Practical security exploits of the FlexRay
in-vehicle communication protocol

Pal-Stefan Murvay' and Bogdan Groza!

Politehnica University of Timisoara, Timisoara, Romania
{pal-stefan.murvay, bogdan.groza}@aut.upt.ro

Abstract. The ever increasing number of electronic control units inside
a car demanded more complex buses with higher bandwidth capacities.
But even the more recently designed in-vehicle network protocols, e.g.,
FlexRay, were engineered in the absence of security concerns and thus
they are highly vulnerable to adversarial interventions. In this work, we
study the FlexRay protocol specification to identify features that can
be used to mount various attacks. The attacks exploit both the phys-
ical layer and the data-link layer of the protocol to discard messages
from the bus, i.e., DoS attacks, or to spoof messages by inserting adver-
sarial frames and later discarding the genuine frames. We illustrate the
feasibility of these attacks on an experimental setup composed of sev-
eral FlexRay nodes implemented on automotive-grade controllers. While
these attacks may not be a surprise, recognizing them may be relevant
in preventing potential future exploits.

Keywords: security - FlexRay - attacks - DoS - automotive.

1 Introduction and motivation

Modern vehicles are complex systems integrating an ever increasing number
of electronic control units (ECUs) interconnected via dedicated communica-
tion lines. While the most widely used in-vehicle communication bus is still the
decades old CAN (Controller Area Network), FlexRay was designed as the bus
for future automotive applications. Indeed, FlexRay supports high data rates
of up to 10Mbit/s in contrast to the 1Mbit/s of the regular CAN bus and is
deterministic in nature which makes it suitable for hard real-time applications,
e.g., x-by-wire technologies that are replacing regular mechanical interfaces.

Denial-of-service (DoS) attacks are a common concern for computer net-
works. For in-vehicle networks however, these were generally neglected from the
same reasons as security was ignored: in-vehicle networks were perceived as iso-
lated from outsiders. Today we are aware that this is not so as recent research
demonstrated attacks that can be carried out from the outside over in-vehicle
buses, e.g., [4], [12].

In previous work we have already explored DoS attacks on the CAN protocol
which were triggered by directly controlling the physical bus signaling from the
application layer [13]. Similar DoS attacks on the CAN bus were also shown

2 P.S. Murvay et al.

n [15] while the work in [5] only focuses on targeted DoS attacks by placing
specific CAN nodes in the bus-off state. All these attacks exploit the CAN error
handling mechanism and may have severe consequences as a targeted DoS attack
on a specific node may further facilitate impersonation attacks. Such attacks
are easy to mount on the CAN bus since the error confinement mechanism
is built to isolate faulty nodes and reacts on malformed frames. Even at the
time of our previous work it was apparent to us that similar attacks can be
mounted on FlexRay but the denser protocol specification made it less obvious
how easy is to deploy the attacks. As we later discuss in the related work section,
attacks on the FlexRay network were suggested as early as the work in [16] and
even demonstrated almost a decade ago by the authors in [14] via a FlexRay
simulation in CANoe. But since then, these attacks appear to be somewhat
neglected. We were able to find more recent results only in [7] where a man-
in-the-middle adversary for FlexRay is discussed. We contribute to these by
giving more practical insights and experimental results on DoS attacks and frame
spoofing on FlexRay by using a Freescale (NXP) evaluation board. In Table 1
we give a summary of the attacks that are tested in our work, more details will
be given in the forthcoming sections.

Table 1. Summary of potential attacks on FlexRay (tested on the Freescale (NXP)
evaluation board)

Attack [Static Segment Dynamic Segment

Yes, required adversary actions:
DoS-full i) place the bus in a dominant state (physical layer) or,
ii) break synchronization by sending frames in occupied slots (data-link layer)

DoS-targeted Yes, required adversary actions: Yes*
same as full DoS i) or ii) for specific frames *only if frame occurrence is predictable

Msg. spoof No* Yes™, required adversary actions:
*collisions lead to unpredictable bus state redefine messages in own comm. cycle
* may result in collisions, i.e., targeted DoS

1.1 Related work

Security in automotive networks was intensely studied in recent years. Most
of the research done in this area had CAN as the main focus since it is the
most widely used communication technology for in-vehicle networks. CAN was
proved to be vulnerable to replay and spoofing attacks which are easy to mount
once access is gained to the in-vehicle network [11,4, 12]. Moreover, due to its
arbitration and fault confinement mechanisms CAN is susceptible to denial of
service attacks (DoS) [13].

