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Fast and Efficient Group Key Exchange in
Controller Area Networks (CAN)

Adrian Musuroi, Bogdan Groza, Lucian Popa and Pal-Stefan Murvay

Abstract—The security of vehicle communication buses and
electronic control units has received much attention in the recent
years. However, while essential for practical deployments, the
problem of securely exchanging cryptographic keys between
electronic control units on the CAN bus received little attention
so far. In this work, we evaluate group extensions of a regular
key exchange protocol, i.e., the elliptic curve version of the
Diffie-Hellman protocol, by using both a standardized NIST
elliptic curve as well as the faster, more recently proposed FourQ
curve. We deploy protocol implementations and determine crisp
performance bounds on real-world automotive-grade platforms
with Infineon and ARM cores. For an up-to-date analysis,
we use both CAN and its more recent extension CAN-FD as
communication layers. Roughly, the computational runtime of
the key exchange protocol scales logarithmically or linearly with
the number of nodes, depending on the protocol version. The
computational time proves to be more critical than bandwidth
due to the more demanding elliptic curve operations.

Index Terms—CAN bus, authentication, group key exchange,
elliptic curve, FourQ

I. INTRODUCTION AND MOTIVATION

While largely used as a communication layer by most
Electronic Control Units (ECU) inside vehicles, the CAN bus
and its newer embodiment with flexible data-rates CAN-FD,
have no intrinsic security. The consequences of this have been
largely proved in works such as [1], [2], [3] and in some
more recent papers exploiting remote vulnerabilities [4], [5].
A recent survey on existing challenges for wired and wireless
vehicular buses can be found in [6]. The effects may range
from small nuisances, e.g., degradation of certain vehicle
functions, up to major problems that may lead to life-critical
malfunctions of the vehicle. Consequently, there are no doubts
that the security of in-vehicle buses is a problem that needs
special attention.

The CAN bus was designed in the 80’s by BOSCH as a
two wire differential bus, that is cost effective and has high
reliability. Figure 1 illustrates the topology of the CAN bus.
Each ECU connects to the differential lines of the bus CAN-
H and CAN-L. CAN follows a serial multi-master commu-
nication model with broadcast transmission. CAN resolves
bus contention using an ID-oriented arbitration. That is, each
message contains an ID field that determines which is the
node allowed to continue the transmission. An 11 bit ID

Copyright (c) 2021 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

Adrian Musuroi, Bogdan Groza, Lucian Popa and Pal-Stefan Murvay are
with the Faculty of Automatics and Computers, Politehnica University of
Timisoara, Romania, Email: {adrian.musuroi, bogdan.groza, lucian.popa, pal-
stefan.murvay}@aut.upt.ro

Fig. 1. Depiction of the CAN Bus

Fig. 2. The structure of an extended CAN frame

accompanies each standard data frame, while extended frames
contain a 29 bit ID field for the same purpose, as depicted
in Figure 2 which presents the structure of an extended data
frame. While usually the ID field denotes the frame content,
there are multiple implementations of the CAN upper layers
(e.g. SAE J1939, ISO-TP) that use the ID field to indicate the
sender. Even if the upper layers of the employed protocol do
not specifically designate the ID as an indicator of the message
sender it can still be used to identify the transmitter since most
frame types can only be sent by a particular ECU. Therefore, it
is expected that data-frames with the same ID originate from
the same sender. Consequently, parts of the ID field can be
used to encode the node addresses.

Architecture and security requirements. From a networking
perspective, ECUs inside a car are usually grouped into sub-
networks dedicated to specific functionalities, i.e., body, chas-
sis, powertrain, etc. We suggest this in the conceptual CAN bus
architecture from Figure 3 which is inspired from real-world
in-vehicle networks such as [7], [8]. The intercommunication
between ECUs on distinct sub-buses is mediated by a gateway
ECU that is responsible for traffic redirection. In response
to the recent attacks, numerous research proposals appeared
for securing the CAN bus and the industry also reacted
with current standards for secure on-board communication,
i.e., AUTOSAR [9]. This standard in particular requires the
presence of authentication elements and freshness parameters
in each frame. The computation of the authentication element
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Fig. 3. Conceptual CAN architecture

in each frame is done via the CMAC algorithm based on AES-
128. The output of the CMAC is further truncated to 24-28
bits depending on the profile [9].

Existing challenges. All of the proposed cryptographic
methods to protect the CAN bus, including the aforementioned
CMAC-AES from [9], require a secret key to be shared
between ECUs for encryption/authentication purposes, i.e., a
group key. For these purposes, group key exchange protocols
are needed. This is a well explored topic in the domain of
distributed systems, e.g., [10], [11], [12]. In the case of the
CAN bus however, there was little effort so far in designing or
evaluating group key exchange protocols. Existing AUTOSAR
standards, e.g., [13], [14], are specifying function templates
for key exchanges between pairs of ECUs, but obviously
these need to be scaled up to multiple ECUs on the bus.
Some early works that addressed group key exchange on
CAN buses are [15], [16] and [17] which securely exchange
cryptographic keys based on the wired-AND behavior of the
CAN physical layer. But using the physical layer may open
road to probing attacks, as demonstrated in [18]. So far, for
practice, cryptographic protocols seemed to be the only secure
alternative. More recently, the authors in [19] and a few other
works (discussed in the related work section) explored several
cryptographic protocol versions for exchanging group keys.
But all these versions are more computationally demanding
compared to the protocols evaluated in this work.

Contribution and relation to existing works. The theoretical
foundations of group key exchange have been carefully inves-
tigated by cryptographers and security engineers for at least
three decades, e.g., [10]. On the practical side of in-vehicle
networks, only recently, the authors in [16] explored a group
key exchange protocol that uses a tree to group ECUs con-
nected to the CAN bus. The idea of grouping nodes in a tree
to perform a group key exchange is not new and can be traced
back to earlier works starting from the 90’s, e.g., [20], while
subsequent works brought several improvements by extending
trees to graphs [21] and embedding the Diffie-Hellman key
exchange paradigm in the key tree, i.e., [11] and [12]. How-
ever, the group key agreement for CAN proposed in [16] uses
the physical bus which comes with a disadvantage: the key
exchange can be performed only for nodes that are connected
to the same bus, i.e., the physical layer key exchange cannot

pass through gateways that connect different sub-buses. This is
not a limitation in case of regular cryptographic key exchange
protocols, e.g., Diffie-Hellman based, which do not require
nodes to be connected to the same physical bus. Grouping
nodes under a key exchange tree also allows to harness the
speed of parallel protocol executions on multiple ECUs and
gives more flexibility to the group key management. In our
proposal we employ a Security Orchestrator ECU (SoECU)
that is responsible for the group key agreement. This is in line
with early approaches in group key exchange such as [22]
where a group key controller is responsible for coordinating
the group key agreement. The gateway ECU suggested by
us in Figure 3 is the most suitable ECU to be in charge
with the entire group key exchange orchestration, i.e., the
role of the Security Orchestrator ECU (SoECU) that will
coordinate the nodes to reach a common secret key on each
of the sub-buses. Our protocol proposals differ from previous
approaches in the way we orchestrate messages on the CAN
bus, how we allocate protocol frames over CAN IDs and
the AUTOSAR compatibility of our application stack. Also,
different to related works, here we consider the fast, more
recently proposed, FourQ elliptic curve [23]. This curve can be
efficiently used for implementing cryptographic key exchange
protocols for groups of ECUs connected via CAN. We test
the performance of the schemes by using automotive-grade
platforms. By using the FourQ elliptic curve, the computations
are several times faster than on a regular 256-bit NIST elliptic
curve. This allows us to perform a key exchange between two
automotive-grade controllers in a few dozen milliseconds and
scales up logarithmically or linearly, depending on the protocol
version, to an arbitrary number of controllers. Such runtimes
are affordable during various routines, e.g., at vehicle start-up.
Briefly, the contributions of our work can be summarized as
follows:

1) we accommodate and compare several group key ex-
change protocols on the CAN bus, designing a Security
Orchestrator (SoECU) that coordinates ECUs to obtain
a common group key,

2) we develop an AUTOSAR compliant implementation for
the proposed group key exchange on the CAN bus that
is in line with industry requirements,

3) we take benefit of the faster FourQ elliptic curve which
in our experiments leads to a five time decrease in the
computational time compared to the commonly recom-
mended NIST P-256 curve,

4) we provide comprehensive experiments on representa-
tive automotive-grade controllers and clear performance
metrics with respect to computational time and band-
width.

