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Abstract—Smartphones are a vital technology, they improve
our social interactions, provide us a great deal of information and
bring forth the means to control various emerging technologies,
like the numerous IoT devices that are controlled via smartphone
apps. In this context, smartphone fingerprinting from sensor
characteristics is a topic of high interest not only due to privacy
implications or potential use in forensics investigations, but
also because of various applications in device authentication.
In this work we review existing approaches for smartphone
fingerprinting based on internal components, focusing mostly on
camera sensors, microphones, loudspeakers and accelerometers.
Other sensors, i.e., gyroscopes and magnetometers, are also
accounted, but they correspond to a smaller body of works.
The output of these transducers, which convert one type of
energy into another, e.g., mechanical into electrical, leaks through
various channels such as mobile apps and cloud services, while
there is little user awareness on the privacy risks. Needless to
say, miniature physical imperfections from the manufacturing
process make each such transducer unique. One of the main
intentions of our study is to rank these sensors according to the
accuracy they provide in identifying smartphones and to give
a clear overview on the amount of research that each of these
components triggered so far. We review the features which can be
extracted from each type of data and the classification algorithms
that have been used. Last but not least, we also point out publicly
available datasets which can serve for future investigations.

Index Terms—smartphone fingerprinting, microphone, loud-
speaker, accelerometer, gyroscope, magnetometer, datasets

I. INTRODUCTION AND MOTIVATION

Smartphone usage is on a continuously increasing slope,
as proved by many recent industry reports. More and more
people are using smartphones for video calls, digital health,
education services, financial services, agriculture services, etc.
Not least, the Covid-19 crisis from the recent years, imposing
lockdown restrictions and social distancing, had a severe social
and economic impact but seems to have also led to an increase
in smartphone usage [[1]. The online market and consumer
data platform Statista places the number of mobile devices in
2022 at 15.96 billion, expecting 18.22 billion by 2025, out of
which 20% will have 5G connectivity [2l]. As expected, in this
context, smartphone security and user privacy are continuously
gaining importance. Last but not least, smartphones are a key
technology in controlling various IoT (Internet of Things)
devices that improve the quality of our life and productivity
in smart homes or offices.
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Nowadays, smartphones have overwhelming computational
power and memory resources, they are equipped with many
sensors, such as camera sensors, microphones, accelerome-
ters, magnetometers, gyroscopes or radio frequency sensors
(e.g., NFC, UWB, GPS, etc.) but also with actuators such
as loudspeakers. Generally speaking, these can be referred
to as transducers, i.e., devices that convert from one type
of energy to another, electrical into mechanical (in case
of loudspeakers) or the reverse (in case of microphones),
etc. Each transducer has unique characteristics, caused by
imperfections in the manufacturing process, which can be
used for fingerprinting the mobile device. However, device
fingerprinting based on the unique features of the embedded
transducers is not always straightforward due to various envi-
ronmental conditions such as noise, temperature, etc., which
can affect the fingerprint. This makes the deployment of non-
interactive device authentication mechanisms, based on such
fingerprints, more challenging. Consequently, there are a lot
papers addressing smartphone fingerprinting. In this survey we
analyze existing works targeting each type of transducer and
we outline various features of the signals that are used, the
clustering methodology and the results, also pointing on the
number of devices that were used and the publicly released
datasets.

Brief depiction of smartphone transducers. In Figure
we show a disassembled Samsung Galaxy J5 which is a
commonly used mid-range smartphone. We used this device
to illustrate various sensors, i.e., front/back camera, micro-
phone and accelerometer and also the loudspeaker, which is
technically an actuator that converts electrical energy into
sound. As mentioned, both sensors or actuators, as devices
that convert one form of energy into another can be referred
as transducers. The Samsung Galaxy J5 was also used to
extract data for the specific needs of this paper in order to
give a more accurate depiction on the statistical properties of
the fingerprints. We extracted data from its camera sensors,
loudspeakers and accelerometers and we were forced to use
a Samsung Galaxy S6 for microphone data since the J5 did
not have a replaceable microphone (the microphone could
be replaced only with the smartphone mainboard). In the
following sections, as a practical example, to determine the
distance between fingerprints collected from identical devices
(also referred as the intra-distance), we use either 5 identical
Samsung J5s phones or, alternatively, we couple different
transducers to the same device. Further, to determine the
distance between fingerprints collected from different devices
(also referred as the inter-distance), we use several smart-
phones from different manufacturers.
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Fig. 1. A disassembled Samsung Galaxy J5: (i) back-case with loudspeaker, (ii) display and circuit board, (iii) main circuit board and the five main transducers
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Fig. 2. Distribution of the works we survey by topic

Distribution of works by topic. Generally speaking, there are
two main types of fingerprints: software-based fingerprints and
hardware-based fingerprints. In this work we are concerned
with the latter, i.e., hardware-based fingerprints. This is be-
cause they use characteristics of the transducers embedded on
the circuit board that are more difficult to replace — on the one
hand, making the fingerprint harder to forge, but on the other
hand also creating higher privacy risks as such fingerprints can
carry over between different mobile applications, use cases and
even operating system re-installs.

There are a lot of papers published in the recent years
addressing mobile device identification based on their sensors
characteristics. In this work, we survey more than 130 papers.
To give an accurate figure, in Table [] we list all sensor
fingerprints that have been exploited so far and the number of
papers covered by this survey (papers using multiple sensors
are counted once for each sensor). In Figure [2] we give an
overview of the analyzed papers. Almost half of them discuss
device identification based on camera sensor, 20% of them
discuss smartphone identification based on their microphone
and only 5% of them discuss smartphone fingerprinting based
on their loudspeaker. About 4% of the works discuss finger-
printing based on accelerometer sensors and 8% discuss device
fingerprinting based on multiple sensors, i.e., accelerometers,
magnetometers and gyroscopes. Last but not least, 14% of
the analyzed papers discuss device fingerprinting based on
other, less commonly used sensors, e.g., magnetometers and
gyroscopes, or even battery consumption, etc.

Several surveys on smartphone fingerprinting have been al-
ready published. A study published in 2015, regarding mobile

TABLE I
NUMBER OF THE WORKS BY TOPIC IN THIS SURVEY

no. Transducer no. of papers
(smartphones/other devices)

1. camera 27/40

2. microphone 21/6

3. loudspeaker 5

4. accelerometer 13

5. gyroscope 7

6. magnetometer 5

7. other sensors or characteristics 14

TABLE II

COMPARISON OF EXISTING SURVEYS ON DEVICE FINGERPRINTING

no. work year  target use- counter dataset experimental
device cases measures comparison

1 13] 2015 smartphone n y n n

2 (4] 2017 smartphone y y n n

3. 2017 any n n n n

4. (6] 2019 smartphone n n n n

5 7 2020 smartphone n n n n

6 181 2021  IoT y y y n

7. this work 2022 smartphone y y y y

phone fingerprinting, discusses the use of the network layer,
i.e., IP and ICMP (Internet Control Message Protocol) packets,
as well as the application layer, i.e., browsers or mobile
apps [3]. The work also mentions some countermeasures
against fingerprinting. A later work, from 2017, addresses
smartphone identification based on physical fingerprints [4]].
The authors survey distinct techniques for fingerprinting start-
ing with techniques based on signals emitted by smartphone
components and processed by external systems, i.e., radio
frequency, Medium Access Control (MAC), display, clock
differences, then they pursue techniques based on sensor iden-
tification, i.e., camera sensors, microphones, magnetometers.
Finally, the authors discuss some risks and countermeasures
for smartphone fingerprinting. In the same year, i.e., 2017,
a study regarding fingerprinting algorithms, e.g., ratio and
relational distance, K-Nearest Neighbor (KNN), thresholding,
Gabor filters, etc., was published in [5]. A short study from
2019 analyzes research papers which are focusing on smart-
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phone identification based on their accelerometers, cameras,
loudspeakers and wireless transmitters [6]. One year later, in
2020, another study dedicated to smartphone fingerprinting
was published in [7]], investigating device identification based
on various fingerprints, i.e., IMEI, MAC, serial numbers or
based on internal circuits, i.e., sensors and memory defects.
Several techniques used for identification, machine learning,
PUFs (Physical Unclonable Function) and sensor calibration
are discussed. More recently, in 2021, a survey of device
fingerprinting focusing on IoT (Internet of Things) devices was
published in [8]. The authors discuss data sources, techniques
for device identification, application scenarios and datasets. In
Table [T we briefly compare the previous surveys. Compared to
these, our work is more focused on smartphones fingerprinting
and also adds the existing datasets into discussion. We also
provide a brief experimental analysis to outline the differences
between the most commonly employed sensors.

Roadmap to our work. In Figure [3| we provide a graphical
overview of smartphone fingerprinting technologies which
can be regarded as a roadmap for the current survey. Our
work is organized as follows. In Section [[I] we discuss the
operation principles for smartphone transducers, the most com-
monly used features and classification techniques, performance
metrics and some application scenarios. In Section we
briefly present some concrete experimental data for cameras,
microphones, loudspeakers and accelerometers. These topics
can be retrieved from the subsections on the left side of Figure
[B] Then, the upper side of Figure [3] shows the structure of
our work with respect to smartphone transducers: Section
address cameras, Section M microphones, Section E[l loud-
speakers and Section [VII| accelerometers. Next, in Section [VIII]

we survey some papers which propose device identification
based on the mixed use of the previous sensors, possibly
with other sensors as well. In Section [[X] we discuss some
countermeasures and the stability of fingerprints in front of
external factors. Finally, in Section [X] we conclude our work.

II. BACKGROUND

In this Section we present the sensor fingerprinting proce-
dure, starting from the operation principles of sensors, then
discuss the most common techniques for feature extraction,
the classification algorithms and metrics. Last but not least,
we present some application scenarios.

A. Operation principles for smartphone transducers

In what follows we briefly discuss the operation principle
for the aforementioned smartphone transducers, i.e., camera
sensors, microphones, loudspeakers and accelerometers.

1) Operation principle of camera sensors: There are two
commonly used types of sensors: CCD (Charge-Coupled De-
vice) and CMOS (Complementary Metal-Oxide Semiconduc-
tor) sensors. CCD sensors are used for digital cameras and
systems which need to acquire high-quality images. CMOS
sensors are smaller and consume less power, so they are
typically used in small-size devices, e.g., smartphones, laptops,
IoT devices, etc., [10]. In Figure 4] we depict the operation
principle of a CMOS sensor. The light captured by the lens
goes into a Bayer filter array which parses the light into three
components red, green and blue. Half of the filter elements
are green because the human eye is more sensitive to green,
the other two elements are for red and blue. Finally, the light
is transformed into an electrical signal by the CMOS sensor.
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2) Operation principle of microphones: Smartphones are
equipped with MEMS (Micro-Electromechanical Systems) mi-
crophones due to their low power consumption, low costs and
small dimensions. In Figure [5] we show the components of
a MEMS microphone. The microphone is enclosed in a case
with a small opening that facilitates the reception of sound.
Inside the case, there are two main components: a transducer
used to convert the acoustic signal into an electrical signal
and an ASIC (Application-Specific Integrated Circuit) which
amplifies the signal received from the transducer and imple-
ments the ADC (Analog Digital Converter) functionalities. The
transducer is connected to the ASIC with a golden wire. To
improve the quality of the received sound, a special sealing
material is used to hermetically isolate the microphone. The
PCB (Printed Circuit Board) of the phone is depicted on the
back of the sealing material.

3) Operation principle of loudspeakers: In Figure [0 we
depict the main components of a smartphone MEMS loud-
speaker. The loudspeaker is covered by a sieve which protects
the diaphragm. The diaphragm is usually built from plastic
(alternatively, it can be built from paper or aluminium) and
allowed to move by the suspension, which is made from
a flexible material and anchors it to the case (also called
basket). After the diaphragm, a voice coil is present, which
is fixed in the loudspeaker’s case. Behind it, there is a pole
and a magnet which make the voice coil vibrate, driven by the
electromagnetic force, and so the diaphragm generates sound.

4) Operation principle of accelerometer sensors: In Figure
we depict the operation principle of MEMS accelerometers.
The accelerometer contains a moving beam structure which
has a fixed solid plane and a mass on springs. When an
acceleration is applied, the mass is moving and the capacitance
between the fixed plane and the moving beam changes.

B. Frequently used features for device fingerprinting

We now give a brief summary of the most common tech-
niques for feature extraction that facilitate smartphone identifi-

cation from data produced by the aforementioned transducers.

1) Time and frequency domain features can be extracted for
all kinds of sensor data.

a) The most commonly used statistical features of the
time-domain representation are the following: mean, stan-
dard and average deviation, skewness (asymmetry), kur-
tosis (tailedness), Root Mean Square (RMS), maximum
and minimum values, Zero-Crossing Rate (ZCR), non-
negative count, variance, mode and range, etc.

b) The most commonly used features of the frequency-
domain representation are the spectral centroid, spread,
skewness, kurtosis, entropy, flatness, brightness, roll-off,
roughness, irregularity, RMS, flux, attack time, attack
slope, mean, variance, standard deviation, low energy
rate and DC component from DCT (Discrete Cosine
Transform).

