ment of intrusion detection systems for CAN buses include
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(i) (ii)

Fig. 9. Delays between frames for the first 1000 frames and histogram
distribution of the delays for the entire trace

replay, modification or DoS (Denial of Service) attacks [26],
[31], [45]. We note that while some papers include spoofing
attacks in the adversary model, this type of attack refers to
the replay or modification of frames with known IDs. Also,
some works have targeted fuzzying attacks [22] in which IDs
unknown to the network are introduced on the bus. Such
attacks will be trivial to detect by simply checking if the ID is
known to the network. While we do not explicitly address
fuzzying attacks, they will be immediately detected as we
verify that the ID of each frame is part of the known identifiers.

In the adversary model from this work, we consider both
replay and modification attacks. Detecting replays is facilitated
by the use of encrypted addresses while modifications are
detected by range checks taking benefit of the avalanche effect
in the encrypted data-field. We do not specifically include
DoS attacks on the bus, on the CAN frame format or on
the error confinement mechanism since due to the nature of
the CAN bus (ID oriented arbitration) such attacks cannot be
stopped. An adversary can always destroy frames and write
high priority IDs to flood the bus as proved by related works,
e.g., [46], [6]. DoS attacks will not be possible to prevent by
any other previously explored IDS in the literature. Of course,
detecting DoS attacks by flooding would be trivial by simply
observing the busload but the attacks cannot be stopped due
to the nature of CAN buses. Targeted DoS attacks, in which
frame content is manipulated to cause transmission errors and
put nodes into a bus-off state as demonstrated in [46], are much
harder to detect and require modification in the CAN error
handling mechanism that cannot be addressed by an intrusion
detection system.

B. Overview of the proposed solution

We imagine a two-layer intrusion prevention system that
is responsible for checking the validity of the source and
destination addresses as well as for detecting anomalies in the
data-field. To achieve this, we re-map source and destination
addresses to encrypted values that are known only to legiti-
mate nodes from the network. Further, the data-field can be
encrypted as well since this (along with the encrypted parts of
the ID) will hinder an adversary from deducing the structure of
the data-field. Thus we argue that identifier encryption along
with data-field encryption will confuse the adversary on the
exact meaning of the frame (despite existing specifications in
the J1939 standard) and will make malicious manipulations of
the datafield easier to spot by the system. Figure 10 provides
an overview of the two layer intrusion prevention mechanism
that we propose. According to the schematic from Figure

Fig. 10. The two-layer intrusion detection: encrypted address verification
and field anomaly checking

Fig. 11. Generating the ID masks by means of an ordered binary tree (to
assure uniqueness of each address)

10, whenever a start of frame is detected, i.e., a transition
from the recessive state to the dominant state, the ICU begins
constructing the frame based on Algorithm 1. This is needed
in order to extract frame content before the frame is available
in the CAN buffer since at that point the frame has already
become available to network nodes and it can no longer be
destroyed with an error flag. Then the algorithm enters the
two stages of intrusion detection which consists in two types
of mechanisms, the use of encrypted addresses and datafield
encryption which are presented next. Once an intrusion is
detected, adversarial frames are destroyed with error flags.

Encrypted addressees are used for replacing the regular
address of the sender/receiver nodes with an address that is se-
cured by a cryptographic one-way function (AES encryption).
To prevent an adversary for re-using a disclosed address, the
node address is re-mapped periodically based on an address
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mapping matrix. Securing the ID field of the CAN frame is in-
line with recent works proposing similar solutions [47], [48],
[49], [50]. We emphasize however that distinct to these works
which intend to preserve the designated priority of the ID, this
is not the case in our proposal which is solely concerned to
encrypting the addresses of the source and destination nodes
(the J1939 encodes the priority only in the first three bits of
the ID which are unaltered in our protocol).

By properly encrypting the sender and destination addresses
in the ID field, each being 8 bits long, we achieve 16 bits
of security. This can be of course extended to 24 bits of
security to comply with the AUTOSAR specifications [11] by
encrypting the PDU format of the frame. We believe however
that leaving at least part of the ID field unencrypted will be
preferable for ID filtering mechanism, a reason for which we
keep with the 16 bit security level which will give only a small
chance to the adversary to successfully inject a message on
the bus. Of course, in order for the injection to be successful,
manipulations of the data-field must go undetected which will
further lower the adversary success rate.

Data-field encryption and authentication is an additional
protection layer in which by using a fast encryption mech-
anism with a lightweight block cipher we conceal the true
content of the frame and set room for an avalanche effect in
case of single bit manipulations that will be easily observed by
proper range checks. By employing SPECK [51], one of the
fastest existing block ciphers, decryption can be performed fast
enough by the high-end controllers (in a few micro-seconds)
allowing the destruction of malicious frames in real-time as we
later show in the experiments. Encrypted traffic analysis may
still be an option for well-determined adversaries, however,
since both the identifiers and data-fields are encrypted and
thus pseudorandom, it should be very difficult to extract any
meaningful information from the encrypted frames. Due to
space constraints, a more in-depth analysis of such an attack
scenario is out of reach for the current communication.