The rest of the work is organized as follows. Section II
surveys over related works. Then in Section III we discuss
the basic cryptographic protocols that we use and the group
extension that will be further implemented. Section IV holds
details on the implementation and Section V the experimental
results that we obtain. Finally, Section VI holds the conclusion
of our work.
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II. RELATED WORK

We now discuss previous research on key exchange ap-
proaches for automotive networks as well as the integration,
implementation and evaluation of elliptic curve libraries on
automotive embedded platforms.

Elliptic curve libraries. Several works analyze the mem-
ory requirements and time budgets for elliptic curve im-
plementations. The authors in [24] describe a fast, low-
power implementation of an elliptic curve library tested us-
ing different NIST curves on an ARM Cortex-M0+ CPU.
In [25], the authors propose the implementation of elliptic
curve pairings on an ARM Cortex-M0+ CPU with hardware
extensions emphasizing the timings and memory usage for
each operation and proving the practicality of their proposal
in embedded applications. Optimizations of the elliptic-curve
Diffie-Hellmann key agreement protocol, using Curve25519
as the underlying curve, on 16-bit and 32-bit MSP430 low-
power microcontrollers from Texas Instruments are presented
in [26] with comprehensive details for code space and execu-
tion time performance. The performance of the uECC library
(http://kmackay.ca/micro-ecc/), a small open-source crypto-
graphic library with implementations for the elliptic curve
digital signature algorithm (ECDSA) and Diffie-Hellman key
exchange, is evaluated in [27] with regards to execution timing
on an Atmel SAMR21-XPRO board equipped with the ARM
Cortex-M0+ CPU. Given the increasing interest in automotive
security, there are many proposals for securing in-vehicle
communication or integrating secure protocols in existing
vehicle systems for verifying software authenticity (i.e. using
public key certificates). In the context of the automotive real-
time requirements, the computational timing of elliptic curve
operations is evaluated by the authors from [28] and [29]
on automotive-grade microcontrollers, e.g., Infineon AURIX
TC297, using several open-source cryptographic libraries, e.g.,
wolfSSL (https://github.com/wolfSSL), RELIC[30] or MIR-
ACL (https://github.com/miracl/MIRACL).

Key exchange. One category of approaches proposed for
key exchange in automotive networks relies on the behavior
of the physical layer. Mueller and Lothspeich are the first to
propose using the wired-AND behavior of the CAN physical
layer to implement key agreement between two nodes [15].
Their scheme involves concurrent transmission from the two
nodes involved in the key exchange from which the legit
nodes can extract a common secret. A later extension of
this scheme also provides support for group key agreement
[16]. A common downside of this approach is that it requires
dedicated hardware as it is not supported by standard CAN
controllers. However, the mechanism was successfully adapted
for the use in achieving key agreement for FlexRay networks
without the need of hardware changes [42]. While the basic
scheme is vulnerable to physical probing attacks, the work in
[18] proposes several efficient solutions for alleviating these
threats. The work in [17] provides another mechanism that
uses the non-destructive CAN arbitration along with frame
delays to implement key exchange on CAN without the
need of any additional hardware. The performance analysis
was conducted on the Infineon TC297 platform, yielding a

computational overhead between 26ms and 98ms for a two-
party key exchange.

Other lines of work have focused on applying various key
exchange protocols on CAN. In [33], Woo et al. proposed
the use of the AKEP2 [34] protocol which relies exclusively
on symmetric primitives. The performance analysis of this
mechanism was evaluated using OpenSSL (https://github.com/
openssl/openssl) on the Infineon TC275 platform and the
computational overhead for establishing a secret key between
20 ECUs clocked at 30MHz was estimated to be under 280ms.
A more recent proposal which also relies only on symmetric
cryptography was proposed by Youn et al. in [35]. In this
paper, one of the benchmark platforms is Infineon’s XC2265N
and the results show an execution time of 23ms for a key
agreement between 15 ECUs. Several protocols based on
elliptic curve cryptography (ECC) were also evaluated in other
works. While more computationally expensive, these proposals
offer more flexibility by removing the overhead of requiring
secret keys to be pre-shared between the ECUs. One of the
former investigations of using ECC for key agreements in au-
tomotive systems was done in [43]. However, the performance
evaluation is limited to the analysis of bus load variations
when using the proposed mechanism. Multiple versions of
identity-based key exchange (IBKE) protocols were explored
in [19] and evaluated on Infineon’s TC297 platform. These
protocols proved to be computationally demanding, e.g., a
key exchange between two ECUs was measured to be 191ms
when evaluating Cao’s IBKE. A lightweight scheme which
uses PUFs for authentication and implicit certificates for
deriving message-based group keys with implementation based
on BearSSL (https://bearssl.org/) is proposed in [38]. Here,
the benchmark results indicate over 2s for authenticating a
device and 135ms for establishing a single secret key between
30 ECUs (however, the authors suggest using multiple keys,
which significantly increases the runtime). In [39], Tatara et
al. explored the use of broadcast encryption for updating
secret keys. The authors used a Raspberry Pi 3B platform
and several libraries, GNU MP (https://gmplib.org/), OpenSSL
and ELiPS (https://github.com/ISecOkayamaUniv/ELiPS), for
the protocol evaluation. Their experimental results indicate an
overhead of 70ms for the secret key update operation. Another
work that focuses on the use of ECC for key establishment [41]
proves the feasibility of the proposed approach by analyzing
its application for the real-time requirements of a steer-by-
wire system. In this case, the performance was evaluated on
a more expensive and high-end platform, i.e., NVIDIA Jetson
TX2 which conducts two-party key exchanges in 13ms.

As a summary for existing proposals on key agreements for
the CAN bus, we provide a briefing on the previously men-
tioned related works in Table I. In the first two columns of the
table we depict the employed cryptographic protocols and the
software libraries used for implementing them. We note that
the first two works from the table, i.e., [15] and [16], employ
the physical layer without explicitly using any cryptographic
primitive and there are no associated experiments. The next
two columns specify the intended bus, i.e., CAN vs. CAN-
FD, as well as the hardware platforms that were employed for
analyzing the performance. Finally, the last column highlights

http://kmackay.ca/micro-ecc/
https://github.com/wolfSSL
https://github.com/miracl/MIRACL
https://github.com/openssl/openssl
https://github.com/openssl/openssl
https://bearssl.org/
https://gmplib.org/
https://github.com/ISecOkayamaUniv/ELiPS
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TABLE I
SUMMARY OF SUGGESTED APPROACHES FOR KEY AGREEMENT ON CAN/CAN-FD

Work Cryptography Libraries Bus Platforms Protocol features
[15] - - CAN - Uses the wired-AND behaviour of the physical layer (voltage)
[16] - - CAN - Extends [15] to a group key agreement

[17]
ECDH

EKE [31]
SPEKE [32]

MIRACL CAN
Infineon TC224
Infineon TC277
Infineon TC297

Physical layer (timing) in the main scheme, extensions with ECC also
explored

[33] AKEP2 [34] OpenSSL CAN-FD
TI TMS320C28346
TI TMS320F28335
Infineon TC275

Key distribution/update based on symmetric cryptography (requires pre-
shared keys)