Various time and frequency domain features are used in
(LL, (2, (130, (141, sy, (e, (171, (18], [19]. An
exhaustive list of the features would be out of scope.

2) Features extracted from camera-collected images:

a) Fixed-Pattern Noise (FPN) is the noise generated by
the sensor which makes some pixels brighter than the
average intensity. Based on the image type, there are two
types of FPN: Dark Signal Non-Uniformity (DSNU) [20]]
which appears in the absence of light (dark images) and
Photo Response Non-Uniformity (PRNU) [21], [22], [23]],
[24], (25], [26], [27], 28], (29], (301, (311, (321, [33],
[34], [35], [36l, [37] which appears in conditions when
light is present. PRNU is the most used technique for
camera identification [38]].

b) Discrete Cosine Transform (DCT) is a common tech-
nique used to convert an image from the spatial domain
to the frequency domain. In JPEG compression, DCT is
applied on 8x8 image blocks, while for decompression
the Inverse Discrete Cosine Transform (IDCT) is used
[39]]. This transformation can be used with both DSNU
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and PRNU [40], [41].

¢) Local Binary Pattern (LBP) and Local Phase Quanti-
zation (LPQ) are another two features commonly used for
processing images in the scope of camera identification
[42]. LBP is a local texture pattern descriptor for images.
The image is split in 3x3 blocks and the center pixel
is considered the threshold for the neighbor pixels [43]],
[44]. LPQ is a descriptor based on the blur invariance
from the Fourier phase spectrum extracted from images.

Features extracted from audio signals:

a) The power spectrum, i.e., the frequency-amplitude pair
obtained by applying the Fourier transform is the most
basic method used to extract frequencies of the spectral
estimates of the audio signal. Such features are commonly
used for audio signals, in the scope of loudspeaker and
microphone identification [45]].

b) Mel-Frequency Cepstral Coefficients (MFCCs) are
another commonly used feature for audio signals. This
technique is used in several research works to extract
features from human speech in the scope of microphone
identification since these coefficients are frequently em-
ployed in speech recognition [46], [47], [48], [49], [S0],
[51], [52]. They have also been used for loudspeaker
identification [9], [53l], [54]]. To extract the MFCC co-
efficients, the audio signals is split into windows and for
each such window the FFT (Fast Fourier Transform) is
computed. The Mel filter is applied to the result and the
logarithm of each Mel frequency is computed to which
the DCT is finally applied giving the MFCCs.

¢) Linear Frequency Cepstral Coefficients (LFCCs) is a
technique similar to MFCC, except that a linear filter
is used instead of the Mel filter [48]]. Linear Predictive
Codes Coefficients (LPCC) and Perceptual Linear Predic-
tion Coefficients (PLPC) are also used for human speech
analysis [40].

C. Metrics and classification techniques

In what follows, we give a brief summary of the most
frequently used classification techniques for fingerprinting
each of the previously mentioned smartphone components.
Starting from some basic metrics up to deep learning, several
approaches have been considered:

1y

2)

3)

The Euclidean distance is used in [S5] for loudspeaker
identification. It is computed as the square root of the sum
of squared differences between two samples: dist(a, b) =

>y (a; — b;)?, where a and b are the signals from
two devices expressed as vectors, i.e., a; is the i-th sample
from signal a and b; is the ¢-th sample from signal b.
The Hamming distance defines the number of indexes at
which the corresponding symbols are distinct and it is
given as: d(s,t) = >, |s; —t;|, where s and t are
signals (vectors) from two devices, s; is the i-th sample
from signal s and ¢; is the i-th sample from signal ¢.
The Mahalanobis distance is the distance between a
distribution and a sampling point. It is given by d =
V/(y — p)cov=1 (y — ), where y is a vector, p is the
mean value and cov is the covariance.

4)

5)

6)

7

The intra- and inter-distances are useful in separating
between devices based on established distance metrics,
e.g., such as the Euclidean or Hamming distance.

a) The intra-chip distance is calculated as the arithmetic
mean between fingerprints extracted at different times
from the same chip. While this metric can be computed
for any fingerprint, most commonly, it is used to evaluate
PUFs, such as those based on CMOS sensor [56]], [57],
where the the intra-chip Hamming distance indicates the
average number of flipped bits among the PUFs from
different images. Also, the BER (Bit Error Rate) can
be calculated by the intra-chip Hamming distances. The
reliability can be also calculated based on intra-chip
Hamming distances. We define these according to [58]:

1 X dist(R;, R; ;
distiNTRA = — Z dist(Ri, Rij) x 100%,
m n

j=1
BER = distiyrra, Reliability = 100% — distinrra,

where R; is the correct PUF calculated from the average
of all PUFs of the evaluated chip and R; ; is the PUF
of the jth image, n is the number of bits and m is the
number of images.

b) The inter-chip distance describes the uniqueness of
a PUF, which is calculated as the Hamming distance
between the PUFs of two distinct chips. Again, according
to [58], it can be defined as:

m—1 m .
, 2 dist(Ry,R,)
dist - —————=x100
1StINTER m( I)HE:M:EUH o x100%,

Uniqueness = dist;NTER,

where R, is the PUF of the u-th chip, R, is the PUF
of the v-th chip, n is the number of bits and m is the
number of images. The intra- and inter-chip distance are
used in various works, e.g., [20], [S9], [60], [61].

Thresholding is a known approach for image segmenta-
tion, i.e., to convert a gray-scale image into a binary one.
It is also used for classification for various sensor data. In
case of smartphone sensor fingerprinting, thresholding is
mostly used within the scope of camera identification,
both for feature extraction but also as a stand-alone
method for classification [62]], [20], [28], [36], [60], [56],
[S7]. This approach is also used for classification when
other signals are involved such as accelerometers [19] or
for various device properties [63]].

Correlation, i.e., corr(z, y), is a function which describes
a statistical relationship between two distinct variables x
and y. It is computed as: corr(z,y) = %, where
cov(z, y) is the covariance of z and y, o, is the standard
deviation of z and o, is the standard deviation of y.
The correlation is used by many works for fingerprinting
smartphones, such as [64]], [65], [21], [66], [22], [23l,
(241, (250, [26], [62l, [671, [68l, [27], [69], [70].
Classical machine learning approaches:

a) Support Vector Machine (SVM) is a supervised ma-
chine learning algorithm which can be used to train binary
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or multi-class models. SVM is a common classification
algorithm and, based on the literature we surveyed, ap-
pears to be more commonly used for camera sensor iden-
tification 301, [33], [43l], [441], [71], [72l, [731, [[74], 73],
[76], [77] and microphone identification [47]], [48], [S1],
(781, (791, (300, (811, 182], (83], [84], [85], [36]. 1871,
[88]]. Occasionally, it was also used for other transducers,
e.g., accelerometers [12], [[13] or loudspeakers [54].

b) K-nearest Neighbor (KNN) is another commonly used
supervised classification algorithm which is employed
in the literature for smartphone identification based on
various components, e.g., microphones [78]], [79], [83I,
[84], [87], loudspeakers [S3l], [9l], accelerometers [12],
[13], etc. KNN usually employs the Euclidean distance
between the training samples and the test samples.

¢) Gaussian Mixture Model (GMM) is a probability func-
tion defined as a sum of Gaussian component densities.
GMM is recommended to be used in speech recognition
tasks. For device sensor fingerprinting, GMM was used
for microphone [46], [48]], [49], [S2] and loudspeaker-
based identification [9], [53]. It seems to be particularly
useful when the underlying signal is human speech.

d) Gaussian Supervector (GSV) is an algorithm based on
GMM which concatenates all the means of the features
from each Gaussian component into a supervector [89].
GSV was used for microphone identification based on
human speech [82], [85].

e) Random Forest (RF) is an ensemble classifier algo-
rithm that can employ different methods for classification,
including AdaBoost learners, Bagged Trees, Subspace
Discriminant, RUSBoost Trees, Subspace KNN and Gen-
tleBoost. RF was used for accelerometer identification
[12], [13], camera identification [40], [76], [90], loud-
speaker identification [54] and smartphone recognition
based on multiple sensors [[16]], [17]], etc.

f) Decision Tree is another supervised machine learning
algorithm, the data is structured as a tree in which
the internal nodes store the features from the datasets.
Branches contain the decision rules and leaf nodes, which
are the end nodes, represent the outputs. This technique
was used for smartphone identification based on magne-
tometer [[18], gyroscope [91], multiple sensors [14], [15]],
[92], etc.

g) Linear Discriminant Analysis (LDA) and Quadratic
Discriminant Analysis (QDA) are supervised machine
learning algorithms based on the Gaussian distribution.
LDA uses linear Gaussian distributions, i.e., it creates lin-
ear boundaries between classes and QDA uses quadratic
Gaussian distributions, i.e., it creates non-linear bound-
aries between classes. LDA was used for microphone
identification [93]], smartphone identification based on
wireless charging [14] and for smartphone identification
based on magnetic induction emitted by the CPU [94].
QDA was used for smartphone recognition based on
accelerometer and gyroscope data [[14]], [15].

Deep learning approaches:
a) Convolutional Neural Networks (CNN) are deep learn-

ing algorithms which are commonly used to extract
patterns from images, but they were also used for audio
data and various other time-domain series. In terms of
device identification based on their sensors, CNNs are
mostly used for camera sensors [33], [34], [37], [42],
(770, 950, [96l, [97], [98], [99], [100], [101], [LO2],
[103], [104], microphones [83[, [84], [87], [105], [106],
[1O7], loudspeakers [43]], [54], as well as for other signals
such as peripheral input timestamps [108]. AlexNet is
a convolutional neural network proposed in 2012 for
image classification [109]. AlexNet can be used as a pre-
trained neural network which contains five convolutional
layers, max-pooling layers, three fully connected layers
and a soft max layer. It was used for camera sensor
identification in [95]]. GoogLeNet is another convolutional
neural network with 22 layers proposed in 2015 [L10].
GoogLeNet is used for camera sensor identification in
[37], [95]. Residual neural Network (ResNet) was in-
troduced in 2016 [111]. Based on the number of layers
there are several types of ResNet, e.g., ResNetl8 which
contains 18 layers, ResNet50 with 50 layers, ResNet101
with 101 layers. RetNet is a pre-trained neural network,
but it can be adapted. It is used for camera sensor
identification as a pre-trained network as well as an
adapted network [35]], [100], [L12], [113].

b) Long Short-Term Memory (LSTM) and Bidirectional
Long Short-Term Memory (BiLSTM) are recurrent neural
network layers used for time series and sequence data.
They were used for microphone [107]] and loudspeaker
identification [45], [54]. The results in [45] show that
their performance is comparable to the CNN for loud-
speaker identification.

D. Commonly used performance criteria for classifiers

We now give an overview of common performance metrics
used in the literature. The first metrics are commonly used
and it makes no sense to point to specific papers that use
them. In the next section, we will give some concrete results
corresponding to these metrics.

1) All of the following metrics are expressed based on
the following quantities: the true positives TP, false
negatives F'N, true negatives T'N and false positives F/P.

2) Accuracy is the ratio between the number of correctly
identified items and the total number of items:
Accuracy = (TP + TN) /(TP + FP + TN + FN).
The validation accuracy can be also computed as:
Accuracy = 1 — kfoldLoss, where kfoldLoss is the
classification error using k-fold cross validation.

3) Precision is the ratio of items correctly classified as
positive: Precision = TP /(TP + FP).

4) The recall, or True Positive Rate (TPR), is the ratio of cor-
rectly identified items out of all items that actually belong
to the positive class: Recall = TPR = TP /(TP + FN).

5) True Negative Rate (TNR) is the ratio of classified items
that are genuinely negative: TNR = TN /(FP + TN).

6) Fl-score, also referred as the F-measure, is the
harmonic mean between the precision and recall:
F1 = (2 x Precision x Recall) /(Precision+ Recall).



7) False Acceptance Rate (FAR) is the ratio of negative
items classified as positives: FAR = FP /(TN + FP).

8) False Rejection Rate (FRR) is the ratio of positive items
classified as negatives: FRR = FN/(TP + FN).

Other metrics which are rarely used include the purity [114]]
and the Adjusted Rand Index (ARI) [22]], [114], [L15].

E. Application scenarios

There are many areas that can benefit from smartphone
fingerprinting technologies; including include device authen-
tication, various day-by-day applications and even forensics
investigations. We discuss each of them next.

1) Authentication: Device authentication and multi-factor
authentication based on a transducer fingerprint can minimize
user interaction and reduce the vulnerabilities caused by weak
security tokens, such as passwords. The unique fingerprint
may act as one factor in user (or device) authentication which
is specifically important for IoT applications where devices
may not have a user interface or cannot be easily accessed
(e.g., they are placed in an inconvenient location) while fast
and secure authentication mechanisms are needed. There are
various works which use the device fingerprints in the scope
of authentication as we outlined next.