Practical security exploits of the FlexRay in-vehicle communication protocol 3

One of the first mentions of security issues regarding the FlexRay proto-
col were made by Wolf et al. which briefly mentions several potential attacks
[16]. The first requires the exploitation of the bus guardian for disabling tar-
geted nodes by sending faked error messages. This is not an immediate threat
since the bus guardian specification is still preliminary and, to the best of our
knowledge, there exists no bus guardian implementation in use. The second men-
tioned attack, which we investigate in more detail in our work, refers to impeding
communication by causing loss of synchronization. Finally, the third proposed
attack involves disabling nodes with power saving capabilities by sending mali-
cious messages to force them enter sleep mode. No experiments are provided to
demonstrate the attacks, but outlining them is valuable.

In the work done by Nilsson et al. [14] the FlexRay protocol specification
is analysed in search of security mechanisms for providing basic security objec-
tives. Such mechanisms are clearly not present in FlexRay since security was not
considered when designing this protocol. Furthermore, they employ a simulated
environment in CANoe to prove that mounting read and spoofing attacks on
FlexRay is an easy task. As we discuss in section 3, this kind of attack is only
possible in certain situations since otherwise it may result in collisions on the
bus.

A more recent study [7] shows how an adversary listening to a FlexRay
network can estimate communication parameters having only the bit rate as
a priori knowledge. The same work investigates the possibility of man-in-the-
middle attacks on FlexRay nodes by interposing a malicious device between the
network and the target node. Although efficient, this type of attack requires more
complex equipments and physical access that is not always available. Our attacks
are simply implemented at the software layer of automotive-grade controllers.

1.2 Paper organization.

Section 2 introduces the theoretical concepts behind the FlexRay protocol fo-
cusing on general aspects of the specification. Particular FlexRay behaviour and
features enabling attacks are presented and discussed in section 3 which is dedi-
cated to the protocol security analysis for a better understanding of the attacks
they make possible. The attacks presented in section 3 are put into practice and
analysed in terms of feasibility in the experimental section 4. Finally, section 5
presents the conclusions of our work.

2 FlexRay protocol fundamentals

The FlexRay protocol was developed by the FlexRay consortium founded by sev-
eral major automotive OEMs (Original Equipment Manufacturers) later joined
by electronics manufacturers. The latest specification version published by the
consortium in 2010, before being transferred to an ISO standard, is 3.0.1. and in-
cludes information on the physical layer [1] and the actual protocol specification
[2]. Currently the FlexRay protocol specification is provided as the multi-part

4 P.S. Murvay et al.

standard ISO 17458. Part 1 [8] of the standard covers general aspects of the pro-
tocol like use case scenarios and terminology, while parts 2 [9] and 4 [10] cover
the FlexRay data link layer and physical layer respectively.

Given its intended use for high performance and safety-critical applications
FlexRay was designed to provide deterministic, fault tolerant and high-speed
data transmission. Deterministic communication is assured by employing a time-
triggered communication model while fault tolerance is provided through com-
munication channel redundancy as two independent channels are supported.
Each of the two channels available on FlexRay capable nodes can achieve bit
rates of up to 10 Mbit/s. When communication redundancy is not required, the
two channels can be used for simultaneous data transmission increasing the bit
rate up to 20 Mbit/s.

2.1 Communication architecture

By specification FlexRay is not limited to a certain network topology. It can be
used to implement point-to-point communication as well as bus, passive or active
star and even hybrid network topologies. The active star topology is implemented
by the use of an active star coupler which improves protection against error
propagation, allowing the disconnection of faulty nodes.

FlexRay Node FlexRay Node FlexRay Node

EH? EHTt

’ FlexRay controller ‘ ‘ FlexRay controller ‘ ’ FlexRay controller ‘
FlexRay FlexRay FlexRay FlexRay FlexRay FlexRay
transceiver transceiver transceiver transceiver transceiver transceiver

BP AR
N4 - N ~ = -
BM Channel A
BP SN TN
N - 7N ~ - -
BM Channel B

Fig. 1. FlexRay nodes connected in a bus topology

As illustrated in Figure 1, each FlexRay node consists of a transceiver, con-
troller and host. The transceiver or bus driver is responsible with the physical
layer signaling part of the FlexRay communication stack while the controller
implements the protocol logic corresponding to the data link layer. All higher
level logic has to be implemented in the host application.