[35] Own - CAN Infineon XC2265N
Arduino ATmega328

Key distribution/update based on symmetric cryptography (requires pre-
shared keys)

[19]
ECDH

Wang IBKE [36]
Cao IBKE [37]

MIRACL CAN-FD Infineon TC297
SAM V71 XULTRA

Identity-based cryptography to remove certificates, uses pairing-friendly
curves

[38] ECDH BearSSL CAN/CAN-FD Olimex ESP32-EVB
Raspberry Pi 3B+

PUFs for authentication, implicit certification, ECDH on curve P-256 and
One-Time Pad for key computation

[39] BGW [40]
GNU MP
OpenSSL

ELiPS
CAN Raspberry Pi 3B Key update with BGW on the pairing-friendly curve BLS12

[41] ECDH - CAN-FD NVIDIA Jetson TX2 Uses elliptic curve integrated encryption scheme on curve P-192, solution
implemented on high performance GPU

Ours ECDH FourQlib
RELIC CAN/CAN-FD

Infineon TC224
Infineon TC277
Infineon TC297
SAM V71 XULTRA

High-performance FourQ curve (NIST’s Curve P-256 as reference)

the key aspects in each of the proposals. The performances
for each proposal were already mentioned but it may be
useful to recap them. Proposals [15], [16] and [17] are based
on the physical layer and a direct comparison to the other
approaches that use cryptography may be biased. Physical
layer approaches are faster, e.g., a key exchange between
two nodes can be achieved in well below 1ms, but they
are also vulnerable to new attacks, e.g., probing attacks [18].
Finally, there is no concrete performance evaluation in [15] and
[16]. The approaches from [33] and [35] use only symmetric
keys, which also makes them more computationally efficient,
but they require fixed pre-shared keys which compromises
scalability. Finally, the rest of the proposals, i.e., [19], [38]
and [39] are all based on asymmetric cryptography, i.e., ECC,
and they all seem to be slower than our FourQ-based approach.
Only the work in [41] reports results that are faster than ours,
i.e., 12.93ms compared to 24ms , but the work is based on
a high performance GPU that may be unrealistic for current
in-vehicle ecosystems, i.e., their NVIDIA Jetson TX2 runs at
2GHz while our Infineon TC297 controller (a common high-
end in-vehicle controller) is only at 300MHz.

III. GROUP EXTENSIONS FOR MULTIPLE ECUS

In this section we start from a two-party protocol based
on the Diffie-Hellman key exchange and further extend it to
larger groups of ECUs. We also discuss possible variations
of the protocol, highlighting advantages and disadvantages
with regards to security and performance. Table II provides
a summary for the notations used throughout our work which
will be explained in the following paragraphs.

A. The two-party key exchange protocol based on STS

The key exchange protocols that are compatible with our
implementation follow the generic Diffie-Hellman construc-
tion [44] which is arguably the most widely used key exchange

TABLE II
SUMMARY OF NOTATIONS

ECU Electronic Control Unit
LECU Logical ECU, obtained from merging two entities
SoECU Security Orchestrator ECU

n number of ECUs in the network
gsk group secret key
msk master secret key
{m}k symmetric encryption of m with key k
KDF key derivation function

SigECU(m) digital signature performed by ECU on m

protocol in computer networks. While its original embodiment
[44] is vulnerable to man-in-the-middle attacks, subsequent
variants such as the Station to Station (STS) protocol [10]
remove this vulnerability by signing the exchanged key-shares.
Since STS or other variations are implemented in many
security suites (e.g. IPSec), we also chose it as basic primitive
in the group key exchange protocol.

Figure 4 illustrates the steps of the STS protocol as we
implement them for a key agreement between two ECUs.
Compared to the original embodiment of the protocol, we
require every key exchange to be authorized by a trusted
authority within the system denoted as Security Orchestrator
ECU, i.e., SoECU. Hence, the protocol start is not triggered
by either of the participants but by SoECU which sends an
orchestration message announcing the key exchange between
two ECUs. The orchestration message contains a digital signa-
ture computed on the concatenation of the CAN Extended ID
(CANxID) and a timestamp ts (we assume that nodes keep a
common local time for the network which is also enforced by
current AUTOSAR standards for time synchronization). This
approach prevents impersonation or replay attacks directed
towards SoECU. As a natural speedup, we also require that all
computational steps are executed in parallel by the ECUs when
triggered by SoECU to begin a key exchange. After receiving
and verifying the signature announcing the key exchange
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    3a". Wait share            

    3b". Send share           

3'. Exchange shares
   3a'. Send share

   3b'. Wait share

4'. Extract and confirm
   4a'. k     KDF'(rArBP)  
   4b'. sA     SigECUA(rAP, rBP)
   4c'. CA     {sA}k

5'. Exchange confirmations
   5a'. Send confirmation

   5b'. Wait confirmation

5". Exchange confirmations
 5a". Wait confirmation          

    5b". Send confirmation         

SoECU

1'. Verify signature 1". Verify signature

4". Extract and confirm    
    4a". k     KDF'(rBrAP)            
    4b". sB     SigECUB(rBP, rAP)

       4c". CB     {sB}k                    

rBP

CA

CB

6'. Verify confirmation 
   6a'. Decrypt CB 
   6b'. Verify sB

6". Verify confirmation 
    6a". Decrypt CA
    6b". Verify sA

req    SigSoECU(CANxID, ts)
req req

Fig. 4. Key exchange between ECUA and ECUB based on the STS protocol
at the request of SoECU

requests (step 1), the ECUs will generate random integers,
i.e., rA and rB , respectively (step 2a), that are further used
to compute the Diffie-Hellman protocol shares, i.e., rAP and
rBP (step 2b). The shares are exchanged between the two
ECUs over CAN and neither of them will proceed to the
next step until this transmission phase ends (steps 3a and 3b).
Subsequently, both ECUs extract the shared session key as
k = KDF′(rArBP ) and k = KDF′(rBrAP ) (step 4a), where
KDF′ : {0 , 1}∗ → {0 , 1}` is a key derivation function and
` is the security level, e.g., 128 bits. Then the ECUs will
digitally sign the shares as sA = SigECUA

(rAP, rBP ) and
sB = SigECUB

(rBP, rAP ) (step 4b), and then encrypt these
digital signatures in order to obtain the protocol confirmations,
i.e., CA = {sA}k and CB = {sB}k, respectively (step 4c).
After exchanging the confirmations via CAN with the same
mentions as before (steps 5a and 5b), both ECUs decrypt
them and verify if the signatures are correct (steps 6a and 6b).
Finally, the protocol is successful if and only if all signature
verifications pass, otherwise the protocol is aborted.

One additional note is that since the amount of data sent
on the bus must be carried by CAN-FD frames, i.e., with
maximum 64 bytes in the data-field, our implementation re-
quires four messages to be exchanged between the participants
(compared to three in the original description of STS). Also,
we omit sending the digital certificates explicitly during key
exchanges in order to prevent unnecessary bus traffic each
time the protocol is run. Due to the typically limited size of
CAN networks and compact representations of elliptic curve

r1P

ECU1
Address: 0x01

r1 = rand() r2 = rand()
r2P

r1,1 = KDF'(r1 r2 P)

LECU1,1
Address: 0x0B

Members: ECU1,ECU2

r1,1P

r1,2P

gsk = KDF'(r1,1 r1,2 P)

ECU2
Address: 0x02

ECU3
Address: 0x03

r3 = rand() r4 = rand()

r1,2 = KDF'(r3 r4 P)

LECU1,2
Address: 0x0C

Members: ECU3, ECU4

ECU4
Address: 0x04

C1
C2

C1,1

C1,2

r3P
r4P
C3
C4

Fig. 5. Group key exchange between four units, formation of two LECUs

points, we assume that each ECU stores local copies of all
public keys (or certificates) belonging to the other units from
its sub-network.