Generic device authentication. The PUFs extracted from
camera sensors are proposed for authentication by using photo
response non-uniformity (PRNU) patterns [23]], the dark signal
non-uniformity (DSNU) or fixed pattern noise (FPN) [57].
Live streaming surveillance footage is used for authentication
in [61]. Microphones and loudspeakers are used in [116] for
smartphone identification by exploiting the frequency response
of a speaker-microphone pair belonging to two wireless IoT
devices (this offers an acoustic hardware fingerprint). Audio
signals with frequencies between 4kHz and 20kHz, having an
increment of 400Hz, are emitted by a smartphone and recorded
by another one while authentication relies on the correlation of
the signals. Microphone fingerprints based on ambient sounds
were also proposed for authentication [117]. Accelerometer
fingerprints were proposed in a web-based multi-factor au-
thentication scheme [19]]. Some works have merged between
data from multiple sensors such as accelerometer, gyroscope
and camera for a robust smartphone authentication [92f]. Also,
acceleration, the magnetic field, orientation, gyroscope sen-
sors, rotation vector, gravity and linear acceleration are used in
[L6] to extract smartphone fingerprints for authentication in the
context of web applications. The hardware fingerprint of IoT
sensors has been used for secret-free authentication in [118]].
Authentication schemes for smartphones and IoT devices were
also recently surveyed in [119].

Specific environments for authentication. Some works have
been more specific regarding the exact area of application.
One specific scenario which seems to be more interesting are
the vehicular environments. In [45] smartphone fingerprinting
is performed from data recorded by in-vehicle infotainment
units. The smartphone emits a linear sweep between 20Hz and
20kHz while the infotainment unit records the sounds. Also,
[120] proposes an in-vehicle authentication protocol between
the smartphone and the infotainment unit. Specific acceleration

patterns in various transportation environments have been also
studied in the scope of device-to-device authentication [121]].

2) Specific applications for sensor data: In what follows
we show some positive use cases of sensor data but we must
emphasize that exposing this data adds privacy risks for users
as well. Some works have considered activity or transporta-
tion mode recognition based on accelerometer patterns [122],
[123], [124]. Besides activity recognition, the accelerometer
and other sensors were used for daily life monitoring and
health recommendations [125]]. Driving style recognition and
driver behavior classification [126]], [127], [128], [129]], [130]
is another application from which car rental services or insur-
ance companies may benefit. The accelerometer data has been
used for road condition monitoring [131]], real-time pothole
detection [132] or gait recognition [133]. Data from motion
sensors has been also proposed for theft detection [134]].
IoT sensor fingerprints are also commonly used for detecting
attacks, unauthorized firmware modifications or fault diagnosis
[8]. Another application mentioned in a recent survey is sensor
quality control [4].

Privacy concerns. Smartphone fingerprints can be exploited
for tracking users which is a serious privacy concern. Motion
sensors, i.e., accelerometers, have been used for tracking users
[L1], tracking metro riders [135] and detecting activities from
the metro station [136]. Other works discuss preventing pri-
vacy risks for distinct data, e.g., cameras [68]] or loudspeakers
[9l, [55]. Smartphone operating systems are increasingly con-
cerned with the exploitation of sensor data by apps for device
fingerprinting and user tracking purposes. As a consequence,
additional restrictions to accessing such (meta) data are being
added.

3) Forensics investigations: A complementary topic are
forensics investigations. Microphones [86], [107] and cameras
(331, [77], 1991, [114] have been commonly discussed in the
context of forensics investigations since they can be used for
finding (suspected) criminals by recognizing their smartphones
based on the sounds or images recorded in connection with
the respective crime [137], [138]. Anti-forensics techniques
have been discussed to falsify the source of audio signals by
adding specific noise [51]]. Another recently emerged topic is
combating the dangerous effects of the Al. Machine learning
techniques are already being employed to create deepfake au-
dio or video recordings. These applications use deep learning
to create very realistic recordings [139]. This technology can
be used to manipulate the public opinion by creating fake news
or for public persons defamation, which endangers national
security and can be used as a tool by the organized crimeﬂ
To combat the dangerous effects of deepfake applications,
deepfake detection algorithms are (currently) not very efficient,
but source camera identification can be used to improve the
results [140], [141]. By using unique fingerprints extracted
from cameras or microphones, deep fakes could potentially
mitigated by creating an end-to-end trust chain to the raw
sensor data.

Uhttps://lionbridge.ai/articles/deepfakes-a-threat-to-individuals-and-
national-security/
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Fig. 8. Camera sensor: Mean of the Euclidean distance for distinct devices
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Fig. 9. Camera sensor: Mean of the Euclidean distance for identical devices

III. BRIEF COMPARATIVE ANALYSIS OF SENSOR DATA

To bring a clearer image on the quality of data retrieved
from smartphone transducers, in this section we briefly present
some concrete results. As an experimental basis, we compare
data from 5 distinct and 5 identical smartphones.

A. Brief experiments with smartphone camera identification

We now evaluate the inter-distances for 5 distinct devices
(Samsung Galaxy S7, Samsung Galaxy A2ls, Allview V1
Viper I, LG Optimus P700 and Samsung Galaxy J5) and
the intra-distances for 5 identical devices (Samsung Galaxy
J5). We select only the green channel because it has more
encoding power, i.e., there are 2 green pixels for every red
and blue pixel, and filter each image using a wiener?2
filter. To extract the DSNU from each image we compute
the difference between the original image and the filtered
image. The noise which results is used to compute the Eu-
clidean distances between devices. To clarify the computation,
the distance between two distinct images is computed as

Z?ff’ 8,240 (a; — bi)o‘ where a;, b; are the DSNU coefficients
extracted by the DCT transform (see [142] for details). The
4,458,240 values correspond to the number of coefficients that

can be extracted from a 1,920x2,322 pixel matrix.

1) Distinct smartphones: We captured 50 dark images with
each device. Since devices may have different resolutions, we
consider only the top left corner from each image leading to
images of equal sizes, i.e., 1,920x2,322. In Figure @ we show
the results as a heatmap (left) and numeric values (right). The
values form the main diagonal are clearly much lower than
the rest, which means that devices can be easily identified.

2) Identical smartphones: In case of identical devices, we
used the dataset from [142] which contains 50 dark pictures
captured by 5 identical Galaxy J5 cameras. To compute the
distance for a single smartphone we split the dataset into two
distinct datasets, i.e., one with 25 pictures chosen randomly
and another one with the rest of 25 pictures. In Figure [9] we
show the results as a heatmap (left) and numeric values (right).
The values form the main diagonal are lower than the rest of
the values which means again that the devices can be identified
correctly with ease.
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Fig. 10. Microphones: Mean of the Euclidean distance for distinct devices
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Fig. 11. Microphones: Mean of the Euclidean distances for five identical
devices (50 measurements)

B. Brief experiments with microphone identification

Using the public dataset from [93] we evaluate the inter-
distances for 5 distinct devices (Samsung Galaxy S7, Samsung
Galaxy A21s, Allview V1 Viper I, LG Optimus P700 and Sam-
sung Galaxy J5) and the intra-distances for 5 identical devices
(Samsung Galaxy S6 smartphones). We use the live recordings
of hazard lights to separate between distinct devices and the
prerecorded vehicle’s horn sound to separate between identical
devices, according to the public dataset from [93]]. From each
recorded sound we extract the power spectrum which is used
to compute the mean of the Euclidean distances between
devices. Each file contains 4,096 samples which correspond to
a frequency range between OHz and 22,050Hz at a resolution
of 5.384615Hz (which results in 4,096 sampling points).
Therefore, the distance between two microphone samples is

computed as: Z?Siﬁ (a; — bi)2 where a;,b; are the power
spectrum coefficients (amplitudes) for the two microphones
represented as real numbers (floating points). The values of
these coefficients were usually in the range of 0 to 70db.

1) Distinct smartphones: The dataset in [93] contains 500
measurements with distinct devices of hazard lights sound
for which we compute the mean of the Euclidean distances
(between each pair of smartphones). To compute the distances
for a single smartphone, we split the dataset into two distinct
datasets each of 250 measurements selected randomly and
extract the distances between the two. In Figure [T0] we show
the results as a heatmap (left) and numeric values (right). The
values from the main diagonal are lower than the rest of the
values. While the differences are smaller than in the case of
camera sensors, the microphones can still be clearly separated.

2) Identical smartphones: For this case, the dataset in [93]]
contains 50 measurements with identical microphones of the
same Samsung Galaxy S6 which records a car honking sound
generated by a Hi-Fi system. To compute the distance for
identical devices, we split the dataset in two random sets
of 25 measurements. In Figure [T1] we depict the mean of
the Euclidean distances between each pair of smartphone
microphones. Again, the devices separate clearly as the values
from the main diagonal are lower than the rest of the values.
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Fig. 12. Loudspeakers: Mean of the Euclidean distance for distinct devices
(4 measurements)

C. Brief experiments with loudspeaker identification

Using the public dataset from [45], we compute the inter-
distances for 5 distinct smartphones and the intra-distances
for 5 identical Samsung Galaxy J5 smartphones. The dataset
contains a linear sweep between 20Hz and 20KHz played
by the smartphones and recorded by an infotainment head-
unit. The distance between the smartphones and the head-
unit was 1 meter. To evaluate the inter-distances for distinct
devices (Samsung Galaxy S7, Samsung Galaxy A21s, Allview
V1 Viper I, LG Optimus P700 and Samsung Galaxy J5) we
performed 5 additional measurements with each smartphone
in the same circumstances as in the dataset from [45]]. For
each recorded sound we extract the power spectrum, which is
used to compute the mean of the Euclidean distances between
devices. Each file contains 1,914 samples which correspond
to a frequency range between 700Hz and 11kHz with a
resolution of 5.384615Hz. The distance between two samples

is 232114 (a; — bl-)2 where a;,b; are the power spectrum
coefficients (amplitudes) for the two speakers represented as
real numbers (floating points).

1) Distinct smartphones: We select 5 measurements in
a random order and compute the mean of the Euclidean
distances between each pair of smartphones. To compute the
distance for a single smartphone we split the dataset into
two equal datasets containing random samples. In Figure [12]
we show the results as a heatmap (left) and numeric values
(right). Again, the values from the main diagonal are lower
than the distances between distinct devices. Compared to
microphones, the distances are more variable which suggests
that microphones are a better alternative for classification (still,
not as good as camera sensors).

2) Identical smartphones: The dataset contains 100 mea-
surements with identical microphones for the same Samsung
Galaxy J5 smartphone. To compute the distance for the same
device we randomly split the dataset in two equal subsets.
In Figure [I3] we depict the mean of the Euclidean distances
between each pair of smartphone loudspeakers. The distance
between the smartphones A and C is lower than the values
from the main diagonal, which means that the loudspeaker
C was misidentified as A and vice versa. This suggests that
simple inter and intra-distances are not enough for separating
between loudspeakers. Indeed, for a better separation between
two loudspeakers the work in [45] has used two deep neural
networks, a BiLSTM and a CNN.

D. Brief experiments with accelerometer identification

Now, we evaluate the inter-distances for distinct devices
(Samsung Galaxy S7, Samsung Galaxy A2ls, Allview V1
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Fig. 13. Loudspeakers: Mean of the Euclidean distances for five identical
devices
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Fig. 14. Accelerometers: Euclidean distances for five distinct devices
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Fig. 15. Accelerometers: Euclidean distances for five identical devices

Viper I, LG Optimus P700 and Samsung Galaxy J5) and intra-
distances for 5 identical devices (Samsung Galaxy J5). We
collected data at a sampling rate of 10 ms in an environment
with constant vibrations. The data is scaled and aligned to
have the same amplitude and also time-aligned to compute
the Euclidean distance. The amplitudes on each axis are
squared, summed and the square root extracted to get the
overall amplitude, i.e., a = y/a% + a? + a% .The distances
between devices are computed on subsets of 5,000 elements.
To compute the intra-distance we choose several samples, split
them in four subsets of the same size and we compute the mean
of the Euclidean distances between two subsets randomly
selected. The distance is thus computed as ngio (a; — b;}
where a;, b; are the amplitudes.

1) Distinct smartphones: In Figure [[4 we show the results
as a heatmap (left) and numeric values (right). In case of inter-
distances, the values from the main diagonal are lower than
the rest of the values, allowing some separation, though not
as clear as in case of any of the previous transducers (camera
sensors, microphones and loudspeakers).

2) Identical smartphones: In Figure T3] we show the results
for identical smartphones as a heatmap (left) and numeric
values (right). In case of intra-distances, again the values
from the main diagonal are lower than the rest of the values,
but the intra-distances are slightly reduced. This suggests
the same conclusion that accelerometer imperfections can be
used to separate between devices, but likely produce a poorer
separation compared to other transducers.

E. Overall interpretation of heatmap data

The previously presented heatmaps with data collected from
all four sensor show significant differences. We now try to
briefly clarify why it is so. Smartphone camera sensors give a
significantly higher amount of information compared to other
sensors, i.e., microphones, loudspeakers or accelerometers.