Key management. The mechanism that we propose re-
quires each CAN node to be in possession of a symmetric
secret key. In our implementation, this key was a randomly
generated value hardcoded on each node. Secure key establish-
ment is a distinct subject that has been addressed by several
recent works and it would be out of scope for us to design
procedures for this purpose. For this reason, we only point out
to some recent proposals addressing such issues. The work
in [52] proposes the use of the physical layer to securely
exchange keys between CAN nodes and allows the creation
of group of nodes that use the same keys. Group keying
with implicit certification based on the elliptical curve Diffie-
Hellman protocol has been recently proposed in [53]. The use
of elliptic curves for key exchange on the CAN bus is also
considered in [54] and [55].

C. Unique encrypted addresses by ordered binary trees

One specific problem when generating random addresses
that re-map the original ones, is the possibility of the addresses
to collide. That is, if each pair (DA, SA) is replaced by a
random 16 bit value, based on the birthday paradox we have

a probability of collision of 50% at roughly
√
65536 = 256

values. This probability is high and such an event likely to
occur which will result in IDs being mismatched by legitimate
nodes. To prevent this, we map the IDs based on an ordered
binary tree where only unique values are kept.

Figure 11 shows how we construct the binary tree. Each
node of the tree is inserted based on its value that is com-
puted by XOR-ing the last 16 bits of the ID (which are the
destination and sender addresses) with adress mask mskadr.
For example, the first node in the tree has an associated value
of 31463 which is the result of XOR-ing the last 16 bits of
the original ID, i.e., hexvalue CFE4421, with mskadr = 3EC6,
i.e., 4421⊕3EC6 = 7AE7 = 3146310. Of course, in this case
the new sender address is E7 while the new destination address
7A. The binary tree is ordered by this resulting value in order
to easily check for collisions in the resulting addresses. The
counters i and j are incremented each time a new value is
generated, counter i is the global counter for ID generation
while counter j is the local counter specifying the index of
the value for the current ID. In case of a collision, the counter
i is incremented and a new value is generated. Such an event
will not occur too often but it is a possibility that needs to be
covered.

Updating key masks in the sorted binary tree raises both
computational and memory concerns. We now formalize these
constraints and discuss trade-offs. We consider the set of
identifier-cycle pairs that are defined on the CAN network
{(id1, δ1), (id2, δ2), ..., (idn, δn)}, the life-time of the key tree
∆ and the unicity interval of the keys δ. The later parameter is
the time interval for which all the encrypted addresses are new.
Ideally δ = ∆ such that all addresses are distinct for the entire
lifetime of the tree but this may require too much memory and
computational power that when not available for all nodes, a
δ < ∆, may be selected. Since most of the traffic on CAN
buses is cyclic, we can immediately define the ratio of unique
encrypted addresses as ρ = δ∆−1. Based on these, the number
of encryption masks λi generated for each id i, i = 1..n and the

total number of encryption masks Λ are: λi∈{1..n} = ρ
∆

δi
=

δ

δi
and Λ =

∑n
i=1 λi respectively. Due to possible collisions, the

number of encryption masks is slightly larger than Λ leading
to an average computational time of

Tcomp =

(
n∑

i=1

216

216 − i

)
× tcrypt .

Here tcrypt is the time required to generate one encrypted
address. Since to encrypt the address we simply use 16
bit address masks and one AES computation generates 128
random bits, tcrypt = tAES/8 where tAES is the time for
one AES encryption which will generate 8 encryption masks.
For our practical needs, given that the number of IDs is low,
i.e., there are usually less than 100 IDs on real-world buses
while our vehicle has 41, Tcomp can be safely approximated
as Tcomp ≈ Λ × tcrypt . This estimation is very close to the
actual number since on average to generate 50-100 unique
encrypted addresses in the 216 address space will require only
1-2 additional encryptions with a probability of 0 collisions
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Fig. 12. Sender and destination address re-mapping by counter mode
encryption and circular lists

equal to
216!

(216 − n)!216n
, i.e., 98% in case of 41 encrypted

addresses (in the previous relation, for n IDs, 216n is the total
number of possible addresses and 216!/(216−n)! is the number
of unique addresses). We also provide concrete measurements
that confirm these expectations in the experimental section.
Storing the tree will require Λ × mnode where mnode is the
memory space required by one node from the tree. The CPU
load can be easily expressed as Tcomp/∆ since one such
encrypted address tree has to be computed for each time
interval ∆.

As a more concrete representation, in Figure 12 we show
how the address map is exported to a circular list for each ID
having ∆ = 1s and coverage ρ = 100%. The first ID has a
cycle of 100ms and therefore λ1 = 10 while the second and
third occur at 50ms and 20ms which lead to λ2 = 20 and
λ3 = 50. During each transmission the ID is shifted based on
the circular list. The ordered binary tree should be re-computed
with new freshness parameters to prevent an adversary for
learning the re-mapped IDs. We discuss more on this along
with the experimental results but in principle a new address
table can be re-generated each second or even faster than that.

To get a more accurate image on these tradeoffs, we now
illustrate them by a practical example for the CAN network
that is subject to our analysis. In the heavy-duty vehicle there
are 33 cyclic IDs originating from three controllers: 2 from
the TCM, 10 from the ECM and 21 from the BCM. The rest
of the IDs up to 41 are non-cyclic, a case in which we use
a single encryption mask. This leads to about 510 encrypted
IDs each second in case of a coverage of ρ = 100%. Figure
13 depicts the CPU load in percent for a lifetime ∆ = 1s of
the key tree, having a coverage ρ from 10% to 100% (for 10%
coverage each ID will be used consecutively 10 times, while
for 100% coverage all IDs are unique during one second). The
time require for one encryption was selected between 24.8µs
and 2.8ms which are the minimum and maximum for one
AES computation on our high-end and low-end boards. For
the high-end platform the CPU load is less than 0.15% even
at 100% coverage. For the low-end platform the CPU load
would be 17.92% which is still affordable. These estimations
are confirmed by experiments in the next section.