B. Formation of Logical ECUs

As stated, we require one trustworthy ECU, i.e., the secu-
rity orchestrator SoECU, to orchestrate and monitor the key
exchange between the ECUs. Furthermore, we also assign
other operations to the security orchestrator, e.g., revoking
the credentials of a node in case it becomes corrupted or
merging two networks. A convenient practical instantiation for
the SoECU may be a gateway ECU. The initial configuration
of the CAN network is a fixed set of n units connected to the
bus, referred as physical units, or simply ECUs, and denoted
as ECUi, i = 1..n. To avoid conflicts between ECUs during
the key negotiation, we assign a fixed, unique address encoded
as a one-byte integer to each ECU. Adding addresses to ECUs
on the bus is already present in upper layer specifications of
the CAN bus such as J1939-21 [45] and does not interfere with
existing specifications. The identifier fields of the orchestration
messages and the responses provided by protocol participants
will specify the role of the message as well as the sender and
receivers. Figure 5 shows an example of a CAN network with
four such physical ECUs (n = 4), denoted as ECU1, ECU2,
ECU3 and ECU4 having the addresses 0x01, 0x02, 0x03 and
0x04, respectively.

We build the group key exchanges on the CAN bus over
the primitive operation of merging two ECUs by engaging
them in a key exchange. In the example from Figure 5, ECU1

is merged with ECU2, while ECU3 is merged with ECU4.
These operations are requested by the SoECU using the ECU
physical addresses that were previously introduced, and can
be performed in parallel. During the execution, each physical
unit ECUi, i = 1..n generates an ephemeral random value ri
for computing the Diffie-Hellman protocol share as riP . At
the end of these exchanges, two subgroups are formed. We
refer to these as logical ECUs and denote them as LECUl,j ,
where l indicates the level of the controller and j is the
index of the unit within level l. Consequently, a LECU is an
abstract ECU which allows a subgroup of physical ECUs to be
represented and addressed as a single entity. It is characterized
by: i) the physical ECUs which are members of the LECU
ii) a unique, logical address encoded as a one-byte integer
for addressing the subgroup and iii) a value rl,j (initially



6

set to null) representing the most recently established secret
between the members. In the example from Figure 5 both
LECUs, i.e., LECU1,1 and LECU1,2, have two members and
the secret values shared within the subgroups are r1,1 and r1,2,
respectively. Subsequently, we extend the merging operation
to also support LECUs as operands.

Whenever two LECUs need to be merged, the security
orchestrator uses their addresses in order to initialize the
operation. All member ECUs from both sides will be trig-
gered by this event, but only one physical device from each
subgroup will act and conduct the key exchange protocol on
behalf of the LECU. We call this unit the active member of
the LECU, while the other units are passive members. For
practical purposes, the active member of a logical unit can
be designated as the ECU with the highest computational
resources. Since the passive members must also extract the
newly agreed secret value, we require that the active member
of LECUl,j will always use the corresponding subgroup secret,
i.e., rl,j , as the private key for computing the Diffie-Hellman
protocol share. Thus, the passive members can monitor the
key exchange messages through the CAN bus, while also
extracting the agreed secret shared key. The result of merging
two LECUs will then be a new logical unit which contains all
the members from both operands and a secret key established
between them. In the example from Figure 5, LECU1,1 and
LECU1,2 are merged at SoECUs request using the addresses
0x0B and 0x0C. One member from each LECU, i.e., ECU1 in
LECU1,1 and ECU3 in LECU1,2, is designated as the active
member (highlighted in bold) and both protocol shares are
computed using the LECU secret values as r1,1P and r1,2P ,
respectively. Finally, the result of this merging operation is a
LECU which contains all ECUs from the network as members
having the group secret key gsk = KDF′(r1,1r1,2P ), where
KDF′ : {0 , 1}∗ → {0 , 1}` is a key derivation function with
security level `.

C. The main group key exchange scheme and variations

We now detail the main group key exchange scheme which
uses the previous rationale of merging two physical or logical
entities. Due to obvious concerns related to computational
and communication resources, we further simplify the main
scheme and introduce two variations of it that are more
efficient. The three resulting group key exchange schemes are
summarized in what follows.

1) Full Key Exchange Tree with SoECU: is the main ver-
sion of the scheme with one key exchange between each ECU
and SoECU, i.e., building one logical ECU between SoECU
and each other ECU, followed by pair-wise key exchanges
between logical ECUs up to the root of the tree. In this
way the group key exchange problem is solved recursively by
decomposing it into smaller problems. The inclusion of the
SoECU in a subgroup with each ECU is relevant for at least
three reasons: i) in this way the security orchestrator shares
a secret key with each ECU that can be used for establishing
a private communication channel, ii) all the subsequent key
agreements between logical ECUs can be monitored by the se-
curity orchestrator and iii) the security orchestrator contributes

with fresh random material to each key, removing potential
weaknesses in case that some controller unit has poor random
number generators.

Figure 6 (i) illustrates the main protocol scheme in the
context of a group key exchange for a network with n regular
ECUs denoted as ECUi, i = 1..n, plus a trustworthy unit
assigned with the role of the SoECU. The protocol follows
the structure of a binary tree, where the root is the logical
controller LECUR containing all the network units as members.
In this representation, each level of the tree is a protocol
step in which merging operations are conducted by physical
ECUs in parallel, so the overall runtime is in fact logarithmic
in the number of ECUs. The only exception is the bottom
level of the tree, which includes SoECU in each key exchange
(thus it is non-parallelizable). Here, each ECUi is merged with
SoECU in order to form a logical controller and extract two
secrets. The first one rl,j = KDF′(rirsP ) is the secret value
assigned to the logical controller LECUl,j in the next level of
the tree and the second one ski = KDF′′(rirsP ) is a secret
key used for establishing a private communication channel
between ECUi and SoECU. Here KDF′ : {0 , 1}∗ → {0 , 1}`
and KDF′′ : {0 , 1}∗ → {0 , 1}` are two distinct key derivation
functions with security level `. From the third level of the tree,
merging operations are performed between logical controllers
which include the security orchestrator SoECU as a member
(the SoECU is an active member only when there is no other
physical ECU in the LECU).

2) Full Key Exchange Tree without SoECU in each Logical
ECU: is a variation in which we cut the last level of the
tree and let the ECUs exchange keys independently, i.e., the
ECUs are clustering in the last level under logical ECUs
without SoECU being present in each logical ECU. SoECU
is still responsible for orchestrating the key exchange. Since
the last level of the tree is the largest, this should significantly
reduce the computational and communication overheads. One
disadvantage is that SoECU will no longer have a shared secret
key with each ECU, but SoECU will group itself as a regular
node in the key exchange (for this reason we now have n+ 1
nodes in the key exchange) and will be in possession of the
group secret key. This version is illustrated in Figure 6 (ii)
and since it is similar to the previous, further details shall be
superfluous.