Practical security exploits of the FlexRay in-vehicle communication protocol 5

2.2 Physical signaling

FlexRay uses a two line differential interface to implement the physical signaling.
The FlexRay transmission medium consist of a pair of twisted lines denoted as
BP (bus plus) and BM (bus minus) which must be fitted with proper termi-
nation at its ends. The FlexRay physical signaling is based on four line levels,
as illustrated in Figure 2, two recessive levels to signal low power or idle mode
and two dominant levels representing the two logical line levels: Data_0 (logical
zero) and Data_1 (logical one).

Y\ /
2.5V

\L/
1.5V

oV

Idle low power Idle Data_1 Data_0
(recessive) (recessive) (dominant) (dominant)

Fig. 2. FlexRay physical bus levels

2.3 Channel access

Access to the communication channel is granted based on the TDMA (Timed
Division Multiple Access) method. This implies that the communication takes
place according to a predefined schedule which is executed periodically as the
FlexRay communication cycle. The communication schedule is defined at the
network design time and must be followed by all nodes.

The structure of the FlexRay communication cycle allows the transmission of
messages that have to be sent periodically as well as sending sporadic messages.
These segments of the FlexRay communication cycle are depicted in Figure 3.
The communication cycle consists of at least two segments, the static segment
and the network idle time (NIT). The static segment is dedicated to determin-
istic message transmission, while the NIT is a time interval with no message
transmission required for clock synchronization. Two other optional segments
can be also present in the communication cycle, the dynamic segment and the
symbol window. The dynamic segment is used for event-triggered message trans-
mission and must always follow the static segment. The symbol window is used
to signal specific FlexRay activities such as communication wake-up or a node
joining the communication by the use of special bit sequences called symbols.

The bulk of the FlexRay communication occurs during the static and dy-
namic (if present) segments. The static segment consists of a number of static
slots equal in length that can be assigned to periodic messages. The static seg-
ment can hold at most 1023 static slots and must be configured to accommodate

6 P.S. Murvay et al.

Communication cycle

Static segment Dynamic segment Symbol window [Network Idle Time

Fig. 3. Components of the FlexRay communication cycle

at least 2 slots. The messages that must be transmitted in the dynamic segment
also have to be defined in the communication schedule. They will only be trans-
mitted if the event triggering their transmission occurs in this segment. The
dynamic segment always has the same length. Therefore, if the allocated time
interval is not enough to accommodate all dynamic messages marked for sending
in the current cycle then the unsent messages will be deferred to the next cycle.
Transmission priority in the dynamic segment is based on the message schedule
such that messages with lower ID values will be sent first.

2.4 Frame format

FlexRay data transmission is done using dedicated frames which, as depicted
in Figure 4, are composed of three main segments: header, payload and trailer.
The frame header consists of 5 bytes carrying a set of indicator bits, the frame
identifier (ID), payload length, header CRC and cycle count. The five indicator
bits are to be interpreted as follows: a) Reserved bit - reserved for future proto-
col use and should be always set to 0 when transmitting, b) Payload preamble
indicator - when set to one it indicates that the payload segment contains spe-
cific optional information depending on the segment used to transmit the frame,
¢) Null frame indicator - when set to zero indicates that the payload segment
contains no valid data, d)Sync frame indicator - when set to one it indicates
that all receiving nodes should use the frame for synchronization purposes, and
e)Startup frame indicator - when set to one it indicates that the current frame
is a startup frame which is used by the startup mechanism.

Header segment Payload segment Trailer
segment
L Payload |Header| Cycle | Data | Data | | Data | Data
Indicators | ID | ‘jength | CRC | count | byte O | byte O byte n-1| byte n ERe
[-
5 bit 11 bit 7 bit 11 bit 6 bit 0-254 bytes 24 bit

Fig. 4. The FlexRay frame format

The ID defines the slot in which the frame should be sent, hence it will be
sent at most one time during a communication cycle. The payload length field
indicates the size of the payload as a multiple of 16 bit words. The header CRC
value is computed over the last two indicator bits, frame ID and payload length
fields. The cycle count represents the current value of the cycle count from the
sender’s perspective.

Practical security exploits of the FlexRay in-vehicle communication protocol 7

The payload segment contains the actual data transmitted and can hold
between 0 and 254 bytes. It will always contain an even number of bytes as a
consequence of the payload length indicating its size as a multiple of two byte
words. The trailer segment contains the CRC computed over the entire frame.