V. EXPERIMENTAL EVALUATION

In this section we provide experimental data on the effec-
tiveness of the proposed solution.

Fig. 13. CPU load during address generation in relation to encryption time
tcrypt and coverage ρ)

A. Computational results

As in-vehicle controllers are commonly employed in real-
time applications, which highly depend on computational
constraints, we now discuss the performance of the encryption
procedure. For this, we measure the runtime that is needed for
the generation of the ordered binary tree algorithm in order
to prove that the proposed method is computationally suitable
for automotive grade controllers.

As a representative for high-end automotive boards, we
employ a 32-bit S6J32GEKSN microcontroller from Cypress’s
Traveo Family which runs on a single core ARM cortex
R5 with a top operation speed of 240 MHz, while the data
and instruction cache are enabled. The microcontroller is
equipped with 128 KB RAM and 2048 KB of Flash. Two
other high-end candidates used in our evaluation are part of the
Infineon TriCore family. The first, a TC1797 microcontroller,
is equipped with a TriCore V1.3.1 core that can run at up to
180 MHz and has access to 156 KByte of RAM and 4 MByte
of Flash. TC397, the second TriCore platform, is built around
a newer generation core which embeds 6 cores running at a
maximum frequency of 300 MHz and is equipped with 16 MB
of program flash and 2528 KB of SRAM. As a representative
for the low-end automotive sector, we use a 16-bit S12XF
chip running at up 50 MHz which offers 32KB of RAM and
512KB of Flash.

Table II presents the run-times measured for the generation
of the encrypted addresses at various lifetimes ∆ and coverage
ρ, and the cost of AES (128 bit block and key) and SPECK
(64 bit block and 96 bit key) symmetric encryptions. The
run-time for the execution of the AES algorithm is 24.8µs-
77.6µs for the high-end boards, i.e., S6J32GEKSN, TC1797
and TC397, and less than 3ms for the low-end board, i.e.,
the S12, while SPECK is 5-15 times faster. On the S12
however, SPECK costs the same as the AES likely due to
16 bit architecture of the processor as the code that we use
was dedicated for 32-bit platforms and 16-bit conversions
automatically handled at the compiler level. The run-time
for generating the encrypted addresses varies from 2.16ms
(high-end controllers) to 246ms (low-end controllers) even
in case of a full ρ = 100% coverage. In case of S12XF512
(∆ = 10s, ρ = 25%), the algorithm does not fit into a single
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RAM page and requires around 50% of the RAM which is too
demanding for a single task. In overall, key generation requires
less than 1% of CPU time/second for high-end cores, and
less than 20% CPU time/second for the low-end ones, which
is affordable. For security reasons, the address tree should
be updated periodically, e.g. every 1–10s, and to avoid de-
synchronizations fresh addresses will be generated in advance
and newer addresses will replace older ones when they have
been consumed. This would require twice the storage space
for one address table as depicted in Table II but that is still
affordable as it ranges from 0.86–7.47KB.

B. Active defense mechanism

Our experimental setup is shown in Figure 14 and con-
sists of a S6J32GEKSN board responsible for CAN traffic
acquisition through the input capture unit (ICU) pin together
with a S12 board with adversary capabilities, a power supply
and a PicoScope for monitoring the CAN frames. In order
to actively detect and eliminate intrusive frames, we embed
an application which consists of two components: the CAN
frames acquisition/verification procedure and the CAN frame
destruction procedure triggered in case of a malicious frame.
These components are described next.

CAN frames acquisition At the hardware level, the Rx
output from the CAN transceiver is routed to two different
inputs of the µC: the actual CAN Rx pin and an ICU pin.
Our proposed hardware solution is depicted in Figure 15. The
software algorithm is presented in Figure 16. Generally, an
ICU, is used to measure the duration of an input signal arriving
to its corresponding PIN of the microcontroller. Depending
on the configuration the ICU can measure either period or
level duration by using a free running timer which is restarted
through a flag TReset (line 4 from algorithm) for each trigger
event (level change). Consequently, we use the ICU to measure
any level duration for the received CAN frame, meaning
that it detects a number of bits (n) that are either recessive
or dominant by dividing the obtained free run timer (FRT)
value (in ticks) with the value corresponding to one CAN bit,
calculated based on the CAN baud rate, i.e. 4 µs/bit for 250
Kbps equivalent with 240 ticks at 60 MHz peripheral clock
denoted as Tbit (line 2-3). Before calculating the number of
bits we add half of the value for one bit (120 - line 3) in
order to ensure that the full value for one bit is not lost due
to the integer division. We also account for eliminating the
CAN stuffing bits from the acquisition buffers (line 3, lines
6-9). If the value computed in line 3 is larger than the value
corresponding for 5 bits of the same polarity then this value is
ignored as it corresponds to an inter-frame space. In this case,
we perform the initializations required for a new SOF bit and
prepare the indexes in the acquisition buffer to be in line for
the next frame (lines 20-22). Note that the variables stuff and
polarity are reset (being global variables, they were initialized
to 0 by the RAM initialization routine of the microcontroller).
For each frame we reserved 4*32 bits elements (line 22)
from the acquisition buffer. The acquisition buffer is accessed
through a pointer *p and is filled bit by bit (lines 12-14 )
corresponding to the calculated number of bits of same polarity