3) Baseline Key Exchange with Symmetric Shared Key
distributed by SoECU: is the version in which we try to
remove some of the expensive elliptic curve operations. In
this version we consider that SoECU performs a key exchange
with each of the ECUs, i.e., the last level of the main scheme
tree is fully formed, and subsequently sends the master secret
key msk from which the group key is derived. This value
will be signed and independently encrypted by SoECU with
the secret key shared with each of the ECUs. In this case
however, logical ECUs are formed only between SoECU and
each other ECU, i.e., logical ECUs from the upper layers
are missing. This results in a more rigid key distribution
scheme that will not allow subgroups of ECUs to communicate
under a distinct secret key, i.e., under a logical ECU. Once
an ECU is removed, a new session key must be shared by
the same symmetric key exchange procedure. This version
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Fig. 6. Group key exchange schemes

of the scheme is illustrated in Figure 6 (iii). To ensure that
each ECU has contributed to the group secret key, this key
is derived from all the key material that has been exchanged
on the bus, i.e., gsk = KDF′(msk , r1P, r2P, ..., rnP, rSP ).
Here msk is the master secret key generated by SoECU. This
random value is encrypted along with a signature on it, i.e.,
sig = SigSoECU(msk , r1P, r2P, ..., rnP, rSP ). In this way, all
ECUs contribute to the group secret key with their random
material and SoECU confirms to each ECU that the common
group key is built with its random secret material msk .

D. Removing nodes from the network

In the rare event of an ECU becoming corrupted, since
physical removal of the node in a timely manner is not
always possible, we also need to provide procedures for logical
removal of the node from the network. Whenever an ECU
is removed from the network, the group secret key must be
renewed such that the removed node will be unable to retrieve
it. In our implementation, the removed ECU will be replaced

by the security orchestrator SoECU in order to maintain the
tree structure and avoid minimizing the entropy of the group
secret key. Consequently, ECU removal is easily orchestrated
by the SoECU, by re-running all the key exchanges from the
last LECU that includes the corresponding physical ECU on
the path that leads to the root of the tree. An example for
such path is highlighted in red in Figure 6 (i) for the main
scheme. Here, ECU2 is removed by renewing the secret values
from LECU1,2, LECU2,1 up to the root LECUR. If a removed
ECU has to be added back to the network, then the security
orchestrator SoECU will re-include the node in the logical
LECU by triggering a new key exchange for the LECUs. The
key exchange will propagate further to the root of the tree
along the same path that led to the removal. For brevity, further
details on this procedure are deferred to Appendix A.

IV. IMPLEMENTATION DETAILS

In this section we present our experimental setup and
provide the implementation details.
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TABLE III
HARDWARE CHARACTERISTICS OF THE EMPLOYED PLATFORMS

Characteristic TC224 TC277 TC297 SAM V71
Cores 1 3 3 1
Architecture 32-bit 32-bit 32-bit 32-bit
Max. frequency 133 MHz 200 MHz 300 MHz 300 MHz
Flash 1 MB 4 MB 8MB 2 MB
RAM 96 KB 472 KB 728 KB 2 MB
EEPROM 96 KB 384 KB 768 KB 256 KB
CAN-FD Yes* Yes* Yes* Yes

*CAN-FD supported by microcontroller, but not by the on-board
transceivers of the evaluation kits

A. Automotive-grade hardware support

We evaluate the performance of the proposed mechanism
using a series of 32-bit automotive-graded platforms. These
include three Infineon evaluation boards based on the TC224,
TC277 and TC297 microcontrollers, as well as two Microchip
SAM V71 Xplained Ultra evaluation boards based on the
ARM Cortex M7. Table III highlights the key characteristics
of each device.

The Infineon microcontrollers from our experiments are
members of the AURIX family of devices, designed for high
performance and reliable automotive applications. While the
TC224 features a single core that maxes out at a frequency
of 133MHz, the other two family members offer three-core
architectures that can reach clock frequencies of up to 200MHz
in case of the TC277 and 300MHz in case of the TC297.
The ARM-based SAM V71 features a single-core processor
that also reaches a top frequency of 300MHz. Specialized
cryptographic peripherals, e.g., true random number generator
and hardware accelerated AES engines are provided by both
microcontroller families. While these peripherals are easily
accessible on the SAM V71 boards, the Infineon platforms
incorporate them in dedicated Hardware Security Modules
(HSM) and the use of these modules is reserved for industry
applications. As a consequence, when implementing the proto-
col on Infineon’s platforms, we opted towards software-based
implementations of the required cryptographic primitives (i.e.
pseudo-random generator, AES encryption/decryption, etc.).
Fortunately, these symmetric operation come with very small
performance penalties compared to the public-key operations
required by the key exchange.

Regarding connectivity, all platforms are CAN-FD com-
patible. The SAM V71 devices are equipped with on-board
ATA6561 CAN-FD ready transceivers and thus can be directly
connected using the dedicated CAN-H and CAN-L pins and a
twisted pair of wires as shown in Figure 7 (i). Since both nodes
have the same computational power, the network defined by
them is further used by us as a homogeneous network example.
In contrast, all Infineon boards have different computational
capabilities and include only high speed CAN transceivers
which do not support higher bit rates specific to CAN-FD.
In order to enable CAN-FD communication using the AURIX
microcontrollers, we connected external CAN-FD transceivers
to the TC277 and the TC297 boards, while the third one,
i.e., the TC224, was used only for individual computational

benchmarks. The transceivers that we used are NCV7344
from ON Semiconductor, available as off-the-shelf solution
from Mikroelektronika on CAN FD Click boards which are
equipped with interface pins, 120Ω termination resistors and
differential bus connectors. Figure 7 (ii) illustrates the circuit
diagram for connecting the AURIX-based microcontrollers
(left) as well as the resulting setup (right) that was used as
an example of a network with heterogeneous nodes.

During the performance analysis stage, each microcontroller
was configured to operate at its maximum rated clock speed.
Further, for measuring the execution time, we used a logic
analyzer from Saleae as shown in both Figures 7 (i) and 7
(ii) in conjunction with high-speed toggling pins from each
board. For increased precision, the analyzer was configured to
operate at the sampling rate of 50MS/s.

B. AUTOSAR-compliant software implementation

Our implementation follows existing AUTOSAR recom-
mendations for cryptographic services. In Figure 8 we show
the architecture of our implementation in the light of the AU-
TOSAR specifications. Here, the Group Key Manager (GKM)
is the application software component that manages the ac-
tivity of the ECU during group key management operations.
FourQlib and other hardware-based implementations of cryp-
tographic primitives are part of the Crypto Driver Objects. The
GKM can request cryptographic operations from the Crypto
Driver Objects through the standardized AUTOSAR software
cryptographic stack which includes: Crypto Service Manager,
Crypto Interface and Crypto Driver (https://www.autosar.org/).

The implementation process, abstracted in Figure 9,
started with the migration of the required cryptographic
libraries on top of the Hardware Abstraction Layer
(HAL). Firstly, Microsoft’s FourQ library (https://github.com/
microsoft/FourQlib) was ported on our controllers in order to
benchmark the protocol performance when implemented based
on the faster FourQ elliptic curve. Afterwards, in order to ob-
tain relevant comparison data, we also ported RELIC’s crypto-
graphic toolkit (https://github.com/relic-toolkit/relic) with the
purpose of evaluating the protocol when implemented based on
a similarly sized elliptic curve, namely NIST’s P-256. Both of
these libraries offer native support for 32-bit architectures and,
whenever possible, were configured to rely on the available
cryptographic hardware support. Furthermore, both libraries
provide dedicated API functions for performing the ECDH
protocol steps as well as for elliptic curve digital signature
schemes (Schnorr’s digital signature in case of Microsoft’s
FourQ library and ECDSA in case of RELIC’s toolkit). These
API functions were then uniformly wrapped at the Station
to Station (STS) Protocol layer. Finally, the GKM software
component was implemented at the Application layer as a state
machine that follows the execution flowchart shown in Figure
13, which will be further used for measuring the protocol
runtime.
C. Protocol message orchestration