2.5 Error handling

The FlexRay error handling mechanisms uses three states to achieve error con-
finement: normal active, normal passive and halt. Normal active is the normal
operation state in which it is assumed that the node can perform all its ac-
tivities. In the normal passive state the node is not allowed to transmit as it
is assumed that collisions may occur on transmission attempts due to existing
synchronization errors. The halt state is entered when detected errors are con-
sidered severe enough that proper protocol operation can only be re-established
by reinitializing the node.

There are two main mechanisms for handling errors. The first is used for
significant errors and causes transitions directly into the halt state. The sec-
ond mechanism employs a degradation model based on switching between the
three operation states to avoid immediate transitions to the halt state in case of
transient errors. The degradation model handles synchronization related errors.
Direct transitions to the halt state are made on product-specific errors, fatal
errors during frame and symbol processing or direct host command.

3 Specification analysis

We will next present elements of the FlexRay protocol specification that can be
exploited to mount various attacks. Each vulnerability is introduced considering
a passive network topology. We also discuss the identified vulnerabilities from
the perspective of an active star network topology in a dedicated section.

3.1 Attacker model

The vulnerabilities discussed in this section are considered as seen from the
perspective of an attacker with the intent of disrupting or faking FlexRay com-
munication. This attacker has reasonable to good knowledge of the FlexRay
protocol or the ability to gain the knowledge by studying the publicly available
specification. The attacker has the ability to compromise the firmware of an
in-vehicle FlexRay network node either by updating the firmware through avail-
able channels (e.g. OBD port or OTA mechanisms) or by providing an already
compromised node to be fitted as a replacement or after-market component. We
also assume that the attacker is capable of controlling HW components of the
compromised node through SW but not able to effect any HW changes. The
attacker can not make any changes to the target FlexRay network topology such
as interposing a malicious node between an existing one and the rest of the
network.

8 P.S. Murvay et al.
3.2 Physical layer

The functionality of the FlexRay protocol primarily relies on the ability of gener-
ating the basic physical line signals corresponding to the logical bus states Idle,
Data_0 and Data_1, depicted in Figure 2. The FlexRay electrical physical layer
specification [1, 10] defines differential voltage thresholds for the detection of the
logical bus states. Since FlexRay has no integrated means of resolving collisions,
during normal operation it is only allowed for one node to generate a dominant
signal (i.e. Data_0 or Data_1) at a moment in time while all other nodes have to
generate an Idle (recessive) signal. In case of colliding dominant signals the de-
tected line level cannot be predicted as the resulting line voltage level will depend
on the voltage levels of the generated dominant signals. Therefore, generating
collisions will lead to perturbations of the FlexRay communication. This can
be easily achieved on a FlexRay node by directly interacting with the FlexRay
transceiver which is responsible of generating physical bus levels based on logi-
cal input data coming from the host microcontroller. Normally the transceiver
input lines are controlled through the communication controller but this can
also be done by using the microcontroller’s I/O ports. This approach could be
used to implement several variants of DoS attacks as presented in what follows
depending on the intended effect.

Full DoS attack. The FlexRay communication could be completely blocked by
generating a continuous dominant level on the bus. For this, the attacker should
assure corresponding high, or low constant levels on the transceiver’s transmit
data (TxD) pin and enable the transmitter circuit by setting the transmit enable
(TxEN) pin to low. Due to protection circuitry in the transceiver it may be
required to periodically assure short high level pulses on the TxEN.

While, the effect of this attack is to prevent any FlexRay communication, the
reasons for achieving this depend on the moment of the attack launch. If the at-
tack is initiated at system startup before initiating the FlexRay communication,
the nodes will not be able to successfully perform wakeup and startup activities
preventing any data transmission. Starting the attack after the communication
has been successfully initiated will lead to all nodes being unable to interpret
any sent messages. As a result the resynchronization tasks performed on each
node will fail for all subsequent communication cycles. After a configurable num-
ber of failed resynchronization attempts all nodes will enter the normal passive
followed by the halt state.

Targeted DoS attack. The attacker may intend to only prevent a certain node
from sending messages or just certain messages from being sent. To achieve this
the attacker node needs to generate a continuous dominant level during the
transmission of the target message that leads to failure on the receiver side in
correctly interpreting the message. Any failure in verifying correct frame encod-
ing or frame content integrity (i.e. CRC verification) will result in the frame

Practical security exploits of the FlexRay in-vehicle communication protocol 9

being ignored by the receiver. Knowledge about the network and schedule con-
figuration is needed in order to mount this type of attack but this might be
automatically achieved by analysing network traffic as demonstrated in [3, 6, 7].