Fig. 14. Experimental setup with the VN1640, S6J32GEKSN and S12
microcontrollers, Power Supply and the PicoScope for CAN traffic monitoring

Fig. 15. Architecture of the proposed hardware solution for frame acquisition

(line 3) and the polarity is inverted for the up-coming bits (line
19). The global variable msg is used as a message counter
inside the buffer and step represents the bit position inside
the same buffer - these values are initialized when the program
starts and will be reset when the buffer is full, e.g., we use a
buffer size of 128 frames in our implementation.

CAN frame destruction Once the entire data field is stored
in the acquisition buffer, i.e., 103 bits which consist in the
SOF(1), arbitration(32), control(6) and data field(64) (line 15
from the algorithm), the ICU detection is stopped in order to
process the buffer without any other interruptions from the
ICU which may come due to the level changes caused by
the reception of the remaining CAN frame fields, e.g. CRC,
ACK etc. Firstly, we check the correctness of the ID from the
received CAN message, by comparing the received ID with
our predefined list of IDs which is stored in memory. This
predefined list of IDs is stored in a vector and obtained by AES
symmetric encryption as previously discussed. We test equality
with the received ID by using an index that corresponds to the
column of the matrix. If the ID matches then we increment the
index and later reset it when it reaches the maximum value,
i.e., the number of precomputed encrypted addresses. In case
that the equality check fails, we proceed to destroying the
frame to ensure that it is not received by any other ECU.
The frame destruction consists in forcing the Tx pin to the
dominant state for a period longer than 5 CAN bits (inducing
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TABLE II
COMPUTATIONAL RESULTS FOR GENERATING THE CRYPTO-STREAM

Address Generation Procedure Encryption
∆ = 1s, ρ = 25% ∆ = 1s, ρ = 50% ∆ = 1s, ρ = 100% ∆ = 10s, ρ = 25% AES 128/128 SPECK 64/96

Platform CPU MEM CPU MEM CPU MEM CPU MEM CPU CPU
S6J32GEKSN 588µs

0.86KB

1.05ms

1.49KB

2.16ms

2.98KB

5.84ms

7.47KB

24.8µs 5.32µs
S12XF512 68ms 120ms 246ms N/A 2.8ms 2.56ms

Tricore TC1797 1.76ms 2.98ms 6.24ms 15.20ms 77.6µs 5.30µs
Tricore TC397 746µs 1.30ms 2.79ms 7.37ms 28.672µs 6.97µs

Algorithm 1 CAN frame acquisition
Input: TValue (current value of the timer in ticks)
Output: frame (content of the ID and datafield)

1: procedure FRAME ACQUISITION
2: Tbit ← 240
3: n← (TValue + 120)/Tbit− stuff
4: TReset ← 1
5: if (n≤5) then
6: if (stuff = 1)&&(n = 4) then
7: stuff ← 1
8: else
9: stuff ← n/5

10: end if
11: for i = 0, i ≤ n do
12: p← &var [step/32];
13: ∗p← (∗p) ∨ ((polarity)≪ (31− (step%32)))
14: step ← step + 1
15: if (step ≥ (((msg − 1)≪ 7) + 103)) then
16: return frame
17: end if
18: end for
19: polarity ←!polarity
20: else
21: polarity ← 0, stuff ← 0
22: step ← (msg − 1) ∗ 128
23: end if
24: end procedure

Fig. 16. Algorithm for CAN frame acquisition

a stuffing error on the bus). The process of destroying CAN
frames is depicted in Figure 17 which illustrates the CAN-
H and CAN-L lines as monitored by a PicoScope tool set to
CAN serial decoding. In the right side of the image we also
observe that the decoding of CAN frame is disrupted due to
the activation of the error flag. Setting the Tx bit to dominant is
done by switching the Tx CAN Pin function to GPIO (General
Purpose Input Output) function and output direction. Then we
set the PIN value to 0 logic. After the frame destruction we
restart the ICU detection in order to be prepared for the next
CAN frame.

C. Detecting intrusions based on J1939 specifics

We now discuss how to detect adversarial manipulations
based on specific data that can be retrieved from the stan-
dardized structure of J1939 frames. For brevity, our analysis
is focused on five parameters: i) engine speed (rpm), ii)
engine torque (%), iii) fuel consumption (l/h), (iv) vehicle
speed (km/h) and (v) engine temperature (°C). This can be
of course extended to other values carried by the frames.
The first two parameters are carried by the message with
ID 0xCF00400 having a cycle time of 20ms, the third
corresponds to ID 0x18FEF200 with cycle time 100ms, the

Fig. 17. CAN frame destruction (plot from a digital oscilloscope)

fourth to ID 0x18FEF121 with cycle time 100ms while the
last one to ID 0x18FEEE00 having a cycle time of 1s.