The SoECU is responsible for orchestrating group key
exchanges, i.e., coordinating a sequence of two-party key
exchanges until all ECUs agree on a group secret key. This is

https://www.autosar.org/
https://github.com/microsoft/FourQlib
https://github.com/microsoft/FourQlib
https://github.com/relic-toolkit/relic
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(i) SAM V71 setup
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Fig. 7. Experimental setup with: two homogeneous ECUs, SAM V71 boards connected via on-board ATA6561 CAN transceivers (i) and two heterogeneous
ECUs, Infineon TC277/TC297 boards connected via external CAN-FD transceivers (ii)
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achieved in our implementation by allocating dedicated 29-bit
CAN message identifiers which incorporate ECU addresses as
well as other protocol metadata. The integration of specific
node addresses in 29-bit CAN identifiers is also specified by

0x0 (L)ECUA (L)ECUB LECUC
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256/512 bits
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Fig. 10. Structure of protocol frames

J1939-21 standard for trucks and commercial vehicles [45].
The protocol frames are designed to include both orchestra-

tion data and protocol payloads, so that the busload is kept as
low as possible. A detailed view is shown in Figure 10. We
use four bit-fields for defining the 29 bit extended CAN IDs
(CANxID). The first field, following the reserved bit, requires
4 bits to encode the key exchange communication steps as
shown in Figure 4. The three remaining fields encode the
addresses of the participants and of the resulting LECU. Note
that the participants can be either individual units or LECUs.
Consequently, there are five frames required by each individual
key exchange, i.e., the key exchange orchestration frame sent
by the SoECU, the two frames containing the key shares and
the two confirmation frames sent by the participants.

V. EXPERIMENTAL RESULTS

In this section we provide comparative results related to
both computational and bus requirements for the two-party
key exchange scenario. We then use these results to estimate
the performance of the group key exchange protocol for an
arbitrary number of nodes.

A. Performance evaluation for cryptographic primitives

As a first step in our performance benchmark, we measured
the execution time of each elliptic curve library function
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TABLE IV
ECDH AND SCHNORR’S DIGITAL SIGNATURE BENCHMARK RESULTS

WITH FOURQ ELLIPTIC CURVE

Operation Measured execution time (ms)
TC224 TC277 TC297 SAM V71

ECDH Share 4.99 4.03 1.92 17.01
Extract 12.53 8.39 4.79 54.32

Schnorr DS
Gen 5.11 4.12 1.98 17.06
Sign 6.12 4.85 2.36 18.96
Verify 17.54 12.45 6.73 70.99

TABLE V
ECDH AND ECDSA BENCHMARK RESULTS WITH P-256 ELLIPTIC CURVE

USING RELIC LIBRARY IMPLEMENTATION

Operation Measured execution time (ms)
TC224 TC277 TC297 SAM V71

ECDH Share 25.43 21.46 12.83 11.5
Extract 60.67 50.75 30.03 27.67

ECDSA
Gen 25.43 23.61 14.82 11.33
Sign 29.54 25.9 14.31 13.01
Verify 80.01 54.11 30.85 35.53

that was used during the protocol implementation. These
measurements were performed on all of the platforms that
were previously described in section IV-A and the numerical
results are shown in Tables IV and V. The former table
contains measurements that were obtained when evaluating the
primitives based on the FourQ elliptic curve, while the latter
shows the results that were obtained when using NIST’s P-256
elliptic curve implemented in RELIC. In both tables, the first
column indicates the cryptographic primitives being evaluated
and the second one contains the corresponding operations
for each of them. The remaining four columns present the
measured execution time, in milliseconds, that was obtained
for each tested device. Further, the results from both tables
were grouped by cryptographic primitives, i.e., ECDH and
digital signature (DS), and a visual representation of them is
provided in Figures 11 and 12.

Analyzing our results, we find that in the context of the
Infineon devices all functions from both cryptographic primi-
tives are executed significantly faster when using FourQ as the
underlying elliptic curve. A rough estimation places the more
affordable TC224-based device in the area of five times faster
execution speed when implementing FourQ, while the higher
end TC277 and TC297-based devices benefit from speed
improvements that surpass five and six times, respectively.
Interestingly, in the context of the ARM-based microcontroller
the result differs, i.e., it is approximately two times faster
when implementing the cryptographic primitives based on
NIST’s P-256 elliptic curve. The most likely explanation of
this observed behavior is the active maintenance of RELIC’s
software implementation which offers greater compatibility
with the optimization engine provided by the ARM compiler.
Regardless, FourQ on Infineon TC297 is the top performer
and still at least five times faster than P-256 on ARM.

B. Protocol performance: the two-party case

The next step that we take towards evaluating the group
key exchange protocol performance is to evaluate the protocol

Fig. 11. Computational time for the Diffie-Hellman key exchange with FourQ
vs. NIST P-256 on the four development boards

Fig. 12. Computational time for SDS (FourQ) vs. ECDSA (NIST P-256) on
the four development boards

runtime between two ECUs.
Figure 13 shows the flowchart associated to the protocol

implementation that is followed by any two ECUs when
engaged in a key exchange. In this representation, each in-
dividual protocol step is characterized by the execution time
that it induces, allowing us to easily separate and group two
types of overheads: the computational overhead TECU and the
communication overhead TBUS. By grouping the individual
overhead components along the three stages depicted in Figure
13, the duration of a complete key exchange (denoted as Tkex)
can be expressed as the sum of the computational and bus time
from the first two protocol stages plus the computational time
required to decrypt and verify the signature in the third stage
of the protocol, i.e.,

Tkex = T
(1)
ECU + T

(1)
BUS︸ ︷︷ ︸

1st stage

+T
(2)
ECU + T

(2)
BUS︸ ︷︷ ︸

2nd stage

+ T
(3)
ECU︸ ︷︷ ︸

3rd stage

We further use the notation T�, where � ∈ {ver , shr ,
key , sig , enc, dec} indicates the computational overhead for
verifying a digital signature, computing the Diffie-Hellman
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(i) (ii) (iii)

Fig. 13. Flowchart of a key exchange between two ECUs as implemented in our experimental setup and divided into three stages: computing and exchanging
the Diffie-Hellman shares (i), extracting the secret key and exchanging the confirmations (ii) and validating confirmations (iii)

share, extracting the secret key, computing a digital signature,
encrypting and decrypting the signature, respectively. This
allows us to expand the three computational overheads as:

T
(1)
ECU = Tver + Tshr T

(2)
ECU = Tkey+Tsig+Tenc

T
(3)
ECU = Tdec + Tver

This expansion assumes that the two ECUs are performing
the computations in parallel and have the same computational
power/availability. However, we also need to account for the
possibility of having a heterogeneous network, i.e., nodes with
distinct computational power. In this case, the time estimation
must always account for the slowest device from the setup and
use its timing to further estimate the protocol runtime. That
is, the computational terms from the previous equation should
be computed as the maximum runtime values resulting from
the two protocol participants: T� = max(T�,A,T�,B).

Further, the delays induced by the CAN bus are denoted as
Tsnd32 and Tsnd64, indicating the amount of time required to
send 32 and 64-byte data frames. Since the CAN bus allows
only one frame to be sent at a time (with up to 64 bytes
data-field for CAN-FD), the communication overhead can be
expressed as the time for two frame transmissions of 32 and
64 bytes, respectively:

T
(1)
BUS = 2×Tsnd32 T

(2)
BUS = 2×Tsnd64

Note that the first protocol stage requires only the Diffie-
Hellman key shares to be sent which are two times smaller
than the digital signature from the second stage.