Concretely, the resolution of the images was 1,920x2,322
pixels for the cameras that we used (or we cropped the image
to this size in case of higher resolutions), while each pixel
encodes 24 bits of information (1 byte for each color R, G,
B). This leads to a matrix of 1,920x2,322 bytes for each color
on which we compute the Euclidean distances. That is, the
Euclidean distance is computed as a sum of more than 4
million values and unsurprisingly leads to values in the order
of hundreds of thousands, as can be seen in Figures[8|and[9] In
case of loudspeakers and microphones, the audio signal is in
the range of 20Hz — 20kHz and we extract the power spectrum
from it which yields a vector of 1,914 coefficients expressed
as 24 bit floats. Therefore, when we compute the Euclidean
distances, this is done over a vector of less than 2 thousand
values and results in a much smaller sum compared to camera
sensors, generally in the order of tens of thousands at most
as can be seen in Figures [T2] and [T3] For accelerometers, the
sampled data is on 24 bits (8 bits for each axis) and we choose
a vector of 5,000 elements. However, as done in most previous
works and explained previously, we normalized the data on the
three axis in order to avoid orientation issues by extracting
the square root from the sum of squared accelerations, which
technically reduces the 24 bit data to at most 9 bits. Therefore,
the Euclidean distance is even smaller, less than 100 as can be
seen in Figures [T4] and [I3] Clearly, in case of all sensors, the
value of the Euclidean distances will depend on the specific
inputs and the previous discussion only tries to clarifies what
should be expected in general.

Another observation is that the intra-distances may seem un-
expectedly higher in case of the identical speakers from Figure
[[3] but this is easily explainable. Smartphone loudspeakers
are electromechanical devices that consist of a coil and a
plastic diaphragm which may be affected over time by various
environmental factors. The speakers from the dataset that we
used come from disassembled smartphones that had several
years of use in different conditions. Aging is very likely why
the inter-distances vary so much between otherwise identical
loudspeakers. Regarding the number of measurements, in the
dataset from [45] that we used, in case of different smartphone
models, only 5 measurements were made since the differences
were quite obvious and the separation immediate. In case of
identical speakers, 100 measurements were needed to make
the separation clearer since the results were much closer [45]].
This may also contribute to the variations.

The same information about the statistical distances is
also suggestive about the effectiveness of each fingerprint
type. Clearly, images are the most effective for fingerprinting
due the large amount of information that a sensors captures
and because an image can be taken in an instant. Second
to this are microphone and loudspeaker data, but this may
require seconds or more of collected data. For example in
the experiments from [45] a sweep signal took about 10
seconds, the experiments in [93] a car honking took about 1
second, hazard lights took about 2 seconds, wipers took about
3 seconds, etc. Accelerometers seem to be the least effective
as previous works used 30 seconds [11] or 3 seconds per
sample [[12], etc. Regarding the efficiency of the fingerprinting
process, it is worth mentioning that some scenarios may call
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Fig. 16. Overview of the camera identification techniques (left) and research
evolution (right)

for high efficiency. One such example is the advertisement
ecosystem, where users may access the websites only for brief
moments of time and a fast response is needed in order to
create unique user profiles and recognize them. Aspects related
to the advertisement ecosystem are mentioned in various
fingerprinting works like [3], [L1], [13], [143], [144], [145],
[[146]. Other apps may not require a fast fingerprint extraction
since they have access to sensor data for prolonged periods
of time, like various e-health, social-media or communication

apps.

IV. MOBILE DEVICE IDENTIFICATION BASED ON CAMERA
SENSORS

In this section, we survey works on device identification
from camera sensors. In Figure [I6] we show an overview on
the camera identification techniques and the amount of works
that has been done through the years. Almost half of the
surveyed papers use machine learning algorithms, including
deep learning techniques. A large number of these works,
about 17%, proposes PUFs, while 35% use other techniques,
e.g., thresholding, correlation, etc. The past three years account
for more than half of the publications we survey. In Table [IT]]
we compare the features, classifiers, results, number of devices
and datasets used in related works starting from 2006. In the
results column of Table |lII| we generally refer to the accuracy
reported by the works. However, not all of the works have
reported the accuracy and in this case we refer to other metrics
as stated in the table or in the accompanying text.

A. PUF-based approaches

Photo-Response Non-Uniformity (PRNU) noise is used in
[64] to build a PUF from camera sensors. The authors validate
their proposed method using 320 images from 9 cameras
and use the correlation function as classifier. In terms of
results, they obtain a False Rejection Rate (FRR) between
1.36 x 107! and 4.41 x 10~ depending on the applied
correction factor and JPEG compression. PRNU is also used
in [23] for camera identification. The noise is removed from
the images by applying a High-Pass filter and then the high
frequencies are used to obtain the camera fingerprints. The
authors use 14 cameras, i.e., one DSLR and 13 smartphones,
to validate the approach and the resulting correlation for full
images is between 0.0022 and 0.02. A different approach based
on dust spots from images captured by Digital Single Lens
Reflex (DSLR) cameras is proposed in [147]. Dust spots are
detected using the shape properties and a Gaussian identity
loss model. For the experiments, the authors use 4 cameras
and, to cluster them, a confidence value based on occurrence,



TABLE III

OVERVIEW OF VARIOUS WORKS WHICH IS PROPOSED FINGERPRINTING SMARTPHONES BASED ON THEIR CAMERA

no. work  year feature classifier results devices dataset
1. [64] 2006 PRNU correlation 9 n/a
2. 710 2006 lens radial distortion SVM 91% 3 n/a
3. 2007  peak signal to noise ratio (PSNR) correlation 4 n/a
4. 211 2008 PRNU and Maximum Likelihood correlation 6 n/a
5. [147] 2008 Dust spots, Gaussian intensity loss computing a confidence value for 99.1% 4 n/a
model and shape properties each matching dust spot
6. 2012 LBP multi-class SVM 98% 18 Dresden
7. 2013 SPN, high pass compare with SPN database 5 n/a
8. 30] 2013 PRNU + wavelet transform SVM 87.214% 14 n/a
9. 2014 FPN thresholding uniqueness 50.12%, na n/a
reliability 100%
10 2015 FPN thresholding uniqueness 49.37%, 5 n/a
reliability 99.8%
11. 2015 PRNU Hierarchical Search using precision 0.91 1174 Flickr
MapReduce
12. 2016 highpass filter CNNmodels,compared with CNN:91.9%, 33 own + Dresden
AlexNet and GoogleNet AlexNet:94.5%,
GoogleNet:83.5%
13. [28] 2016 PRNU + LADCT threshold 23 own + Dresden
14. 2016 LPQ and LBP multi-class SVM 100% 14 Dresden
15. 2016 DVS based PUF -
16. 2017 SPN and correlation ADMM and spectral clustering F1 97% 31 Raise + Dresden
17. [22) 2017 PRNU correlation 39 Dresden
18. 2017 PRNU correlation 14 n/a
19 2017 DCT + PCA RF based ENS 99.1% 10 Dresden
20 2017 Radial Basis Kernel SVM >99% 7 own + Dresden
21 2017 I-Vector SVM 99.01% 8 Dresden
22 2017 SRAM PUF 20 no
23 2018 optical (photonic crystal) - 14 n/a
24.  [20] 2018 DSNU thresholding 10 n/a
25. | 2018  linear dependencies among SPN Large-scale sparse subspace F1 92% 107 Dresden + Vision
26. 2018 average pixel value SVM 87.6 27 Dresden
27. 2018 social network (facebook) ResNet50 96% 5 Dresden
28. 2018 DCT SEA+HF TPR 88.54 57 Dresden
29. 311 2018 PRNU - TPR 70.55% 57 Dresden
30. [42] 2018 LBP and LPQ features CNN 99.5% 10 SPCUP
31. 2018 split image CNN 100% 74 Dresden
32. 2019 inherent information camera fingerprint ordering F1 90% 53 Dresden
33, [114] 2019 SPN approximation Markov and Hybrid Clustering F1 86.6% 35 Vision
34, [32) 2019 PRNU external and (CVIs) 142 Dresden + criminal
35. 4] 2019 G-PRNU 2D cross correlation 100% 35 Vision
36. 23] 2019 PRNU correlation F1 81.8% 7 Dresden
37. 2019 - CNN 98% 3 Miche-1
38. 2019 - CA-CNN 97.37% 74 Dresden
39. 2019 CNN based denoise binary classification F1 44.4% 125 own + Dresden + Socrates +
Vision
40. 2019 multi-scale HPF CNN+ ResNet 84.3% 125 own + Dresden
41 176] 2019 transfer learning SVM, Logistic Regression, and 100% 5 their PUBLIC
RF + CNN
42. 2019 PRNU correlation 25 Dresden
43. [T 2019 Supervised pipeline (rich features, CFA WSVM, DBC, SSVM, PISVM 98.68% 312 Dresden + ISA + Flickr
and CNN derived features) and OSNN
44. [101] 2019 top left corner max(log(PCE),0) n/a 90 yes
4s5. [1511 2019 DATASET correlation
46. 2019 adaptive thresholding correlation 72 own
47 2019 PRNU CNN > 80% 87 Dresden + Vision
48 [33] 2019 PRNU and noiseprint extracted by SVM, LRT and FLD 95.2% 625 own (public) + Dresden +
CNN Vision
49. 671 2019  Spatial Domain Averaged (SDA) correlation TPR > 83.1% 78 Vision + Nyuad-MMD
50. 2019 Discrete wavelet transform (DWT) BN, L, LMT, MLP, NB, NBM, 99.25% 4  TITD-I1 + AMI + WPUT + AWE
RE SL, SVM
51. 2019 DVS based PUF - R >9% n/a
52. 2020 WLBP texture descriptor SVM 99.52% 9 Dresden
53. 33l 2021 PRNU RESNet101 + SVM 99.58% 28 Vision + Warwich + Daxing +
own
54. [152] 2021 - EfficientNet 99.1% 27 FODB - yes
55. 2021 SPN and PRNU thresholding 95.03% 34 Vision
56. 2021 Gaussian blurring and removing LSB correlation correlation< 0.075 48 own + Dresden
57. [103] 2021 Remnant Block CNN +RemNet 100% 18 Dresden
58. 2021 PRNU peak to correlation ratio FPR>5% 70 Flickr
59. [153] 2021 demosaicing residual Ensemble 98.14% 68 Dresden
60. [T12] 2021 patchwise mean, variance scoring and Res2Net 92.62% 74 Dresden
K-means clustering
61. 2021 - MCIFFN 97.14% 73 Dresden
62. 2021 demosaicing CNN >99% 35 Vision
63. 2021 PRNU CNN, GoogleNet, SqueezeNet, Fl >91% 18 own + Vision
Densenet201 and Mobilenetv2
64. [142] 2022 DSNU NN, LD, ENS, SVM, NB, KNN 97% 6 own




smoothness and shift validity metrics for each dust spot is
computed. The identification reaches 99.1% accuracy.

Specific PUFs for distinct technologies for CMOS sensors
are proposed in the literature. A PUF for 65 nm CMOS sensors
using hardware changes is proposed in [56]. A thresholding
technique is used to validate the method and results are
obtained at temperature fluctuations between 0° C and 100°C
with a uniqueness of 50.12% and a reliability of 100%.
Another PUF based on FPN is proposed in [57]. To validate
the results, 5 chips of 180 nm camera sensors are used and for
clustering the thresholding approach is applied. At temperature
variations between 15° C and 115° C the uniqueness is 49.37%
and the reliability 99.80%. The authors in [149] propose an
event-driven PUF for 1.8V 180nm CMOS sensors based on
Dynamic Vision Sensor (DVS). At temperature fluctuations
between -35°C and 115°C the uniqueness is 49.96% and
the reliability in between 96.3% and 99.2%. Another PUF
for 180nm CMOS sensors based on DVS is discussed in
[61]. A reliability greater that 98% is obtained at temperature
variations between -45°C and 95°C. An optical PUF for
65nm CMOS sensors based on FPN is proposed in [60].
The experiments are performed on 14 CMOS sensors and to
validate the method thresholding and 1-D autocorrelations are
used. The authors obtain an inter-chip Hamming distance of
49.81% and intra-chip Hamming distance of 0.251%.

A PUF for smartphone CMOS sensors based on DSNU
is proposed in [20]]. The image is de-noised after which the
DCT is applied, high-frequencies are extracted and then the
IDCT is applied. Finally, the thresholding method is applied to
remove bright pixels. The approach is validated on 5 identical
sensors from 2 distinct smartphones and the obtained inter-
chip Hamming distance is between 46% and 54% while the
intra-chip Hamming distance is lower than 10%. An PUF
based on camera sensor SRAM is proposed in [59]. The
average intra-chip Hamming distance is 0.51% and the average
inter-chip Hamming distance is 49.95% for 20 devices.

B. Machine learning approaches

A significant number of papers addressing identification
with machine learning techniques are using the SVM classifier.
The lens radial distortions are used in [[71] as features for the
SVM classifier. For three cameras the SVM classifier reaches
an accuracy of 91%. Also, the multi-class SVM is used in [43]],
but the features are extracted based on Local Binary Patterns
(LBP). The average accuracy reaches 98% for 18 cameras.
PRNU and the wavelet transform are the features used by the
SVM classifier in [30]. The average accuracy reached for 14
cameras models from 5 manufactures is 87.214%. Local Phase
Quantization (LPQ) and Local Binary Pattern (LBP) are also
used as input for the SVM classifier in [72]. For 14 camera
models, the accuracy in between 98.13% and 100%. SVM with
Radial Basis Kernel is used in [73]. In the experiments, three
distinct cameras are used, and the overall prediction accuracy
is grater than 99%. Also, in [74] an accuracy of 99.01% is
reached for 8 camera models using the SVM classifier. For
the green and red channels of the images, the authors extract
an I-Vector using the Local Binary Pattern (LBP). A coupled

feature representation is used as input for the SVM classifier
in [75]. For 27 cameras, the identification accuracy reaches
87.6%. Weber’s and LBP (WLBP) features are discussed in
[44]]. The features are translated in a vector which is used
as input for the SVM classifier again. This method reaches
99.52% accuracy for 9 cameras.