The left column of Figure 18 shows the variation of these
parameters during 20 minutes of vehicle normal operation.
In the right column of Figure 18 we show the variation
of differences between consecutive values as a histogram
distribution. We note that while the data-range is high, e.g.,
up to 200 rpm, 20 l/h or 35 km/h at a resolution of up
to 16 bits, due to the high acquisition rate the differences
between consecutive values are small. This allows us to
introduce a simple and effective bounds checking algorithm
to spot potential intrusions. For each value vi, i = 1..n we
construct a vector containing the differences recorded during
normal runtime, i.e., ∆(vi) = vi − vi−1, i = 2..n and
denote as ∆min , ∆max the minimum and maximum values
in this array - concrete instantiations are outlined in Table
III. Then for each newly received value vi we check that
vi ∈ [vi−1−∆min , vi−1+∆max ]. The right side of the Figure
18 shows the predicted bounds in green line, i.e., minimum
and maximum values, from the currently reported values. By
using this bound checking, the intrusion detection algorithm
can efficiently detect manipulations. Note that while for engine
and vehicle speed both a maximum and minimum range can
be checked, for fuel consumption we can check only the
maximum value since the inspection of the trace showed that
the minimum (zero) is commonly reported regardless of the
current value.

D. Accuracy results on detecting intrusions

To assess the effectiveness of the proposed intrusion detec-
tion and prevention mechanism, we create a realistic laboratory
testbed in which we reconstruct the CAN bus topology inside
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TABLE III
OBSERVED VARIATIONS FOR (I) ENGINE SPEED (RPM), (II) FUEL

CONSUMPTION (L/H) AND (III) VEHICLE SPEED

Parameter Unit Range Resolution ∆min ∆max

Engine speed rpm 0 to 8031.875 0.125 -35 62
Engine Torque % -125 to 125 1 -28 22
Fuel consumption l/h 0 to 3212.75 0.05 -16 5
Vehicle speed km/h 0 to 250.996 0.0039 -1 1.6
Engine temperature °C -40 to 210 1 -1 1

(i) engine speed

(ii) engine torque

(iii) fuel consumption

(iv) car speed

(v) coolant temperature

Fig. 18. Predicted min-max bounds of (i) engine speed (rpm), (ii) engine
torque (%), (iii) fuel consumption (l/h), (iv) vehicle speed (km/h) and (v)
coolant temperature (°C) (left) and histogram distribution of differences
between consecutive values (right)

a CANoe simulation. This environment can be used for testing
the prevention mechanism without affecting the real vehicle.
In this environment we generate traffic that is augmented
with adversarial capabilities accounting for frame replays and
modifications.

The first protection layer, i.e., the use of encrypted ad-
dresses, works against both these types of attacks. Concretely,
if 8 bits for each of the sender and destination addresses are
used, the probability to guess the correct forthcoming value

for an ID is 2−16 (assuming one particular ID is targeted).
If the attack is not targeted, the highest success probability
for the adversary is when using the most frequent start of
the IDs, in our case is 0x18FE which occurs for 12 IDs, and
guessing the 16 encrypted bits which leads to a cumulative
probability of 12 × 2−16 = 0.018% since matching any of
the 12 IDs that share the same start is fine for the untargeted
adversary. This is roughly the equivalent of a security level of
− log2(12/2

16) = 12.41 bits. The second detection layer, i.e.,
the datafield encryption, offers additional resilience against
modifications even when single bits are altered due to the
avalanche effect and subsequent range checks on any of the
signals will indicate that the frame was altered.

The experimental detection rates are shown in Table IV. For
a better image on the equivalent security level, we present it
in the table as ℓ = − log2(FNR). For the first detection layer,
i.e., containing encrypted addressees, we test the adversary
chance to guess any valid ID from the encrypted address
matrix by generating addresses at random. The chances of
an intrusion to go undetected in this case is as low as 0.015%
corresponding to a security level of 11.57 which is close to the
theoretical estimation. As for the manipulation of the datafield,
the detection accuracy is over 97%, except for the engine
torque where the true positive rate (TPR) drops at around
80% with a false negative rate (FNR) of around 20%. Indeed,
the variation for this 8 bit parameter is considerably higher
than for the others (-28,22) which increases the chances of an
adversary to guess a value in this range. Although we have
an even higher variation (-35,62) for the engine speed, the
adversary chances decrease considerably due to the larger, 16-
bit, length of this parameter. The false positives rate (FPR)
is 0% and the true negative rate (TNR) is 100% which
means that none of the legitimate frames (containing correct
addresses is misclassified).

When both prevention layers are used, the success rate of the
adversary becomes so low that it cannot be measured by attack
experiments. That is, the chances for an adversary frame to go
undetected stays in the range of 0.000159–0.006820% which
resulted in our trace for no single intrusion to go undetected.
The detection results for the combined layers are synthetically
computed in Table V. These values result from multiplying
the probability that the adversary ID goes undetected with the
probability of the data-field manipulation to go undetected, i.e.,
multiplying the FNRs for the ID and data-field. The results
from Table V decisively prove that an adversary has very
small chances for a successful attack. Nonetheless, by using
the frame destruction mechanism from the previous section,
none of the detected adversary frames will reach the bus.