While static frames have a clearly defined slot allocated for their transmis-
sion, the transmission slot of dynamic frames within the dynamic segment can-
not be predicted. Therefore, employing this attack approach for preventing the
transmission of certain dynamic frames might prove to be more difficult as it
would require additional real-time traffic analysis.

3.3 Data-link layer

The FlexRay communication controller implements the data link layer part of
the protocol. The correct functioning of the FlexRay communication relies on
using the communication controller along with a proper configuration of FlexRay
protocol parameters and common knowledge of the communication cycle on each
network node. However, this configurability makes it possible to misuse protocol
parameters and communication cycle settings directly from the application layer.
We will discuss specific elements of the FlexRay protocol and the attacks they
can enable in the following sections.

Full DoS attack. Improper configuration of the FlexRay communication cycle
on one network node can generate protocol errors on all other nodes and can
potentially lead to a suspended communication if synchronization is lost. This
issue can be exploited to mount a full DoS attack on the network by purposely
affecting node synchronization.

A way to achieve this is for the attacker node to send messages in all slots of
the communication cycle causing collisions with messages from any of the other
nodes. This will result in a loss of synchronization due to the inability of legit
nodes to correctly receive synchronization frames. The loss of synchronization
occurs after a configurable number of resynchronization attempts. In this version
of the attack it is not necessary for the attacker to know detailed information
about the communication schedule of the target network. It is enough to know
the communication cycle length and bit rate on which to build a setup that will
allow integration in the existing communication to enable sending messages in
all slots so that collisions are guaranteed.

A more targeted approach would be to only generate collisions on synchro-
nization frames. When defining the communication schedule it is specified which
frames should be used for synchronization. As presented in the FlexRay frame
description, these frames can be identified by the Sync frame indicator bit in
the frame header. This makes it easy for the attacker to identify the slots used
for synchronization. It would be enough for the attacker to generate collisions
by sending messages in the slots allocated for these frames to force loss of syn-
chronization. Based on its implementation methodology this attack could be
considered a special case of the targeted DoS attack which we detail next. Here
the target messages are all synchronization frames but the intended end result
is complete communication halt.

10 P.S. Murvay et al.

Targeted DoS attack. Similar to the case of transceiver-based attacks, mount-
ing targeted DoS attacks using the FlexRay communication controller aims to
prevent certain network traffic for being correctly received. This can be easily
achieved by adding target messages to the attacker node’s own communication
schedule setup and transmitting them in the appropriate slots. This will cause
collisions on the target messages and decoding errors on the receivers side leading
to the message being rejected. FlexRay does not provide any means of signaling
failed transmissions to the sender node, these are only reported to the hosts of
the receiver nodes.

While mounting this attack on static messages is straight forward, targeting
dynamic frames will require sending the target frame in each communication
cycle since the attacker has no knowledge on the occurrence of message trans-
mission trigger event on the legitimate message sender side. This results in a
combined DoS and spoof attack efficient in feeding receiving nodes false data
while preventing the legit node from intervening.

Message spoofing. The methodology behind message spoofing is similar to
the one employed for the targeted DoS attack. The attacker node has to define
the target messages in its own communication schedule. To assure its correct
transmission the spoofed message has to be sent inside communication cycles
which do not contain the message transmitted by the legit node. To increase
attack efficiency the legit message transmission could be prevented by generating
a collision.

Messages sent in the static segment are cyclic messages which are sent with
a certain periodicity that is a multiple of the communication cycle period. Ac-
cording to the FlexRay specification, a node should always transmit a frame
in a static slot assigned to it regardless of data availability for the particular
communication cycle. The node should transmit a null frame in the static slots
for which there is no data ready to send. This behaviour makes it impossible to
spoof messages in a static slot as long as it is assigned to an active legit node
since any attempt to do so will result in a collision.

Spoofing messages assigned to the dynamic segment is possible since their
corresponding slots will only be occupied if there is data to transmit. Spoofing
dynamic frames might result in collisions as it is impossible to know when the
legit node will send a message in the same slot. Similar to the case of targeted
DoS attacks this effect works to the advantage of the attacker rendering the legit
node unable to send correct data while the attacker transmits faked frames.

3.4 Feasibility of attacks in networks based on active star

Given their nature, networks built on an active star topology could be used to
prevent attacks.