Also, deep learning algorithms are used in several research
works. CNN, AlexNet and GoogleNet are used in [95] for
camera identification. The images are first filtered using a
high-pass filter and then deep learning algorithms are applied.
For 33 cameras the accuracy is 91.9% in case of CNN, 94.5%
in case of AlexNet and 83.5% in case of GoogleNet. A CNN
based on features extracted using the Local Binary Pattern
(LBP) and Local Phase Quantization (LPQ) is proposed in
[42]. For 10 camera models, the accuracy is between 84.1%
and 99.5%. In [96], the images are split into &k patches using
sliding windows and the extracted features are used as input
for a CNN. With this approach, the authors reach an average
accuracy close to 100% for 74 cameras. CNNs were also used
for source camera identification in [97)]. The authors in [98]
build a Content-Adaptive Convolutional Neural Network (CA-
CNN). The detection accuracy achieved is between 89.56%
and 97.37% for 74 cameras. A method for source camera iden-
tification using images from Facebook is proposed in [113].
The authors propose a deep learning neural network based
on an existing ResNet50 network. The network is tested with
photos from 5 cameras which are uploaded to Facebook and
then downloaded back. The maximum classification accuracy
was 96%.

A CNN is used in [99] to extract the noise of the images.
For 125 cameras the F1-score is between 0.205 and 0.444 and
the average precision is between 0.144 and 0.399. Transfer
learning and CNN are used in [[76] for feature extraction while
for camera identification machine learning algorithms, i.e.,
SVM, logic regression and Random Forest (RF), are used.
In the experiments, 5 cameras are classified with SVM as a
final layer with 98.82% RANK-1 accuracy. With RF 97.16%
RANK-1 accuracy was reached, while with logic regressions
98.57% RANK-1 accuracy was reached. The RANK-5 accu-
racy was 100% for all the involved classifiers The authors in
[100] used a multi-scale High Pass Filter (HPF) to remove the
noise from the images. The authors use the multi-task learning
approach based on CNN and ResNet for camera clustering.
This approach reaches 84.3% accuracy for 125 devices. In
[77], a vector which contains features extracted using a statis-
tical descriptor, CFA (Color Filter Array) and CNN-derived is
used as input for multiple classifiers: Weibull-calibrated SVM
(WSVM), Decision Boundary Carving (DBC), Specialized
SVM (SSVM), SVM with Probability of Inclusion (PISVM)
and Open-Set Nearest Neighbors (OSNN). The top left corner
of the images are used as input for a CNN in [101]. For 74
devices the accuracy is between 0.943 and 0.961 for the same
smartphone model and between 0.98 and 0.994 for the same
brand. The accuracy unfortunately drops to 0.475 when a pool
of 74 devices is used.

PRNU features and classification using CNN are discussed
in [34]. In [33] a combination of PRNU and noise-print
extracted by a CNN is used as feature, while for classification



the results from three classifiers are used: SVM, Likelihood-
Ratio Test (LRT) and Fishers Linear Discriminant (FLD). A
maximum accuracy of 0.952 is reached with SVM. In [35],
PRNU extracted from images is used as input for a neural
network based on ResNet101 and SVM. For 28 devices, this
approach reaches an accuracy of 99.58%. A neural network
based on CNN, namely EfficientNet, is discussed in [152].
For 23,000 images captured by 27 smartphones cameras this
neural network reaches a 99.1% accuracy. CNN and RemNet
are used in [103]. This approach reaches a 97.59% accuracy
for 18 distinct cameras. The use of the Ensemble classifier
based on the demonsaicing residual features extracted from the
CFA filter is discussed in [[153]. The authors reach an average
accuracy of 98.14% for the identification of 68 cameras. Also,
in [104] the demosaicing approach for feature extraction is
discussed. For clustering, a CNN is used which reaches an
accuracy greater than 91% on 35 devices for WhatsApp images
and 95% for YouTube scenes. Different pre-trained CNNs,
i.e., GoogleNet, SqueezeNet, Densenet201 and Mobilenetv2
are discussed in [37]. For 4,500 images captured by 18
smartphones, the authors reach an Fl-score greater than 91%.
Features extracted using patchwise mean, variance scoring and
K-means clustering are discussed in [[112]]. For classification,
a Res2Net is used which reaches 92.62% accuracy for 74
cameras. A Multiscale Content-Independent Feature Fusion
Network (MCIFFEN) is discussed in [[154].

In [40]], the features are extracted from images using DCT
and then the ensemble classifier is used. To improve the results,
the authors also use Principal Component Analysis (PCA).
For 10,507 images captured by 10 cameras they reach an
accuracy of 99.1%. In [90], features extracted by the Discrete
Wavelet Transform (DWT) are used with 9 classifiers: Bayes
Net (BN), Logistic (L), Logistic Model Tree (LMT), Multi
Layer Perceptron (MLP), Naive Bayes (NB), Naive Bayes
Multinomial (NBM), Random Forest (RF), Simple Logistic
(SL) and SVM. The average accuracy for the identification of
4 cameras is 99.25%.

C. Other approaches

Adaptive thresholding is used in [62] for camera identifica-
tion. For 74 cameras, the authors obtain an inter-correlation
between 0.1 and 0.45 and intra-correlation between 0.46 and
0.7. The authors in [26] discuss camera identification based
on PRNU using correlation. The experiments are done on
800 images from the Dresden database containing 25 distinct
cameras.

SPN (Sensor Pattern Noise) and correction are discussed
in [66] for camera identification. For clustering, the authors
proposed an Alternating Direction Method of Multipliers
(ADMM) and spectral clustering. For 31 cameras, they obtain
an F1 score between 0.90 and 0.97. PRNU and the Locally
Adaptive Discrete Cosine Transform (LADCT) are used in
[28]] for camera identification. The authors use two datasets:
their own dataset with 13 cameras, for which they obtain a
FNR between 5.46% and 21.27% and a FPR between 0.48%
and 1.77%, and the Dresden dataset with 10 cameras for
which they obtain a FNR between 0.93% and 14.11% and

a FPR between 0.10% and 1.74%. SPN extracted from the
green channel using a high pass filter is discussed in [148].
For 5 cameras, a FNR of 53% and a FPR of 10.75% were
obtained. Also, in [36]] SPN and PRNU are used to cluster 34
camera models. The features extracted from PRNU are used
as input for a hierarchical search using MapReduce in [29].
For 1,174 cameras a mean precision of 91% was obtained. The
features extracted using the linear dependencies among SPN
are used in [115] for camera identification using large-scale
sparse subspace clustering. For 107 cameras the precision is
0.92, recall is 0.88, the Fl-score is 0.92 and ARI is 0.88.
PRNU is also used in [22]], [24], [25], [27]], [31] and [32].

The authors in [114] used the SPN approximation for feature
extraction while for classification they use Markov clustering
and a newly proposed hybrid clustering algorithm. For a
dataset with 35 smartphones the precision is 0.997, the recall
is 0.765, the Fl-score is 0.866, the ARI is 0.863 and the purity
is 0.997. A ranking index for the quality of each fingerprint is
used in [150] to cluster cameras. For 10,960 images captured
by 53 cameras the precision is almost 1, the recall is between
0.65 and 0.85 and the Fl-score is between 0.7 and 0.9.

In [41], using DCT, the low-frequencies of SPN are removed
from the images and the peaks are suppressed using the
Spectrum Equalization Algorithm High-Frequency (SEA-HF).
For 14,594 images from 57 cameras the TPR is 88.54%.
Spatial Domain Averaged (SDA) frames are used in [67]]. The
Peak Signal to Noise Ratio (PSNR) is used in [65] for camera
identification. PRNU obtained using the Maximum Likelihood
estimator is used in [21] for feature extraction from images.
For 6 devices, with a FAR fixed at 10~° the FRR is between
9.6%10~2 and 8.4%10~15. In [68], a method based on Gaussian
blurring and removing the Least Significant Bit (LSB) from
images is proposed. The authors obtain a correlation lower
than 0.075 for 11,787 images captured with 48 cameras. The
authors in [155] and [156] survey some works focused on
camera source identification.

D. Datasets for camera identification

The most commonly used datasets for camera identification
are enumerated below:

1) Dresden [[157]] contains 14,000 images of various indoor
and outdoor scenes captured by 73 digital cameras;

2) Vision [158] contains 34,427 images and 1,914 videos in
their original format and in their social network format,
i.e., Facebook, YouTube and WhatsApp, captured by 35
devices from 11 brands;

3) Warwick [159] contains more than 58,600 images cap-
tured by 14 cameras;

4) ISA UNICAMP [160] contains 3,750 images from 25
cameras, i.e, 150 images per camera;

5) Daxing [151] contains 43,400 images and 1,400 videos
captured by 90 smartphones from 22 models and 5
brands;

6) SPCUP [161] is the IEEE Signal Processing Cup for cam-
era model identification involving teams of undergraduate
students, the challenge dataset contains 10 cameras and
200 images collected for each of them;



7) Michei [[162] contains 3,732 images from 3 smartphones;

8) FODB [152] contains 23,000 images of 143 scenes cap-
tured by 27 smartphone cameras;

9) the authors in [[76] provide 3,900 images from 3 camera
models;

10) the authors in [33]] provide a dataset which contains
21,158 images captured by 625 devices;

11) the work in [90] uses the datasets for ear biometrics
from the following works: IITD-I [163], AMI [164]],
WPUT [165]], AWE [166]] to test a wavelet based camera
identification method.

V. SMARTPHONE IDENTIFICATION BASED ON
MICROPHONES

In this section, we survey works addressing mobile device
identification based on their microphones. Table [[V| compares
the features, classifiers, results, the number of devices and
whether the datasets used in these works are public. We
discuss them in detail in what follows. In the results column
from Table [[V| we generally refer to the accuracy reported by
the works. As already stated, some works did not report the
accuracy of their method and in this case we refer to other
metrics as presented in the table or in the accompanying text.

A. Microphone identification based on synthetic sounds

Distinct music genres, i.e., metal, pop, techno and instru-
mental, as well as sine waves and white noise are used in
[78]]. The Fourier coefficients are extracted from the recorded
sounds and distinct classifiers are applied, i.e., NB, multi
class SVM, decision trees and KNN. This approach was
tested with 7 microphones and the highest accuracy was
93.5%. Ambient noise generated by a fan cooler is used for
microphone identification in [69]. The authors use inter-class
cross correlation for clustering 8 commercial microphones
based on 24 recordings and reach a 100% correct classifi-
cation. Indoor sounds, outdoor park areas and street noises
are used in [79] for microphone identification. One class
classification algorithms, i.e., Gaussian Model (GM), Gaussian
Mixture Model (GMM), KNN, Principal Component Analysis
(PCA), Incremental Support Vector Machine (ISVM) are used
to identify 5 microphones. In terms of results for indoor
measurements, the recall is between 0.774 and 0.859, for park
noise between 0.7354 and 0.885 and for street noise between
0.206 and 0.784. This was improved, using a Representative
Instance Classification Framework (RICF) proposed by the
authors, to get a recall between 0.741 and 0.874. In [81] a
method based on FFT features extracted from ambient noise
is discussed. For 21 devices, the maximum accuracy achieved
is 96.72% with the SVM classifier.

Sine waves at 1kHz and 2kHz are used in [83]]. For the
classification of 32 smartphones, the authors use SVM, KNN
and a CNN. They test the proposed approach at distinct SNR
(Signal-to-Noise Ratio) levels. The accuracy for a 20dB SNR
is 96% for the 1kHz wave and 96.8% for the 2kHz wave,
while for 10dB SNR the accuracy drops at 67.27% for 1kHz
and 82.75% for 2kHz. Also, the work in [84] uses sine waves
at 1kHz and the SVM, KNN and CNN classifiers. For 34

smartphones, at 10dB SNR the accuracy reaches 80% for
CNN, 40% for SVM and 10% for KNN. In [87], in addition to
the 1KHz sine wave, a pneumatic hammer and gunshot sounds
are also used. In [[169], the author generates 80 sine waves in
the range of 100Hz-8kHz and then uses an artificial neural
network with a single layer which achieves 100% accuracy
for 6 commercial microphones.

Ambient sounds from distinct places, e.g., bus, food court,
kids playing, metro, restaurant, etc. are used in [117]. The au-
thors extract 15 features from the time and frequency domains,
e.g., RMS, ZCR, low energy rate, spectral centroid, etc., and
apply three binary classifiers in cascade. This approach was
tested on 12 smartphones from 2 distinct models and the TPR
reached 81% for one model and 98% for the other.