Overall security level. Our approach has a security level
that is compatible with AUTOSAR SecOC [11] demands or
may even exceed it. This standard requests for 24-28 bits of
authentication data and 0-8 bits of freshness parameter to be
carried in inside each frame. The 0-8 bit freshness parameter
is already exceeded by the fresh addresses that we store in
circular lists. By previous computations, our approach already
garners 12 bits of security from the encrypted ID. We have
only used the sender and destination addresses in an encrypted
form in order to allow message filtering at the CAN driver level
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TABLE IV
DETECTION RATES FOR MULTIPLE TARGETED ATTACK PARAMETERS

Nr. of frames Detection results
Attacked param. Attacks Genuine TNR TPR FPR FNR ℓ (b)
ID 214175 427660 100% 99.99% 0% 0.01% 11.57
Engine speed 15546 61945 100% 97.25% 0% 2.75% 5.18
Engine torque 15446 61945 100% 79.25% 0% 20.75% 2.26
Fuel consumption 3082 12386 100% 99.48% 0% 0.52% 7.58
Vehicle speed 3098 12386 100% 98.61% 0% 1.39% 6.16
Engine temp. 295 1236 100% 98.64% 0% 1.36% 6.2

TABLE V
ESTIMATED DETECTION RATES FOR COMBINED ID & PARAMETER FIELD

Target parameter TNR FPR TPR FNR ℓ (b)
Engine speed 100% 0% 99.9991% 0.000895% 16.76
Engine torque 100% 0% 99.9931% 0.006820% 13.83
Fuel consumption 100% 0% 99.9998% 0.000159% 12.61
Vehicle speed 100% 0% 99.9995% 0.000443% 17.78
Engine temp. 100% 0% 99.9995% 0.000443% 17.78

using the remaining 13 bits of the ID. If this is not needed
and only the first 3 bits are to be kept for arbitration, all the
remaining 26 bits of the ID can be encrypted resulting in a
security level of − log2(41/2

26) ≈ 20 bits (here we considered
that there are 41 available IDs on our network). Even if this
is not the case, each field of the payload, as tested in Table
IV, contributes with an additional 2-8 bits of security. Worst
case, as illustrated by the engine torque field which exhibits
the worst performance in detecting injections, this leads to an
approximate security level of 2 bits/byte. Note that datafield
portions that are constant have an even higher security level of
4 bits/byte since by the avalanche effect 50% of the bits will
change. Consequently, at 2 bits/byte we expect the decryption
of the datafield to yield an equivalent security level of at
least 16 bits for each frame. By adding the 16 bits to the
12 bits from the ID field, we get a security level of 28 bits
which perfectly matches the 24-28 bit range of the AUTOSAR
SecOC [11]. Thus our solution is effective and corresponds to
current security needs. Clearly, our approach is much more
secure than regular IDS proposals in [8], [16], [19], [26], etc.
which do not use encrypted addresses or the avalanche effect
on datafields.

VI. CONCLUSION

Our work provides an efficient intrusion prevention mecha-
nism that is specifically tailored to meet J1939 specifications.
Notably, the full allocation of the datafield in J1939 imple-
mentations makes it impossible to integrate security elements
such as the truncated MACs requested by AUTOSAR specifi-
cations [11]. Our proposal circumvents this problem by using
encrypted addresses and symmetric encryption on the datafield
relying on the avalanche effect of a block cipher that will allow
single bit manipulations to be detected by the range-checks
of the IDS. Encrypted addresses will hinder an adversary in
determining the role of each frame and injecting correct IDs
in the network. The proposed defense mechanism is effective
and induces small computational costs that can be handled
both by low and high-end automotive-grade controllers. The
detection procedures keeps a false positive rate of 0% which
means that none of the legitimate frames is misclassified

and a false negative rate of around 10−6 which means that
chances for an adversarial frame to be missed are extremely
small. Finally our implementation has the ability to destroy
malicious frames in real-time with error flags taking advantage
of the faster reconstruction with the ICU. Regarding future
extensions, very recently, the Society of Automotive Engineers
(SAE) has released specifications for CAN-FD in heavy-duty
vehicles, i.e., under J1939-171, which will open roads for
extending regular J1939 frames with security elements. Since
the address allocation procedure will likely remain similar, our
protocol will still apply to the newer specifications while the
generously extended data-field of CAN-FD frames will allow
a much easier integration of security elements. The use of this
new extension of CAN as well as of cryptographic hardware
from embedded boards to speed-up computations is potential
future work for us.
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[53] D. Püllen, N. A. Anagnostopoulos, T. Arul, and S. Katzenbeisser, “Us-
ing Implicit Certification to Efficiently Establish Authenticated Group
Keys for In-Vehicle Networks,” in 2019 IEEE Vehicular Networking
Conference (VNC), 2019, pp. 1–8.

[54] N. K. Giri, A. Munir, and J. Kong, “An Integrated Safe and Secure Ap-
proach for Authentication and Secret Key Establishment in Automotive
Cyber-Physical Systems,” in Intelligent Computing, 2020, pp. 545–559.

[55] T. Tatara, H. Ogura, Y. Kodera, T. Kusaka, and Y. Nogami, “Updating
A Secret Key for MAC Implemented on CAN Using Broadcast En-
cryption Scheme,” in 2019 34th International Technical Conference on
Circuits/Systems, Computers and Communications, 2019, pp. 1–4.