We discuss the feasibility of the previously proposed attacks on active star-
based FlexRay network topologies by strictly referring to the effect of the attacks
on the nodes connected to the attacker node through the active star coupler. It

Practical security exploits of the FlexRay in-vehicle communication protocol 11

is obvious that the behaviour of the proposed attacks on the direct link between
the active star coupler and the attacker node will be as already described.

According to the FlexRay physical layer specification [1,10] the star cou-
pler can set a branch (i.e. physical link) in one of two states for preventing
the propagation of communication misbehaviour from it to other branches, i.e.,
Branch_FuailSilent and Branch_Disabled. The Branch_FailSilent state is entered
as a result of a bus error detection which is specific to particular transceiver
implementations. A transition to the Branch_Disabled state is done on host con-
trol and depends on specific implementations of the host. Therefore, the star
coupler could implement the ability to detect and block any misbehaving traffic
from reaching other network branches. The FlexRay specification does not in-
clude specific requirements or recommendations for misbehaviour detection and
handling for the active star coupler besides switching the transmitter state to
off after exceeding the maximum allowed length of transmitter activation. This
protection mechanism can be overcome by periodically toggling the attacker
transmitter state as discussed in the section dedicated to physical layer based
attacks. In this context, it may be possible to implement all previously presented
attacks on active star based FlexRay networks if proper user-defined protection
mechanisms are not implemented.

Compromising the active coupler node would make it possible to spoof and
DoS any traffic (including static segment frames) from directly connected nodes
since all message routing would be under the control of the attacker. Without
introducing additional security mechanisms it would be virtually impossible for
the other nodes to detect any attack launched by the active star coupler node.

4 Experimental analysis

4.1 Experimental setup

To evaluate the feasibility of the proposed attacks we built a FlexRay network
containing 4 nodes connected according to a bus topology. One of the 4 nodes
is always used as the attacker node. Each node of our test network is built
on an EVB9S12XF512E development board equipped with a Freescale (NXP)
S12XF512 microcontroller two TJA1080A FlexRay transceivers (dedicated to
the two FlexRay channels). The employed microcontrollers are equipped with
32Kbytes of RAM and 512Kbytes of Flash and can operate at a top frequency
of 50MHz. They are intended for automotive applications that require low to
medium performance. Figure 5 illustrates our experimental setup with the cluster
of 4 FlexRay nodes and a PicoScope used to analyse network traffic. In particular,
the FlexRay protocol decoder provided by the PicoScope application was used
to identify malformed frames resulted from the tested attacks.

For the legit nodes we defined a communication schedule that includes trans-
missions both in the static and dynamic segment. Each communication cycle
uses the same slot assignment for both the static and dynamic segments as
shown in Table 2 where A;, B;, and C; are messages sent by nodes A, B and C

12 P.S. Murvay et al.

Fig. 5. Experimental FlexRay network setup used for testing proposed attacks

respectively. To simplify the attack implementations we considered that, where
required, knowledge about communication parameters are already at hand. This
is a realistic assumption as past research has shown it is possible to extract
FlexRay communication parameters by listening to existing traffic [3, 6].

Table 2. Slot assignment within the test communication cycle.

Static segment Dynamic segment
Slot 11213/4|5|6/7]8|9|10(11(12(13|14|15|{16(17|18|19|20|21|22|23
Message A1 A2 Bl Bz A3 B3 Cl Cz 03 04 A4 B4

4.2 Full DoS attack evaluation

Transceiver-based full DoS. We tested this attack by using it to prevent the
start of FlexRay communication as well as force the end of an already established
communication. In the first case, legit nodes attempted to establish communica-
tion in the presence of the attacker generated signal but are not able to do so as
neither node is able to receive correct data. The second attack scenario resulted
in the nodes attempting to achieve resynchronization for a configurable number
of consecutive odd cycles before entering the passive state and stop transmitting.
Figure 6 a) exemplifies the result of the attack on already established communi-
cation by generating a permanent Data_1 level on the communication channel.
The number of resynchronization attempts parameter was set to 5 in our case,
hence the 10 additional cycles following the attack start. The nodes eventually
enter the halt state which can only be exited if the host restarts the FlexRay
controller. We investigated both generating permanent Data_0 and permanent
Data_1 for the attack and achieved the same end effect in both cases.