As concrete examples and proofs of correctness for the
previously described estimation methodology, in Tables VI and
VII we show the measured execution time of FourQ-based
key exchanges between two nodes connected via CAN-FD. In
the first example the network is homogeneous with the nodes
being instantiated by two identical SAM V71 boards, while the
second example shows a heterogeneous network composed of
two distinct platforms, i.e., the TC297 and TC277 respectively.
In both tables, the first column indicates the protocol step ac-
cording to Figure 4. Subsequently, the second column indicates

TABLE VI
STS W/ FOURQ PROTOCOL RUNTIME ON CAN-FD, MEASURED IN A

HOMOGENEOUS NETWORK WITH TWO SAM V71 BOARDS

Protocol step Notation Measured execution time
SAM V71-A SAM V71-B

1. Verify signature Tver 70.55ms 70.55ms
2. Compute share Tshr 16.74ms 16.74ms
3a. Send share (I) Tsnd32 258us
3b. Send share (II) Tsnd32 258us
4a. Extract secret key k Tkey 54.19ms 54.2ms
4b. Sign shares Tsig 18.98ms 18.98ms
4c. Encrypt signature Tenc 28us 21us
5a. Send confirmation (I) Tsnd64 396us
5b. Send confirmation (II) Tsnd64 396us
6a. Decrypt confirmation Tdec 21us 21us
6b. Verify signature Tver 70.95ms 70.95ms
Total time (measured) Tkex 232.8ms 232.7ms

the associated execution time in the previously introduced
notation and the last two columns contain the values obtained
by experimental measurements. The timings are consistent
with already provided measurements from Table IV. To con-
clude with, in the left plot from Figure 14 we graphically
depict the measured computational time for heterogeneous and
homogeneous networks. Then, in the right plot, we contrast it
with the estimated time for a homogeneous network based on
any of the four controllers from our experiments. The protocol
runtime between the TC297 and TC277 is 43.94ms for the
FourQ version which is almost six time faster than the P-256
curve in case of the SAM boards which required 232.79ms .
This allows us to infer that the runtime between two identical
TC297 controllers will be around 24ms .

C. Performance of the group key exchange

We now consider to synthetically evaluate the performance
of the group key exchange when an arbitrary number of
ECUs is present on the bus. Specifically, for the case of n
controllers, the efficiency of the three envisioned protocols
can be synthetically expressed as follows:

1) Full Key Exchange Tree with SoECU, i.e., the main
version of the scheme, has a total runtime upper bounded by:
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TABLE VII
STS W/ FOURQ PROTOCOL RUNTIME ON CAN-FD, MEASURED IN A

HETEROGENEOUS NETWORK WITH TWO INFINEON BOARDS

Protocol step Notation Measured execution time
TC297 TC277

1. Verify signature Tver 6.75ms 12.49ms
2. Compute share Tshr 1.92ms 4.06ms
3a. Send share (I) Tsnd32 210us
3b. Send share (II) Tsnd32 210us
4a. Extract secret key k Tkey 4.79ms 8.38ms
4b. Sign shares Tsig 2.4ms 4.95ms
4c. Encrypt signature Tenc 86us 179us
5a. Send confirmation (I) Tsnd64 340us
5b. Send confirmation (II) Tsnd64 340us
6a. Decrypt confirmation Tdec 121us 240us
6b. Verify signature Tver 6.77ms 12.54ms
Total time (measured) Tkex 38.31ms 43.99ms

Fig. 14. Protocol runtime between 2 nodes: measured heteroge-
neous/homogeneous network (left) vs. synthetic estimation for homogeneous
networks (right)

Tmain
gkex = (n+ log2 n)T1:3

ECU + (2n− 1)T1:2
BUS

Without loss of generality we assume that n is a power
of two. If this is not the case, the base 2 logarithm will
get ceiled to the nearest integer. This relation accounts for
computations that are done in parallel by the nodes but the
bus transmission cannot be parallelized. That is, we assume
that nT1:3

ECU computations are required in the last level of
the binary tree, i.e., between the SoECU and each other
ECU. From the second last level upwards, operations can be
done in parallel by the logical ECUs which requires only
(log2 n)T1:3

ECU computations. The bus however is a common
resource and nodes cannot send messages at the same time.
Consequently, there is one key exchange message set to be
sent on the bus for each pair of nodes in the binary tree, i.e.,
2log2 n+1 − 1 = 2n− 1.

2) Full Key Exchange Tree without SoECU in each Logical
ECU, i.e., the version in which we cut the last level of the
tree and let the ECUs exchange keys independently from the
SoECU, has a total runtime upper bounded by the relation
below which basically omits the last level of the tree and adds
1 to the number of ECUs:

T
w/o
gkex = log2(n+ 1)T1:3

ECU + nT1:2
BUS

3) Baseline Key Exchange with Symmetric Shared Key by
SoECU in all LECUs, i.e., the variation of the scheme where
a common group secret key is assigned by SoECU, has a total
runtime upper bounded by the relation below:

Tsym
gkex=n(T1:3

ECU + T1:2
BUS) + Tsig + nTenc + n

T1:2
BUS

2
+ T

(3)
ECU

Here we assume the usual handshake with all n ECUs that
is done sequentially by the SoECU, i.e., requiring n(T1:3

ECU +
T1:2

BUS). To this, we add the time to compute the signature,
i.e., Tsig , and the time required to encrypt it for each other
ECU, i.e., nTenc . Sending the encrypted signature and master

secret key will require n
T1:2

BUS

2
since the transmission is only

from the SoECU to the rest of the ECUs. Finally, the ECUs
will need to decrypt it and verify the signature which requires
T

(3)
ECU = Tdec + Tver .
To avoid overloading the above relations, we did not include

the overhead induced by the SoECU to sign and send the
orchestration messages which is separately provided below:

Tmain
SoECU = (2n− 1)(Tsig + Tsnd64)

T
w/o
SoECU = Tsym

SoECU = n(Tsig + Tsnd64)

The first relation reflects the case of the main version
of the protocol where the full key exchange tree requires
2n − 1 handshakes. The second relation is for the last two
protocol versions in which the SoECU participates either as a
regular ECU or polls the nodes in a linear manner requiring
only n orchestration messages, i.e., in the last two protocol
versions the computations of the SoECU are halved. These
computations can be further alleviated if the orchestration
messages are computed in advance and buffered. Moreover,
if the key exchange tree remains fixed and dynamic node
addition/removal is not needed, SoECU can sign and send
a single orchestration initialization message after which the
nodes will proceed to exchange keys in a predefined manner.

Figure 15 provides a graphical depiction for the estimated
runtime of the group key exchange protocol and its versions
in case of a homogeneous network with n = 2..32 Infineon
TC297 ECUs. First, we show the performance of the main
protocol depending on the type of curve (i), i.e., FourQ vs.
NIST P-256. The FourQ curve obviously leads to results that
are roughly 5 times faster. Then we compare the three protocol
versions (ii) and it seems that the third version of the scheme,
i.e., the baseline version which replaces the upper layers of the
tree with a symmetric key exchange, doesn’t save so much of
the overall protocol runtime. The second version however is
much faster since it allows key exchanges to run in parallel
on each level of the tree. Namely, in case of 32 ECUs, the
main group key exchange scheme allows a common key to
be computed in around 1.1s out of which Tmain