15

Camil Jichici is a PhD student at Politehnica Uni-
versity of Timisoara (UPT) since 2018 and works as
a young researcher in the PRESENCE project. He re-
ceived the Dipl.Ing. degree in 2016 and MsC. degree
in 2018, both from UPT. His research interests are on
the security of in-vehicle components and networks.
He is also working as a software integrator in the
automotive industry for Continental Corporation in
Timisoara since 2014.

Bogdan Groza is Professor at Politehnica Univer-
sity of Timisoara (UPT). He received his Dipl.Ing.
and Ph.D. degree from UPT in 2004 and 2008
respectively. In 2016 he successfully defended his
habilitation thesis having as core subject the design
of cryptographic security for automotive embedded
devices and networks. He has been actively involved
inside UPT with the development of laboratories
by Continental Automotive and Vector Informatik.
Besides regular participation in national and inter-
national research projects in information security, he

lead the CSEAMAN project (2015-2017) and currently leads the PRESENCE
project (2018-2019), two research programs dedicated to automotive security
funded by the Romanian National Authority for Scientific Research and
Innovation.

Radu Ragobete is a Senior Software Engineer
working for the automotive industry. He received
the Dipl.Ing. and MsC. degree from Politehnica
University of Timisoara (UPT) in 2006 and 2008
respectively. An employee of Continental Automo-
tive in Timisoara (Romania) since 2006, his main
responsibilities are in developing low-level drivers
and implementation of platform functional safety
requirements. His main interests include the micro-
controller startup process and automotive operating
systems.

Pal-Stefan Murvay is a Lecturer at Politehnica Uni-
versity of Timisoara (UPT). He graduated his B.Sc
and M.Sc studies in 2008 and 2010 respectively and
received his Ph.D. degree in 2014, all from UPT. He
has a 10-year background as a software developer in
the automotive industry. He worked as a postdoctoral
researcher in the CSEAMAN project and is currently
a senior researcher in the PRESENCE project. He
also leads the SEVEN project related to automotive
and industrial systems security. His current research
interests are in the area of automotive security.

Tudor Andreica is a Ph.D. student at Politehnica
University of Timisoara. He graduated his B.Sc and
M.Sc studies in 2016 and 2018 respectively, from
Polithenica University of Timisoara. Since 2015 he
is working as software engineer at HELLA Romania
focusing on the security of various in-vehicle sys-
tems. He was a research student in the CSEAMAN
project and currently joined the PRESENCE project
as a PhD student. His research interests are in the
field of automotive cybersecurity.

APPENDIX A - IDENTIFIED FRAMES ACCORDING TO J1939
SPECIFICATIONS

This Appendix summarizes the IDs found in the collected
traffic from our test vehicle and their role according to the
J1939 specification. Further, we detail the data-field for the
IDs that were used in our intrusion detection system. Some
brief comments on these follow.

In Table VI we observe messages which are specific for
address claiming procedure (rows 1-3) and their specific PGN
request (rows 4-5 and 28). Many other IDs follow carrying
information related to engine, transmission, exhaust and air
supply systems, etc. Messages from two distinct PGNs, i.e.,
the Engine Configuration 1 and Vehicle Identification Number
(VIN) depicted in rows 32-33 from Table VI, are sent by
the ECM as multi-frame messages - also a J1939 specific.
Besides the ECM, the VIN is also transmitted by the BCM,
i.e., rows 34-35. The specific on-board diagnostic subsystem
can be identified in the collected traffic by the two specific
diagnostic J1939 frames (on rows 7-8) which encloses the
active diagnostic trouble codes that are sent by BCM and
ECM. Table VI does not include the 16 IDs which are OEM
specific since their role is not specified in the standard.

Table VII outlines the significance for each parameter from
the data field in case of the 4 identifiers that are used in our
IDS. The data ranges for these parameters and the transmission
rates employed are presented according to [42].
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TABLE VI
IDENTIFIED J1939 FRAMES FROM THE COLLECTED CAN TRAFFIC IN ACCORDANCE TO [42]