B. Microphone identification based on human speech

Three classifiers, i.e., Radial Basis Functions Neural Net-
work (RBF-NN), Multi-Layer Perceptron (MLP) and SVM are
used in [80] for smartphone microphone identification using
the MFCC coefficients extracted from the human speech of
12 males and 12 females recorded with 21 smartphones. The
highest accuracy, i.e., 97.6%, was reached with RBF-NN. The
work in [46] uses GMM (Gaussian Mixture Model) and the
highest accuracy reached is 99.58%. The features they use
are the LPCC, PLPC, MFCC coefficients extracted from the
speech of four speakers recorded with 16 microphones. Also,
in [47] the MFCC coefficients extracted from human speech
are used with the SVM classifier to cluster 26 smartphones.
The accuracy achieved was 90%. The SVM classifier was
optimized with the Sequential Minimal Optimization (SMO)
algorithm. In [48] MFCC and LFCC with GMM and SVM
are used to cluster 14 smartphones. The achieved accuracy is
98.39%. In case of 16 devices by using the GMM and the
MEFCC coefficients extracted from human speech the highest
reported accuracy is 99.27% in [49]]. In [82]], GSV and MFCC
are used to extract the features from human speech. For
clustering, the SVM classifier is used and an error rate between
2.08% and 7.08% is reported for 14 devices.

Audio signals characteristics such as mean, standard devia-
tion, crest factor, dynamic range and auto-correlation are used
in [70] to fingerprint 2 identical microphones. The authors
in [50] used a neural network and Gaussian SVM for the
identification of 21 smartphones based on their microphones.
The features extracted with MFCC from human speech were
used as input for the classifiers. The reported accuracy reaches
88.1%. A band energy descriptor is proposed in [168] as
classifier. This approach reaches 96% accuracy for 170 devices
which record human speech. In [105], 40 smartphones are
identified with the highest achieved accuracy of 99% based on
human speech using CNN. The voice from 25 speakers is used
in [85)]. GSV and the Sparse Representation-based Classifier
(SRC) reaches an accuracy between 78.17% and 85.58% for
4 microphones. Human speech is also used in [31],[52], [86],
[106], [107] and [167].

A distinctive approach based on Electrical Network Fre-
quency (ENF) analysis is proposed in [88]]. For 7 devices, the
true positive rate is above 60%.



TABLE IV

OVERVIEW OF VARIOUS WORKS WHICH IS PROPOSED FINGERPRINTING SMARTPHONES BASED ON THEIR MICROPHONE

no. work year signal classifier results devices dataset
1. [Z8] 2009 synthetic sound NB, SVM, trees and KNN >93.5% 7 n/a
2. 169] 2012 synthetic sound inter-class cross correlation 100% 8 n/a
3. 179] 2012 synthetic sound GN, GNM, KNN, PCA, ISVM recall between 0.7354 and 0.885 5 n/a
4. [167] 2012 human speech MFCC +SVM 96.42% own (LIVE REC)
5. 180] 2014 human speech RBF-NN, the MLP and SVM 97.6% 21 own (MOBIPHONE)
6. 146] 2014 human speech LPCC, PLPC, MFCC + GMM 99.58% 16 own + TIMIT
7. 47 2014 human speech GMM + SVM with SMO 90% 26 n/a
8. 48] 2014 human speech MFCC, LFCC + GMM and SVM 98.39% 14 TIMIT and LIVE RECORDS
9. [146] 2014 synthetic sound Maximum-Likelihood 95% 16 n/a
10.  [81] 2015 ambient noise SVM >96.72% 21 n/a
11. [49] 2015 human speech MFCC + GMM 99.27% 116 TIMIT
12. [82] 2015 human speech GSV, MFCC + SVM error between 2.08% and 7.08% 14 LIVE database + TIMIT
13.  [70] 2016 - mean, std, creast factor, dynamic error: 1% - 3% 2 n/a
range, autocorr
14, [50] 2017 human speech MFCC, GSV + NN 87.6% 21 MOBIPHONE, T-L-PHONE
and SCUTPHONE
15. [168] 2018 human speech band energy difference descriptor >96% 172 n/a
16. [105] 2018 human speech CNN 99.3% 40 own + MOBIPHONE
17. [83] 2019 synthetic sound SVM, KNN and CNN around 96% 32 n/a
18.  [84] 2019 synthetic sound SVM, KNN and CNN CNN 80%, SVM 40%, KNN 10% 34 n/a
19. [169] 2019 synthetic sound artificial neural networks 100% 6 n/a
20. [85] 2019 human speech SVM, GSV, SRC 85.58% 4 Ahumanda
21, [86] 2019 human speech SVM-RFE and variance threshold 98.04% 24 own: CKC-SD, TIMIT-RSD
22, [51] 2019 human speech MEFCC + SVM 97% 16 TIMIT-RD + LIVE-RECORD
23, [52] 2019 human speech MECC + GMM 88.35% 7 n/a
24. [117] 2019 ambient noise RMS, ZCR, low energy rate, spec TPR: 81%, 98% 12 n/a
centroid, etc. + 3 classifiers
25. 871 2020 synthetic sound KNN, SVM and CNN >90% 34 n/a
26. [106] 2020 human speech CNN 99.56% 20 n/a
27. [88] 2020 - ENF + SVM TP >60% 7 n/a
28. [107] 2021 human speech CNN, LSTM, CRNN 98% 4 KSU-DB
29. 193] 2022 human speech (from [80]) and LD, ENS, TREE, KNN, SVM, 100% 32 own

collected in-vehicle sounds CNN

C. Datasets used for microphone identification

The following datasets for microphone identification are
publicly available:

1) TIMIT [170Q] is a speech database for voice recognition
which contains 6,300 sentences from 630 speakers, i.e.,
10 sentences from each speaker, 439 males and the
rest are females, recordings from this dataset were also
replayed and recorded by various works for smartphone
recognition, e.g., [49], [48], [82]. There are also several
re-issues of the TIMIT dataset, such as TIMIT-RSD [86]
which recaptured the dataset with 24 smartphones;

2) MOBIPHONE [_80] is a speech database which contains
recordings did with 21 smartphones. For each smartphone
there are 12 males and 12 females who read 10 sentences.
The speakers are selected from the TIMIT database;

3) T-L-PHONE [167], [48] contains speech recorded with
14 mobile phones from 6 brands;

4) SCUTPHONE [171] contains speech recorded with 15
distinct mobile phones from 6 brands;

5) Ahumanda [[172] contains speech recorded by 6 devices
from 150 males and 150 females;

6) CRC-SD [86] contains speech recorded by 24 smart-
phones from 7 brands (6 males and 6 females);

7) KSU-DB [173]] is a speech database which contains 136
speakers (68 males and 68 females) recorded with 4
devices in 3 environments;

8) Live recordings [167] containing 10 minutes speech from
a single speaker, recorded with 14 smartphones;

9) The microphone fingerprinting dataset from [93]] contains
19,200 samples with 16 different and 16 identical devices
that record various automotive specific sounds, e.g., car
honk, tiers, wipers, hazard lights, etc.

VI. SMARTPHONE IDENTIFICATION BASED ON
LOUDSPEAKERS

In this section, we survey some works which discuss mobile
device identification based on their loudspeakers. In Table
[Y] we compare the features, classifiers, results, number of
devices and datasets that are used for smartphone identification
based on loudspeakers. Compared to camera sensors and
microphones, there are far less papers addressing this topic.

A. Loudspeaker identification based on synthetic and natural
sounds

Two types of sounds are used for loudspeaker fingerprinting:
(i) synthetic sounds, such as cosine waves [35] and linear
sweeps [45] and (ii) natural sound such as instrumental, music
[9l, [53] and human speech [9], [53], [54].

The authors in [55] fingerprint 50 identical smartphones
based on a cosine wave between 14kHz and 21kHz, with
an increment step of 100Hz, emitted by each loudspeaker.
The smartphones are identified using the Euclidean distance
and an error rate around 1.55 * 107%% is reached. The
authors in [45], fingerprint 28 smartphones loudspeakers, out
of which 16 are identical loudspeakers placed in the same
smartphone case, using a linear sweep signal between 20Hz



TABLE V
OVERVIEW OF VARIOUS WORKS WHICH IS PROPOSED FINGERPRINTING SMARTPHONES BASED ON THEIR LOUDSPEAKER

no. work  year signal features classifier results devices dataset
1. [55] 2014 cosine at 14-21kHz in 100Hz increment Euclidean distance err.: 1.55 % 10~ %% 50 n/a
2. 191 2014  instrumental, human speech, song time and freq. domain features KNN GMM 98.8% 19 n/a
3. 53] 2014  instrumental, human speech, song time and freq. domain features KNN GMM 100% 52 n/a
4. |54] 2018 human speech MFCC and SSF (CQT) SVM, RF, CNN, BiLSTM 99.29% 24 own
5. [45] 2021 linear sweep 20-20.000kHz frequency response, roll-offs of linear approximations, KNN, 100% 28 yes

the power spectrum

RF, KNN, CNN, BiLSTM

and 20kHz which is recorded by an in-vehicle head unit. In
this work, the roll-off characteristics of the power spectrum
are used. For classification, a linear approximation as well as
machine learning algorithms, i.e., KNN, RF and SVM and
deep learning algorithms, i.e., CNN and BiLSTM, are used
(the later two deep-neural networks are the main subject of
the investigation). An accuracy between 95% and 100% is
achieved for identical smartphone speakers. In this work, the
authors also analyzed the influence of the volume level and
the speaker orientation angle in the fingerprinting process. For
four distinct smartphones the experiments are also done at
50%, 75% and 100% volume level, and the authors observe
that the fingerprints for each smartphone are clustered around
the volume level, but the smartphones can still be clearly iden-
tified. The same behavior was observed in case of experiments
for distinct loudspeaker orientation, i.e., 0°, 90° and 180°.

A total of 15 features in the time and frequency domain
ie., RMS, ZCR, low energy rate, spectral centroid, spectral
entropy, spectral irregularity, spectral spread, spectral skew-
ness, spectral kurtosis, spectral rolloff, spectral brightness,
spectral flatness, MFCCs, chronogram and total centroid are
used in [9] and [53]. The features were extracted from three
types of sounds, i.e., instrumental, sound and human speech.
For classification, the authors use KNN and Gaussian mixture
model (GMM) classifiers. The experiments are done for both
distinct and identical smartphones. In [9], for 15 identical
smartphones the authors reach a 93% accuracy, while for 19
smartphones (identical and distinct), they achieve a 98.8%
accuracy using the MFCC coefficients extracted from human
speech. In [53]], for 52 smartphones out of which at most 15
are identical the authors achieved a 100% F1 score when they
used the MFCC coefficients from each signal (instrumental,
song and human speech) with the KNN classifier. When GMM
on MFCC is used for instrumental sounds, the F1 score is
100%, while in case of human speech and songs the Fl-score
is 99.6%. From the 15 time and frequency domain features
used in both these papers, MFCC lead to the best results.
MEFCC and SSF (Sketches of Spectral Features) extracted from
human speech are used in [54]]. Machine learning algorithms,
i.e., SVM and RF, as well as deep learning algorithms, i.e.,
CNN and BiLSTM are used to cluster 24 smartphones. The
authors achieved a maximum accuracy of 99.29%.

B. Datasets for loudspeaker identification

To the best of our knowledge, there is currently only a
single public dataset for smartphone identification based on
their loudspeakers, which corresponds to the work in [45].

The dataset contains linear sweep signals played by 28 smart-
phones (16 identical and 12 distinct) recorded by the a vehicle
head unit at 1 meter distance. A total of 2,900 measurements
are made public.

VII. SMARTPHONE IDENTIFICATION BASED ON
ACCELEROMETERS

In this section, we survey several works which discuss
device identification based on their accelerometer sensors.
Interestingly, while there are a lot of papers which discuss
device pairing based on data collected from accelerometers,
only few works are focused on smartphone fingerprinting
based on accelerometers. In Table |Vl we compare the features,
classifiers, results and the number of devices that are used.

A. Time and frequency domain features for accelerometer
fingerprinting

Besides smartphone identification based on their micro-
phone (which was addressed previously), the authors from
[146] also discuss smartphone identification based on ac-
celerometer sensors. The measurements are collected when the
smartphone is kept at a constant velocity or when it is in a
resting position, and the first sample from each measurement
is considered the smartphone fingerprint. With this approach,
only 15.1% of devices were correctly identified.