SoECU ≈ 0.17s
and Tmain

gkex ≈ 0.9s. The second protocol version reduces this
to T

w/o
SoECU ≈ 0.1s and T

w/o
gkex ≈ 0.17s. While in-vehicle

networks may have more than a hundred ECUs, these ECUs
are always grouped under distinct sub-buses of a dozen or
so ECUs (as already suggested by us in Figure 3 from the
introduction) and the key agreement can run independently and
in parallel on each of these sub-networks. This suggests the
32 ECU scenario as a realistic upper bound. We then depict
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the runtime of the more efficient second protocol version in
relation to both the number of ECUs and computational time
between two ECUs, i.e., Tkex, considering the best 24ms
runtime between two Infineon TC297 and the slower 60.24ms
between two TC224 (iii). Even in this worst case, the protocol
runtime for 32 ECUs is only around 0.6s. Finally, for the main
scheme, we compare the influence of the bus type CAN vs.
CAN-FD on the overall protocol runtime (iv) and then we
depict the bus time alone in case of CAN vs. CAN-FD (v).
Indeed, with CAN-FD the bus time is several times shorter
but this represents less than 0.2 seconds from the overall
protocol runtime of 1.1 seconds (in the worst case of the main
scheme for 32 ECUs). The bus time for CAN was computed
synthetically (our experiments were performed on the newer
CAN-FD) by considering that a frame with a 29-bit identifier
requires on average 140µs to be transmitted on a 1Mbps CAN
(the maximum achievable data rate on CAN buses). Therefore
Tsnd32 = 4 × 140 = 560µs and Tsnd64 = 8 × 140 = 1120µs
which will make the transmission 2-4 times slower on CAN.
With the orchestration message added, each two-party key
exchange requires 5 frames on CAN-FD or 32 frames on
CAN. To generalize, for a group of n ECUs, the three protocol
versions require 10n, 5n and 7n frames respectively on CAN-
FD. On CAN, this extends to 64n, 32n and 44n frames. Since
a CAN bus would usually have a dozen ECUs or so, the most
expensive scheme would require around one hundred CAN-
FD frames or several hundred CAN frames which is only a
fraction of the several thousands of frames a CAN bus can
handle per second. To summarize a concrete numerical figure,
for 32 nodes on CAN with the least efficient version of the
schemes, the computations will last less than 1 second. Bus
operations call for 2016 frames while the 500kbps CAN bus
could handle around 4000fps, i.e., a busload of 50% during
the first second of runtime. In a more optimistic scenario with
the 2Mbps CAN-FD and the most efficient protocol scheme,
the computational time decreases to 0.17s, while the bus load
tops at around 16%. As the group key exchange will be done
only when the car starts, it will cause no further concerns once
the car is running.

VI. CONCLUSION

Our evaluation points out that indeed the FourQ elliptic
curve provides the fastest results on the high-end automotive
grade controller. However, this result should be interpreted
with care since on the Atmel platform the NIST P-256 curve
performs around two times faster than the FourQ curve. We
believe this happens due to various optimizations of the code
for ARM compilers. Still, the FourQ-based implementation on
the Infineon TC297 is the top performer. With the excellent
results obtained with the FourQ curve, i.e., a few dozen
milliseconds for a two-party key exchange on high-end cores,
we show that this can be easily extended to a group key
exchange between multiple nodes that costs a few hundred
milliseconds depending on the number of nodes. Concretely,
the fastest version of the protocols requires less than 300ms
while the most demanding one tops at 1.1s in case of 32 nodes.
Since the group key exchange should be performed only during

(i) (ii)

(iii)

(iv) (v)
Fig. 15. Protocol runtime for n = 2..32 Infineon ECUs depending on: the
type of curve (i), protocol version (ii), computational time (iii), bus type CAN
vs. CAN-FD (iv) and bus time only CAN vs. CAN-FD (v)

vehicle start-up, or at various system resets, the evaluated
group key exchange procedures should be suitable for modern
vehicles and will not interfere with normal vehicle operation.
Further investigations on group key exchange protocols for
CAN buses are future work for us.
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APPENDIX A - PROTOCOL PROCEDURES

This appendix describes our procedures for implementing
the orchestration of the group key exchange protocol presented
in section III-C. In the following algorithms we assume that the
binary tree is already constructed in SoECU’s memory, where
each node is of type struct ECU t as shown at the beginning
of Algorithm 1. Using this structure, the orchestrator stores
for each tree node its address, type (ECU, LECU or SoECU)
and the children nodes. We also define macros for accessing
each of these fields.

Algorithm 1 provides guidelines for orchestrating a group
key exchange between an arbitrary number of ECUs. Here,
the first procedure, i.e., Merge-ECUs, implements the key
exchange operation between two physical or logical ECUs,
where the arguments, i.e., ECUA and ECUB, are the ECUs
to be merged. In this algorithm, if both operands are non-
NULL, a key exchange between them will be requested using
their corresponding addresses. Otherwise, if only one of the
operands is available (possible in the case of an odd number
of ECUs on a tree level), the key exchange will be initialized
using the value zero instead of the missing node’s address. The
effects of this command will be a direct LECU assignment,
i.e., the only participant is designated as the active member
and the secret value is copied to the next tree level. The second
procedure, i.e., Group-Key-Exchange, has as single argument
the root of the tree, i.e., LECUR and uses a recursive postorder
traversal approach in order to renew all LECU secret values.
Note that renewing the root’s secret value is equivalent with
performing a group key exchange. For each visited LECU
node, the secret random values of the children are updated
first by using two recursive procedure calls. These tasks are
executed in parallel and the execution continues only after
they finish. Afterwards, the children nodes are merged using
the previously described procedure in order to renew the secret
of the tree/subtree root.

Algorithm 2 implements the ECU removal procedure that
was described in section III-C. The Remove-ECU procedure
has two arguments. The former is the tree root LECUR and
the latter is the address of the ECU that is required to be
removed. Since every removed node must be substituted by
SoECU, the procedure will set its type and address to match
the orchestrator’s. Then, by using a helper function, i.e., Get-
Parent, the orchestrator will parse the tree upwards until it
reaches the root. The secret share of each visited node is
renewed, assuring that the removed node is excluded from
all LECUs in which it was a member.

Algorithm 1 Procedures for establishing a group secret key.
1: #define Address(ECU) ECU.address
2: #define Type(ECU) ECU.type
3: #define Left(ECU) ECU.left child
4: #define Right(ECU) ECU.right child

5: enum ecu type {
6: ECU,
7: LECU,
8: SoECU
9: };

10: struct ECU t {
11: uint8 address;
12: enum ecu type type;
13: struct ECU t *left child;
14: struct ECU t *right child;
15: };

16: procedure MERGE-ECUS(ECUA,ECUB)
17: if ECUA 6= NULL and ECUB 6= NULL then
18: STS-KEYEXCH(Address(ECUA),Address(ECUB))
19: else if ECUA = NULL and ECUB 6= NULL then
20: STS-KEYEXCH(Address(ECUB), 0)
21: else if ECUB = NULL and ECUA 6= NULL then
22: STS-KEYEXCH(Address(ECUA), 0)
23: end if
24: end procedure

25: procedure GROUP-KEY-EXCHANGE(LECUR)
26: if Type(LECUR) = LECU then
27: if Left(LECUR) 6= NULL then
28: GROUP-KEY-EXCHANGE(Left(LECUR))
29: end if
30: if Right(LECUR) 6= NULL then
31: GROUP-KEY-EXCHANGE(Right(LECUR))
32: end if
33: MERGE-ECUS(Left(LECUR), Right(LECUR))
34: end if
35: end procedure

Algorithm 2 Procedures for removing an ECU
1: procedure GET-PARENT(LECUR, addr)
2: ECUleft ← Left(LECUR)
3: ECUright ← Right(LECUR)
4: if ECUleft 6= NULL then
5: if Address(ECUleft) = addr then
6: Parent ← LECUR

7: else
8: GET-PARENT(ECUleft, addr)
9: end if

10: end if
11: if ECUright 6= NULL then
12: if Address(ECUright) = addr then
13: Parent ← LECUR

14: else
15: GET-PARENT(ECUright, addr)
16: end if
17: end if
18: end procedure

19: procedure REMOVE-ECU(LECUR, ECU)
20: addr ← Address(ECU)
21: Type(ECU) ← SoECU
22: Address(ECU) ← Address(SoECU)
23: GET-PARENT(LECUR, addr)
24: do
25: MERGE-ECUS(Left(Parent), Right(Parent))
26: addr ← Address(Parent)
27: GET-PARENT(LECUR, addr)
28: while Parent 6= LECUR

29: end procedure
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