No. Pr. ID PF PS PDU1 PDU2 DA GE SA TP PGN PG description

1. 6 0x18EEFF03 238 255 ✓ – GLB – TCM – Address Claimed
2. 6 0x18EEFF00 238 255 ✓ – GLB – ECM – Address Claimed
3. 6 0x18EEFF21 238 255 ✓ – GLB – BCM – Address Claimed
4. 6 0x18EAFF00 234 255 ✓ – GLB – ECM – PGN Request
5. 6 0x18EAFF03 234 255 ✓ – GLB – TCM – PGN Request
6. 6 0x18FE0F21 254 15 – ✓ – 15 BCM – Language Command
7. 6 0x18FECA03 254 202 – ✓ – 202 TCM – Active Diagnostic Trouble Codes (Diagnostic message 1)
8. 6 0x18FECA21 254 202 – ✓ – 202 BCM – Active Diagnostic Trouble Codes (Diagnostic message 1)
9. 6 0x18FEF200 254 242 – ✓ – 242 ECM – Fuel Economy (Liquid)
10. 3 0xCF00400 240 4 – ✓ – 4 ECM – Electronic Engine Controller 1
11. 6 0x18FEF121 254 241 – ✓ – 241 BCM – Cruise Control/Vehicle Speed
12. 7 0x1CFEC303 254 195 – ✓ – 195 TCM – Electronic Transmission Controller 5
13. 3 0xCF00300 240 3 – ✓ – 3 ECM – Electronic Engine Controller 2
14. 6 0x18F00503 240 5 – ✓ – 5 TCM – Electronic Transmission Controller 2
15. 6 0x18FEDF00 254 223 – ✓ – 223 ECM – Electronic Engine Controller 3
16. 3 0xCFE4521 254 69 – ✓ – 69 BCM – Primary or Rear Hitch Status
17. 6 0x18FEF021 254 240 – ✓ – 240 BCM – Power Takeoff Information 1
18. 6 0x18FEF021 254 239 – ✓ – 239 ECM – Engine Fluid Level/Pressure 1
19. 3 0xCFE4421 254 68 – ✓ – 68 BCM – Secondary or Front Power Take off Output Shaft
20. 3 0xCFE4321 254 67 – ✓ – 67 BCM – Primary or Rear Power Take off Output Shaft
21. 6 0x18FEF600 254 246 – ✓ – 246 ECM – Intake/Exhaust Conditions 1
22. 6 0x18FEAE21 254 174 – ✓ – 174 BCM – Air Supply Pressure
23. 7 0x1CFDDF21 253 223 – ✓ – 223 BCM – Front Wheel Drive Status
24. 6 0x18FEFC21 254 252 – ✓ – 252 BCM – Dash Display 1
25. 6 0x18FEF721 254 247 – ✓ – 247 BCM – Vehicle Electrical Power 1
26. 6 0x18F00621 240 6 – ✓ – 6 BCM – Electronic Axle Controller 1
27. 3 0xCFDCC21 253 204 – ✓ – 204 BCM – Operators External Light Controls Message
28. 6 0x18EAFF21 234 255 ✓ – GLB – BCM – PGN Request
29. 6 0x18FEE500 254 229 – ✓ – 229 ECM – Engine Hours, Revolutions
30. 6 0x18FEEE00 254 238 – ✓ – 238 ECM – Engine Temperature 1
31. 6 0x18FEF700 254 247 – ✓ – 247 ECM – Vehicle Electrical Power 1
32. 7 0x1CECFF00 236 255 ✓ – GLB – ECM CM.BAM Engine Configuration 1, Vehicle Identification Number
33. 7 0x1CEBFF00 235 255 ✓ – GLB – ECM TP.DT Engine Configuration 1, Vehicle Identification Number
34. 7 0x1CECFF21 236 255 ✓ – GLB – BCM CM.BAM Vehicle Identification Number
35. 7 0x1CEBFF21 235 255 ✓ – GLB – BCM TP.DT Vehicle Identification Number

TABLE VII
FIELD DETAILS FOR SOME OF THE COLLECTED IDS IN ACCORDANCE TO [42]

No. PGN/ID Cycle Byte pos. Parameters description Data Range

1. 65266 100 ms B1: 2 bytes Engine Fuel Rate 0 to 3,212.75 l/h
0x18FEF200 B3: 2 bytes Engine Instantaneous Fuel Economy 0 to 125.498046875 km/L

B5: 2 bytes Engine Average Fuel Economy 0 to 125.498046875 km/L
B7: 1 byte Engine Throttle Valve 1 Position 1 0 to 100%
B8: 1 byte Engine Throttle Valve 2 Position 0 to 100%

2. 61444 10-50 ms B1: 4/4 bits Engine Torque Mode / Actual Engine - Percent Torque (Fractional) 0 to 15
0xCF00400 B2: 1 byte Driver’s Demand Engine - Percent Torque -125 to 125 %

B3: 1 byte Actual Engine - Percent Torque -125 to 125 %
B4: 2 bytes Engine Speed 0 to 8,031.875 rpm
B6: 1 bytes Source Address of Controlling Device for Eng. Control 0 to 255
B7: 4 bits Engine Starter Mode 0 to 15
B8: 1 byte Engine Demand – Percent Torque -125 to 125 %

3. 65265 100 ms B1: 2/2/2/2 bits Switch: Speed Axle / Park Brake / Cruise Control / Park Brake Release Inhibit 0 to 3
0x18FEF121 B2: 2 bytes Wheel-Based Vehicle Speed 0 to 250.996 km/h

B4: 2/2/2/2 bits Cruise Control (CC) Active / CC Enable Switch / Brake Switch / Clutch Switch 0 to 3
B5: 2/2/2/2 bits CC Set Switch / CC Coast (Dec.) Switch / CC Resume Switch / CC Acc. Switch 0 to 3
B6: 1 byte Cruise Control Set Speed 0 to 250 km/h
B7: 5/3 bits PTO Governor State / Cruise Control States 0-31/0-7
B8: 2/2/2/2 bits Engine: Idle Increment / Idle Decrement / Diagnostic Test / Shutdown Override 0 to 3

4. 65262 1s B1: 1 byte Engine Coolant Temperature -40 to 210 °C
0x18FEEE00 B2: 1 byte Engine Fuel 1 Temperature 1 -40 to 210 °C

B3: 2 bytes Engine Oil Temperature 1 -273 to 1734.96875 °C
B5: 2 bytes Engine Turbocharger 1 Oil Temperature -273 to 1734.96875 °C
B7: 1 byte Engine Intercooler Temperature -40 to 210 °C
B8: 1 byte Engine Charge Air Cooler Thermostat Opening 0 to 100 %
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