Multiple time and frequency domain features are used in
[11] and [12], while in [19] only time domain features are
used. The authors in [[11] use time domain features i.e., mean,
standard deviation, average deviation, skewness, Kkurtosis,
RMS, lowest and highest value and frequency domain features
i.e., spectral standard deviation, spectral centroid, spectral
skewness, spectral kurtosis, spectral crest, irregularity-k and
J, smoothness, flatness and roll off. For 107 accelerometers
(25 smartphones, 2 tablets and 80 standalone accelerometers)
the mean precision and recall are above 99%. In [12]], 10 time
and 10 frequency domain features are used, i.e., mean, min,
max, variance, standard deviation, most frequently occurring
value, range, skewness, kurtosis, RMS, DC, spectral mean,
spectral variance, spectral standard deviation, spectral spread,
spectral centroid, spectral entropy, spectral skewness, spectral
kurtosis and spectral flatness. For classification, 6 classifiers
are used: SVM, KNN, LR, RF, Extra Tree and eXtreme
Gradient Boosting (XGBoost) and for 7 devices the authors
obtain a precision between 54.5% and 100% and a recall
between 88.9% and 94.3%. Only 8 time domain features
i.e., min, max, kurtosis, RMS amplitude, mean deviation,



TABLE VI
OVERVIEW OF VARIOUS WORKS WHICH IS PROPOSED FINGERPRINTING SMARTPHONES BASED ON THEIR ACCELEROMETERS

no. work year features classifier results devices dataset
1. [146] 2014 measurements at constant velocity first sample 58.7% >543 yes
2. (L1 2014 time and frequency domain features - precision, recall > 99% 107 yes
3. [19] 2016 time and frequency domain features thresholding TPR 0.7444, FPR 0.0978 15 n/a
4. [12] 2019 time and frequency domain features SVM, KNN, LR, RF, Extra Tree, XGBoost prec. 100%, recall 94.3% 7 n/a

skewness, standard deviation and mean were used in [19].
For classification the thresholding approach was used, which
reached a 0.7444 TPR and a 0.0978 FPR for 15 devices.

B. Datasets for accelerometer fingerprinting

The authors in [146] report a public website which holds
accelerometer related datzE], however, the website was not
accessible at the time of writing this paper. Also, the authors
in [11] report another dataset but the link was again not
functioning at the time of this Writin

VIII. OTHER SENSORS AND TECHNOLOGIES FOR
FINGERPRINTING

In this section we briefly present other sensors which
have been used for fingerprinting, as well as some combined
approaches that used multiple sensors.

A. Other sensors: magnetometers and gyroscopes

The time and frequency domain features extracted from
magnetometer sensors are used in [18] for smartphone fin-
gerprinting. For classification, the SVM, KNN and Bagged
Tree classifiers were used. This approach reached an F1 score
between 61.3% and 90.7% for 9 smartphones. A more recent
work [91]] uses the gyroscope resonance for smartphone fin-
gerprinting. Ten features based on resonance, e.g., resonance
peak, position of resonance peak, etc., are extracted and used
as input for decision trees and regression tree classifiers to
cluster 20 smartphones and 5 gyroscope sensors. The highest
accuracy reached with this approach was 96.5%.

B. Combined approaches based on multiple sensors

Rather than using single transducers, several research works
discussed smartphone fingerprinting from multiple sensors. We
address them separately in this section. Most of these works
start from analyzing individual sensor data and then combine
several sensors to improve the identification rate. In Table
we compare the features, classifiers, results and the number
of devices used in the literature for smartphone identification
based on multiple sensors. We detail each of these works in
what follows.

The authors in [92]] use data extracted from accelerometers,
gyroscopes and cameras for smartphone identification. For
accelerometers and gyroscopes they extract 10 time domain
features and 11 frequency domain features while for cameras
they use the PRNU. In terms of classification, decision trees

Zhttp://sensor-id.com/
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are used and 10 smartphones are clustered with an F1 score
greater than 75% for combined data from accelerometer,
gyroscope and camera. Data extracted from accelerometers,
gyroscopes, magnetometers and microphones are used in [[17].
The authors extract for each sensor several features. In case of
accelerometers and magnetometers they again extract 10 time
domain and 11 frequency domain features for the normalized
signals, while in case of gyroscopes they extract the same
features for each axis. For microphones, they generate sine
waves between 100Hz and 1,300Hz and for each signal the
value of the dominant frequency is considered as a feature.
The classification was done using the NB and RF machine
learning algorithms and for 10 devices the authors reach an
F1 score of 90% for the combined data.

Combined accelerometer and gyroscope data is also used
in [13[, [14], [150, [174] and [175]. The authors in [13] and
[14] use 25 time and frequency domain features, while in [15]
they use 26 features. Several machine learning algorithms are
used in these works which include SVM, NB, KNN, Deci-
sion Tree, Quadratic Discriminant Analysis, Bagged Decision
Trees. In [174] the entropy features are extracted from the
collected data and used as input for the SVM classifier. For
3 devices, the authors reach an accuracy greater than 90%. A
multidimensional balls-into-bins model is proposed in [175]]
to extract the features from the collected data and then a
multi-LSTM network is used to cluster the devices. For 117
devices from 77 users, this approach reaches an accuracy
higher than 98.8%. Acceleration, magnetic field, orientation,
gyroscope, rotation vector, gravity and linear acceleration
are used in [16]. Five sensor combinations are discussed: i)
individual accelerometers, ii) accelerometers and gyroscopes,
iii) all sensors, iv) all sensors except accelerometers and v)
all sensors except accelerometers and gyroscopes. For each
sensor, the time and frequency domain features are extracted
and five machine learning algorithms are evaluated, i.e., KNN,
SVM, Bagging Tree, RF and Extra Tree. The authors reach a
maximum precision of 99.995% when all sensors are involved.

The authors in [145] and [176] propose a new method,
called factory calibration fingerprinting, that is able to bypass
existing protections for tracking users based on motion sensor
data. They extract data from gyroscopes and magnetometers
in [145] and accelerometers, gyroscopes and magnetometers
in [176]. Their work involves distinct Android and iOS de-
vices. The fingerprint is generated based on a gain matrix
(squared Euclidean 2-norm function) of the data processed by
computing the difference between 2 consecutive axes and the
estimated value of the ADC (Analog Digital Converter).

C. Other technologies for device fingerprinting


http://sensor-id.com/
http: //web.engr.illinois.edu/~sdey4/AccelPrintDataSourceCode.html

TABLE VII
OVERVIEW OF VARIOUS WORKS WHICH IS PROPOSED FINGERPRINTING SMARTPHONES BASED ON MULTIPLE SENSORS

no. work year signal features classifier results devices dataset
1. [14] 2015 accelerometer + gyroscope 25 time and frequency features SVM, NB, MDT, KNN, QDA, BDT F1 96% 30 n/a
2. [13] 2016 accelerometer + gyroscope 26 time and frequency features SVM, NB, MDT, KNN, QDA, BDT F1 96% 30 n/a
3. [92] 2016 accelerometer + gyroscope + camera 21 time and freq. features for decision tree F1>75% 10 n/a
acc. and gyro., PRNU for camera
4. [16] 2016 7 sensors: acceleration, magnetic field, time and frequency features KNN, SVM, B Tree, RF, Extra Tree 99.995% 5000 n/a
orientation, gyroscope, rotation vector,
gravity, linear acceleration
5. [174]2016 accelerometer + gyroscope Threshold Entropy, Sure Entropy SVM >90% 3 n/a
and Norm Entropyc
6. [18] 2017 magnetometer time and frequency features SVM, KNN, Bagged Decision Tree F1 90.7% 9 n/a
7. 7] 2017 accelerometer + gyroscope + time and frequency features NB, RF F1 90% 20 n/a
magnetometer + microphone
8. [13] 2018 accelerometer + gyroscope time and frequency features SVM, RF, Extra tree, LR, GNB, 98% 550 n/a
SGD, KNN, BAgging, LDA, MLP
9. [175]2019 accelerometer + gyroscope multidimensional Balls-into-Bins multi-LSTM >98.8% 117 n/a
10. [145]2019 gyroscope + magnetometer sensorlD ADC Value Estimation 67bits entropy 797 n/a
11. [176]2020 accelerometer + gyroscope + sensorlD ADC Value Estimation gyro.: 42 bits 1006  n/a
magnetometer entropy, mag.: 25 bits
12. [91] 2021 gyroscope resonance peak decision tree, regression tree 96.5% 25 n/a

TABLE VIII
BRIEF OVERVIEW OF SOME WORKS WHICH FINGERPRINTING SMARTPHONES BASED ON OTHER TRANSDUCERS OR SOFTWARE CHARACTERISTICS

no. work year signal features classifier results devices dataset
1. [177] 2013 ICMP timestamp clock drifts linear prog minimization - 5 n/a
2. |178] 2013  side-channel features from network packet size, bit size, etc. KNN and SVM success 20 n/a
traffic from several popular applications 90%
3. [179] 2015 capacitive touchscreen MFCC, RMS GMM, KNN F1 100 14 n/a
4. [143] 2016 0os 108 SVM 93.67% 8000 n/a
5. [180] 2016 sw fingerprinting, package, etc. sw features, device properties NB precision>99%, 2239 n/a
recall>98%
6. [63] 2018 sw fingerprinting, package, etc. device properties and config thresholding 99.97% 815 n/a
7. [181] 2018 TCP TCP performance KNN 75% 3 n/a
8. [182] 2018 browser - - - - n/a
9. [94] 2019 magnetic signals emitted by CPU DC/DC converter LR, GNB, KNN, LDA, 99.9% 90 n/a
QDA, DT, SVM, ET, RE, GB
10. [183] 2020 battery power consumption time and freq. domain features unsupervised learning >86% 15 n/a
11. [184] 2020 wireless charging clock oscillator and control ENS, SVM, AdaBoost, 96.1% 52 n/a
scheme of the power receiver KNN, LD

12. [185] 2020 Radio Frequency skewness, kurtosis and variance SVM and NN 99.6% 27 yes
13. [108] 2022 peripheral input timestamp modular residue FPNET, CNN 97.36% 151483+76768 11861, [187]
14. [188] 2022 Remote GPU normalization, Euclidean distance KNN, CNN < 95.8% 88 yes

Now we enumerate additional device fingerprinting tech-
nologies, some of which are based on other components while
others are based on software (which are not part of the main
scope of this work, therefore the list is not exhaustive). In
Table we compare the features, classifiers, results and
the number of devices used in the literature for smartphone
identification using these different approaches.

The authors in [[183] propose a technique based on battery
power consumption. Distinct tasks are running on the smart-
phones having different power consumption rates, e.g., heavy
file writing and reading, computations with large numbers,
broadcast transfer, etc. Time and frequency domain features
are extracted for the recorded power consumption and an
unsupervised learning algorithm is applied to cluster the smart-
phones. The accuracy in identifying the phone was higher than
86% for 15 smartphones. Mobile devices are identified based
on wireless charging fingerprints by [184]. The clock oscillator
and the power receiver are used to extract the features which
are then used in the SVM, AdaBoost, Decision tree, KNN and
LDA classifiers. This approach reaches 97.9% accuracy for 52

devices.

Another interesting approach for device fingerprinting based
on magnetic induction signals radiated by the CPU is discussed
in [94]. The authors measure the CPU magnetic induction
when the CPU load is at 100% as the inductor from the DC/DC
converter of the CPU may produce high magnetic induction
at high currents. They use for the experiments 90 devices (20
smartphones and 70 laptops) and to validate this approach 10
machine learning algorithms are used, i.e., Logic Regression
(LR), NB, KNN, LDA, QDA, decision tree, SVM, ExtraTrees,
RF and gradient boosting. The authors report a maximum
accuracy of 99.9%. The peripheral input timestamps are used
in [108] for device identification. The authors use two public
datasets [[186] [[L87], the peripherals include keyboard, mouse
connected via USB and collection was done automatically
on a web based platform which evaluate the typing skill.
For classification, the FPNET CNN is used and a maximum
accuracy of 97.36% was achieved for 76,768 mobile devices
and 151,483 desktop devices. Capacitive screen fingerprints
are used in [179] for smartphone recognition. RMS and



MEFCC features are computed from the signature segmentation
extracted from the voltage consumption. For classification, the
authors use the KNN and GMM classifiers and reach an F1
score of 100% for 14 smartphones.

ICMP timestamp requests from which the device clock
skew 1is extracted are proposed in [177] for smartphone
fingerprinting. Ten minutes of collected ICMP timestamps
are sufficient to distinguish between 5 smartphones as their
oscillator skews differ in several parts-per-million (ppm). The
slope of the clock skews is computed as a linear programming
minimization problem. The network traffic from popular apps
e.g., Facebook, WhatsApp, Skype, Dropbox, etc. is used in
[L78]. Distinct features e.g., packet size, packet ratio, number
outgoing packets, byte ratio etc., are extracted. For classifica-
tion KNN and SVM are used on 14 devices with an Fl-score
of 100%. The authors in [181] discuss an approach based on
the performance of the TCP (Transmission Control Protocol).
For classification, KNN is used and for 3 distinct devices this
method reaches only 75% accuracy.

The device configuration and parameters are used for
smartphone fingerprinting in [143]]. The authors discuss 29
features of the Apple iOS platform, e.g., device name, lan-
guage settings, installed applications, played songs, etc., and
extract them from 8,000 distinct devices. The SVM classifier
reaches an accuracy of 97% for this approach. In [180], 38
features are used: (i) hardware related, e.g., name, device
model, manufacturer, storage capacity, etc., (ii) OS related,
e.g., kernel information, Android version, etc. and (iii) user-
setting related, e.g., time-zone, hour format, data format,
ringtone, notification, etc. A Fingerprint Matching Algorithm
(FMA) and a Fingerprint Association Algorithm (FAA) are
used to select the relevant features and then the NB classifier
is applied to cluster the devices. For 2,239 devices they reach
an F1-score of 99,46%. Similar features are also used in [63],
but here a thresholding method is used for clustering and an
accuracy of 99.97% is reached for 815 devices.