Practical security exploits of the FlexRay in-vehicle communication protocol 13

. Cycles with failed resynchronization attempts Nedes In normal
cycle passive state

4 T T T T T

a) 3 3

b)

)

15

Attack start V 0.005 0.01 0.015 0.02 0.025 s
Fig. 6. Full DoS attacks: a) transceiver-based version, b) controller-based version tar-
geting all static frames, c) controller-based version targeting only synchronization
frames

Controller-based full DoS. For the implementation of this type of attack and
the subsequent controller-based attacks we configured the FlexRay controller on
the attacker side with the same communication parameters employed by the
other nodes. We tested several variants of the full DoS attack first by creating
collisions on the entire communication schedule, then only on the static segment
frames and finally by targeting only the synchronization frames. In all cases,
the implementation is straight forward as it only requires including messages
targeted for collision in the communication schedule of the attacker and making
sure they are sent in the defined slot. The result in all cases was, as expected,
the termination of FlexRay communication once all nodes lost synchronization
and entered the normal passive state in which a node is not allowed to transmit.
From this state all nodes will then transition to the halt state since in this
case there is no method of regaining synchronization in the absence of traffic
containing synchronization frames. Figure 6 b) and c) illustrate the effect of the
attack on all static segment frames and all synchronization frames respectively.
The attack should persist long enough for all the nodes to enter the halt state.
This is achieved by setting the maximum allowed cycles without clock correction
on the attacker side to the maximum value used within the network or maximum
allowed value according to the specification which is 15.

Collisions occur when sending frames in a slot allocated to another node re-
gardless of the frame content. If the attack frame is other than the legit frame
the result of distinct dominant levels colliding is undefined and cannot be in-
terpreted. Even if the attack frame is identical to the legit one the resulting

14 P.S. Murvay et al.

physical levels are still in violation of protocol specification making the frame
non-decodable.

Comparing attack variants. As illustrated in Figure 6 all variants of the
full DoS attack lead to the same end result, i.e. the transitioning of all legit
nodes in the halt state and the end of message transmission. In terms of attack
complexity, the transceiver-based attack requires less knowledge on the FlexRay
protocol and communication schedule configuration.

4.3 Targeted DoS attack evaluation

Transceiver-based targeted DoS. We implemented this type of attack by
using the timer module to identify the start of a communication cycle by detect-
ing the appearance of the NIT and then measure the offset from the cycle start
to the target frame. Once the target frame slot is detected, the attacker node
starts generating the continuous dominant bus level ending the attack no later
than the frame slot end. The result, as shown in Figure 7 a), is that collisions
will be generated on transmitted target frames making the receiver side unable
to correctly decode the frame. All other traffic passes unaffected. Both targeted
nodes and other communication participants continue fulfilling the communica-
tion cycle as the attack does not generate any transitions in the error confinement
mechanism. Receiver nodes could detect the missing frame in the expected slot
and implement a special handling for this case at the application layer.

Unaffected frame ' ' Attack on targeted frame
4 T T T T T T
35 ! : H
3k ; -
a) g I] ! ‘
25 ' | !
) h
2 I 1 1 1 I I I I L 1
0 10 20 30 40 50 160 70 80 20 10Q Us
A !
4 T T T T
35 ! ! .
i il I | -
b) sk ‘ | ‘ o
2~ .
15 1 1 1 1 I Ll 1 1 1 1
10 20 30 40 50 60 70 80 20 100 ps

Fig. 7. Targeted DoS attacks: a) transceiver-based version, b) controller-based version

Controller-based targeted DoS. The approach for mounting the targeted
DoS attack using the FlexRay controller was similar to the case of the full DoS
attack. Target messages were added in the attacker’s communication schedule
end transmitted in the corresponding slot. As a result, like in the previous at-
tack version, nodes are unable to receive targeted frames but communication

Practical security exploits of the FlexRay in-vehicle communication protocol 15

continues as long as unaffected synchronization frames are still sent to maintain
synchronization. This effect of this attack on the physical line levels is depicted
in Figure 7 b).

Comparing attack variants. While the end result of the targeted DoS attack
is the same in both attack variants, the effort of implementing the transceiver-
based version is higher in contrast with the controller-based approach which only
requires adding the target slot in the attacker’s communication schedule.

4.4 Message spoofing attack evaluation

We checked the behaviour of the FlexRay controller on our S12XF platform when
configuring message transmission periods for the static slots to be greater than
the communication cycle period. As specified, all unused occurrences of allocated
slots were filled by the communication controller with a null frame transmission
making it impossible to mount a spoofing attack on the static segment messages.