In [185] a method for smartphone fingerprinting based on
the radio frequency emitted by Bluetooth is discussed. The
authors achieved a test accuracy between 96.9% and 99.2%
using SVM and between 96.5% and 99.6% using a neural
network classifier for 27 smartphones. Device identification
based on remote GPU fingerprinting is proposed in [[188]. The
authors use 26 smartphones and 62 desktop/laptops and obtain
a maximum accuracy of 95.8%. In [182] the authors show that
it is possible to detect countermeasures for browser fingerprint-
ing by using the inconsistencies that these countermeasures
introduce and, besides spotting the altered fingerprints, the
original fingerprint values can be also obtained.

IX. COUNTERMEASURES AND STABILITY IN FRONT OF
EXTERNAL FACTORS

In this section we discuss countermeasures for fingerprinting
and the resilience of fingerprints in front of external factors
that can change them over time.

A. Countermeasures

Smartphone fingerprints can be also used by malicious apps
to infringe on user’s privacy. This is a very serious concern

and we cannot end our survey without mentioning it along
with some countermeasures. Briefly, to combat these attacks
several countermeasures can be implemented: i) adding noise
to the sampled data (which is also commonly referred as
obfuscation), ii) calibrating the sensors so that differences
become negligible, iii) restricting the access to sensors’ data,
or iv) lowering the sampling fidelity. These approaches can be
also combined. We discuss them in what follows.

Adding noise (obfuscation). A simple method to modify the
smartphone fingerprints is to add noise. This approach does not
affect the smartphone functionally [4] and it is not expensive
in computations and power consumption. The addition of noise
has been also discussed in [93] within scope of microphone
identification. This work considers various types of sounds
e.g., traffic, train, barrier, etc. and reports that the accuracy
drops below 50% at a SNR below a specific threshold, e.g.,
-40db for car horn, -20db for car tiers, so that microphone
identification no longer works. Also, the authors in [83]]
analyzed the influence of AWGN (Additive White Gaussian
Noise) at distinct SNR levels and the accuracy drops below
50% at a SNR of 0-5db. The work in [45] also shows that in
case of loudspeaker identification, the volume can influence
the fingerprints.

Sensor calibration. Calibration is generally used to increase
the precision of measurements performed by various sensors,
but it was also proposed as a countermeasure against sensor
fingerprinting. More commonly, it is proposed for accelerom-
eters and gyroscopes. For example, the calibration of ac-
celerometers and gyroscopes is discussed in [[15] as a counter-
measures against sensor fingerprinting. Notably, some works
have managed to fingerprint accelerometers and gyroscopes
even if factory calibrations were performed [[146], [[145], [176].
To prevent this and make fingerprinting infeasible, the last
two of these works propose that one can round the factory
calibrated sensor output to the nearest multiple of the nominal
gain [145]], [176].

Restricted access to device peripherals and data. Imple-
menting policies that control the access rights of other appli-
cations on sensor data is another countermeasure proposed in
[3] and also discussed in [4]. It may be also worth recalling
here that malicious apps with access to the microphone can
allow the interception of the phone’s PIN code [189]. This
proves how serious are the implications of giving access to
such peripherals. Notably, smartphones also leverage the use
of various IoT devices that surround our home, exposing even
more data about owners. Having this in mind, the work in
[190] discusses a mobile-cloud framework with fine-grained
permission authorization for IoTs. A privacy risk assessment
for mobile applications, which considers permissions and
information flow leakage, is presented in [191]].

Lowering sampling fidelity. Lowering the sampling rate can
also be a countermeasure and it may also increases the battery
life (especially in case of data collected from motion sensors).
Data filtering and reducing the sampling rate can hide part of
features such that the fingerprinting process will no longer
be possible. The Android platform is already considering
risks related to fingerprinting by sensor sampling and started
to limit the access for applications since Android 12 (API



level 31). For a sample rate higher than 200Hz (or about
50 Hz for direct, raw sensor data), apps need to be granted a
new permission called HIGH_SAMPLING_RATE_SENSORS.
Note that this is declared as a normal level permission
and therefore granted automatically, but can be used for
determining apps that potentially access higher sample rates
[192]. As a further mitigation, motion sensors (including
accelerometer) are always rate limited even for apps holding
this permission if the microphone has been turned off by
the user. Finally, Android 10 introduced an UI element in
the form of the Sensors Off quick tile that can be used
to disable app access to all sensors, including microphone,
camera and motion sensors (with the exception of phone calls
still using the microphone). However, this Ul element needs
to be enabled through developer options and is therefore not
targeting end-users at the time of this writing [193]]. On Apple
i0S, apps seem to be able to use Core Motion to request
sample rates as far as the hardware supports it [194]. Apple
recommends as best practice to avoid using accelerometers or
gyroscopes outside of active gameplay [195]. To the best of
our knowledge, there seem to be no automatic limitations at
the time of this writing.

It is also true that these countermeasures are not always
applicable, or it is highly inconvenient to use them. For
example, sometimes sampling restrictions cannot be applied,
as in the case of gaming applications that require the maximum
sampling rate from accelerometers for better accuracy. Reduc-
ing the sampling of accelerometers also has impact on physical
activity monitoring apps [196]. Regarding camera sensors,
photo editing software may require access to the raw image
data (that may contain even more phone-related artifacts) for
optimal performance. As expected, all countermeasures come
at a price.

B. Stability in front of external factors

Many of the existing works have also considered resilience
in front of external factors. In case of camera sensors various
factors have been considered like temperature or voltage vari-
ations [64], [56], [571, [149], [60], [20], [61]. Post processing
of the images by third parties has been considered, as well
as changes in the brightness level [22], [L13], [36], [74].
For audio recordings, in case of microphone and loudspeaker
fingerprinting, various kinds of environmental factors were
considered, such as ambient or environment specific noise
U781, (691, [791, [46l, (1171, [88], (1071, (93] (551, (90, 53],
[54], [43]], additive white gaussian noise (AWGN) [83]], [84],
[45]], distance from the speaker [9]], [S3]], sampling rate or even
changes in the volume or orientation of the speaker [9], [S3],
[45]. In case of accelerometers, temperature has been generally
considered [15], [175], [[145]], [[176], while some works also
mention humidity [[175]]. These works have also considered the
influence of the same factors on gyroscopes.

One important factor that seems to be omitted by most
works is the stability of the samples over time. To the best of
our knowledge, only the excellent work from [[15]] evaluates
the stability of the samples by collecting data at one month
distance. Concretely, accelerometer and gyroscope data is
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collected at an interval of 37 days and the F-score, which was
100% for data collected during the same day, drops between
88% and 92% for different days. Further evaluations may be
needed to asses if samples are stable in the long run. The
authors from [[145]] also rely on the sensor factory calibration
file, which is stored in the non-volatile memory and should not
change over time. Other works assess the stability of hardware
fingerprints in case of different electronic components. For
example, the magnetic signals from the CPU are used in
[94] and the authors prove that they do not change over the
course of two days and in distinct locations. Fingerprinting
the GPU from JavaScript collected data is proposed in [188]]
and the fingerprints are shown to be stable during 24 days
of experimentation. The stability of clock based fingerprinting
is also discussed in [197] where measurements are performed
two months apart.

C. Input selection and choosing a specific distance metric

Input selection has a critical role in the response of the
sensors. It is well known that in case of memory-based
PUFs, specific bit-changes may yield better result. In case
of camera sensors, dark images (or darker areas of images)
seem to give the better responses. Such kind of images are
also very easy to retrieve. Regarding audio data, in case
of microphone and speakers, the options seem to fall under
two categories. Firstly, there are synthetic inputs like the
sine (or cosine) waves and sweep signals. The latter force
a response in the 20Hz-20kHz range and thus offer a better
characterization of the loudspeaker since its roll-off, i.e., the
lower and upper extremes of the frequency spectrum, seems
to be more effective for distinguishing between loudspeakers
[45]. Secondly, there are those inputs that are more natural
to collect in each specific scenario. For example, in case of
microphones, most works considered human speech, as can be
seen in Table while another work addressing an in-vehicle
scenario [93] used honk, hazard lights or wiper sounds, etc.
In case of loudspeakers, most works considered instrumental
music or songs, as can be seen in Table E Such choices
better reflect the practical use case, relying on those types of
sounds that are more likely to be collected from loudspeakers
(or microphones). For accelerometer data, shaking the devices
together seems to be the preferred method, but transportation
modes have been also considered.

While we used the Euclidean distance as a metric in all
previous experiments, we used it simply because it gives
the best overall result and wanted to have a common metric
for all four major transducers: camera sensors, microphones,
loudspeakers and accelerometers. However, other metrics may
be preferable for specific transducer data. For example, we
note that Hamming distances perform better in case of CMOS
sensors, as shown in Figures 8] and [9] which is expected since
images are encoded as binary arrays. However, the bit-by-bit
comparison in the Hamming distance proved unsuitable for
audio data and this metric did not work well for loudspeaker
or microphone data. While for accelerometers, we notice that
the Mahalanobis distance gave slightly better results as shown
in Figures[I9]and [20] Selecting a specific metric should likely
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be based on empirical evidence according to the results yield
on specific datasets.

X. CONCLUSIONS AND FUTURE DIRECTIONS

There is a very large number of works that address smart-
phone identification based on the physical fingerprints of
their embedded transducers, mainly cameras, microphones,
loudspeakers and accelerometers. The most consistent body
of works which we surveyed was concerned with camera
fingerprints. This is somewhat natural as users nowadays
commonly upload photos on various websites, making them
very easy to collect. Also, a lot of samples and features can
be extracted from images and there are several public datasets
dedicated for research works. A lesser number of works used
microphones and there are only a few works which are using
loudspeakers. Device fingerprinting based on audio signals,
from microphones and loudspeakers, may have attracted less
research because, although this kind of data is easy to analyze,
it may be more difficult to collect. For microphones, there
are several public datasets (the majority of them are targeting
speech recognition and crime related investigations) which
were also used for device identification based on their mi-
crophones while for loudspeaker identification a single public
dataset is available. In case of accelerometers, the number
of works strictly dedicated to fingerprinting is also somewhat
limited, despite the fact that accelerometers were so commonly
employed for device-to-device authentication. There are also
only isolated attempts in using gyroscopes and magnetometers
for fingerprinting. Regarding accuracy, it seems that camera
sensors provide the best fingerprint, many of the works from
Table [[II] in our survey reporting an accuracy close to 100%.
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This happens because CMOS sensors collect high amounts of
information due to the over-increasing resolution of modern
cameras. Next to camera sensors, microphones and loud-
speakers may be a reliable source, with a reported accuracy
generally between 90-100% according to Table [IV] and Table
[V] from our survey. Accelerometers seem to have a lower
accuracy for fingerprinting, which according to Table in
our survey is between 58.7%-95%.

As future research directions, there are several gaps that
need to be covered. As outlined previously, there is only a very
limited number of works that have addressed sample stability
over time and this happened only over a small period of one
month [15]. The use of multiple sensors can be also considered
for improving the reliability of the fingerprinting process over
time, since various sensors may be unevenly affected by
wear and tear. Running the experiments over extended time
periods and using a larger number of devices in the field
may be considered by OEMs or large app developers with
a considerable install base (but it is generally out of reach for
non-profit academic research). Last but not least, incremental
learning, a well-known method of machine learning which
requires to continuously update the existing model as new data
becomes available, may be one way to address this problem
by ensuring an up-to-date trained model for the device. Also,
almost all of the existing works have dealt with closed-world
models in which only devices coming from a limited set
are to be identified. There are only a few works [12], [198]]
which address open-world scenarios, that are more relevant for
practice since the methodology is also tested against devices
that were not part of the training dataset. Related to this,
the use of one-class classification, which requires a single
device in the training dataset and later separates it from the
rest in the testing dataset, is of significant interest. Most of
the papers so far tried to separate between multiple devices
that were already learned, while only a few works explicitly
used one-class classifiers [[77], [[134], [12], [[79]. The selection
of specific inputs that give a more accurate classification for
the transducers is also one possible area of investigation. It is
well-known that certain inputs can yield a better response in
case of PUFs, e.g., the RowHammer PUF [199]]. As previously
stated, in case of CMOS sensors, dark images seem to give a
better response [142], while for loudspeakers a sweep signal
offers a more complete characterization [45]]. Other works have
considered those inputs which are more realistic for practice,
such as human speech in case of microphones, or music in
case of loudspeakers. Finding specific inputs for which the
transducer gives the most specific response is one possible
area for future investigations.

There is also a significant number of works that use other
technologies instead of transducers such as software finger-
printing, ICMP timestamp, OS, TCP, battery consumption,
wireless charging, capacitive touchscreens, CPU magnetic
field and the input from various peripherals. These works were
only briefly accounted here and do not form the main target
of our survey. We may consider an in-depth analysis of them
as future work.
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