On the dynamic segment side we were able to implement message spoofing
by assuring periodic transmission of the injected frame. As expected, some of
the spoof transmissions collided with the legit on-event frame stopping it from
being correctly received.

5 Conclusions

Our work brings more experimental insights but also theoretical discussions on
the feasibility of attacks on FlexRay networks. The DoS and spoofing attacks
that we experiment with are relevant for FlexRay due to the safety-critical na-
ture of in-vehicle communications. In terms of countermeasures, the possible
approaches depend on the employed network topology. In case of passive topolo-
gies (i.e. point-to-point, bus or passive star), message spoofing attacks can be
prevented by adding proper cryptographic authentication mechanisms while DoS
remains a more demanding issue. Active star topologies with specific message fil-
tering mechanisms implemented in the active star couplers can circumvent both
DoS and spoofing attacks. While using an active star topology looks like a good
approach from the security point of view it may not suit all applications. In such
cases a hybrid topology approach could be used to separate parts of the FlexRay
network through an active star coupler. It is good news that FlexRay supports
such topologies and given the safety-critical nature of in-vehicle devices, more
efforts in this direction may be desirable.

Acknowledgements

This work was supported by a grant of the Romanian Ministry of Research and
Innovation, CNCS - UEFISCDI, project number PN-ITI-P1-1.1-PD-2016-1198,
within PNCDI III.

16

P.S. Murvay et al.

References

10.

11.

12.

13.

14.

15.

16.

. FlexRay Communications System - Electrical Physical Layer Specification, Version

3.0.1. Standard, FlexRay Consortium (2010)

. FlexRay Communications System - Protocol Specification, Version 3.0.1. Standard,

FlexRay Consortium (2010)

. Armengaud, E., Steininger, A., Horauer, M.: Automatic Parameter Identification

in FlexRay based Automotive Communication Networks. In: Emerging Technolo-
gies and Factory Automation, 2006. ETFA’06. IEEE Conf. on. pp. 897-904. IEEE
(2006)

. Checkoway, S., McCoy, D., Kantor, B., et al.: Comprehensive Experimental Anal-

yses of Automotive Attack Surfaces. In: USENIX Security Symposium (2011)

. Cho, K.T., Shin, K.G.: Error handling of in-vehicle networks makes them vulner-

able. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. pp. 1044-1055. ACM (2016)

. Heinz, M., Hoss, V., Miiller-Glaser, K.D.: Physical layer extraction of FlexRay con-

figuration parameters. In: Rapid System Prototyping, 2009. RSP’09. IEEE/IFIP
International Symposium on. pp. 173-180. IEEE (2009)

. Huse, M.I.: FlexRay Analysis, Configuration Parameter Estimation, and Adver-

saries. Master’s thesis, NTNU (2017)

. ISO: 17458-1, Road vehicles — FlexRay communications system — Part 1: Gen-

eral information and use case definition. Standard, International Organization for
Standardization (2013)

. ISO: 17458-2, Road vehicles — FlexRay communications system — Part 2: Data

link layer specification. Standard, International Organization for Standardization
(2013)

ISO: 17458-4, Road vehicles — FlexRay communications system — Part 4: Electrical
physical layer specification. Standard, International Organization for Standardiza-
tion (2013)

Koscher, K., Czeskis, A., Roesner, F., et al.: Experimental security analysis of a
modern automobile. In: Security and Privacy (SP), 2010 IEEE Symposium on. pp.
447-462. IEEE (2010)

Miller, C., Valasek, C.: Adventures in automotive networks and control units. DEF
CON 21, 260264 (2013)

Murvay, P.S., Groza, B.: DoS Attacks on Controller Area Networks by Fault In-
jections from the Software Layer. In: Proc. of the 12th Intl. Conf. on Availability,
Reliability and Security (ARES’17), 3rd Intl. Workshop on Secure Software Engi-
neering (2017)

Nilsson, D.K., Larson, U.E., Picasso, F., Jonsson, E.: A first simulation of attacks
in the automotive network communications protocol flexray. In: Proc. of the Intl.
Workshop on Computational Intelligence in Security for Information Systems CI-
SIS’08. pp. 84-91. Springer (2009)

Palanca, A., Evenchick, E., Maggi, F., Zanero, S.: A stealth, selective, link-layer
denial-of-service attack against automotive networks. In: International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment. pp. 185—
206. Springer (2017)

Wolf, M., Weimerskirch, A., Paar, C.: Security in automotive bus systems. In:
Workshop on Embedded Security in Cars (2004)

