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ECUPrint - Physical Fingerprinting Electronic
Control Units on CAN Buses inside Cars and SAE

J1939 Compliant Vehicles
Lucian Popa, Bogdan Groza, Camil Jichici and Pal-Stefan Murvay

Abstract—We fingerprint 54 ECUs from 10 cars, one of them
being a heavy-duty vehicle that is compliant to the SAE J1939
standard. These later specifications implemented in commercial
vehicles offer concrete sender addresses in every CAN frame,
making physical characteristics easier to link to specific ECUs.
This is not the case for traffic collected inside passenger cars
where the allocation of CAN bus identifiers is non-uniform,
without explicit sender and receiver addresses, making ECU
identification more challenging. While previous research has
shown good separation between ECUs even when single features
are used, e.g., skews or maximum voltage level, prior results
are based on a small number of cars, while our larger exper-
imental basis proves that single features are likely insufficient
to separate between a large number of ECUs. Concretely, for
a crisp separation, at least four features seem to be needed,
i.e., mean voltage, max voltage, bit time and plateau time,
while clock skews or any single voltage feature lead to overlaps.
We provide clear experimental bounds on the intra and inter-
distances regarding skews and voltage features, not neglecting
environmental variations which may occur when the car is
running.
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I. INTRODUCTION AND MOTIVATION

The CAN bus has more than a decade of reported security
vulnerabilities [1], [2], [3]. This doesn’t come as a surprise
for a bus designed in the 80s. In fact, its survival for so
many decades is a strong argument to support its future use,
despite some obvious security shortcomings. Moreover, the
recent introduction of the higher speed CAN-FD makes it
clear that CAN will be present inside cars for the decades
that follow. The larger payload of CAN-FD will make it
much easier to accommodate cryptographic material inside
frames responding to modern security needs. Physical fin-
gerprinting techniques have a complementary role, e.g., for
authentication or forensics, which is not going to be ruled out
by cryptographic security. There are many incidents which
prove this is so. For example, by corrupting an existing ECU
(Electronic Control Unit), cryptographic keys can be extracted,
as demonstrated in a recent attack by which diagnostic security
keys were extracted from a real-world vehicle [4]. Other
research works have shown that it is possible to compromise
the central information unit even from remote [5] or have
attacked ECUs via over-the-air update protocols [6]. Crypto-
graphic keys may be also extracted by various side-channel
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attacks, these attacks are commonly reported in embedded
systems [7] and have been also demonstrated on in-vehicle
controllers [8], [9]. Testing vulnerabilities against such attacks
is now a required practice in the automotive industry [10].
Consequently, physical fingerprinting technologies are here to
stay as an additional layer of protection besides cryptographic
security.

Potential use cases. Our work goes mostly in the same vein
as the work from [11] which attempts to map the existing
ECUs inside the vehicles based on physical characteristics.
However, the authors in [11] rely exclusively on clock char-
acteristics which prove to be unsatisfactory in our analysis
over a larger experimental basis due to obvious overlaps
between ECUs in distinct cars. We use clock skews and, more
importantly, several voltage features to test our methodology
on a large experimental basis: 10 cars containing 54 ECUs.
One of the most common use cases for physical fingerprinting
is the development of intrusion detection systems, we enu-
merate several works in this direction in the related work
section. However, in this work we are mostly interested in the
extraction of such fingerprints to uniquely identify the ECUs
inside a vehicle for forensics purposes. It is worrisome that,
according to recent data from the 2020 FBI crime statistics
report1, car theft has increased in recent years. Moreover, a
new concern has emerged in the context of vehicle identity
theft: VIN cloning. By this attack, the vehicle identification
number (VIN) of an existing car is cloned. A report from
the National Crime Prevention Council2 shows that many
stolen vehicles also rely on cloned VINs. Physical fingerprints
may help to alleviate such problems as they can be stored
in authorized databases and inspected/updated as the vehicle
goes to standard procedures such as the annual (or biennial)
technical safety inspection which is mandatory all over the
world. No less, such fingerprints may be checked during
regular traffic inspections, which are even more common for
heavy duty vehicles (SAE J1939 compliant). While it is true
that these fingerprints may vary over time, it is expected that
the periodic collection of such fingerprints will offer better
clues on how the fingerprints will vary, giving precious hints
for forensics and authentication purposes. Ultimately, our work
is concerned in showing the intra and inter-distances between
such fingerprints over a large number of ECUs, i.e., 54 from

1https://www.fbi.gov/news/pressrel/press-releases/
fbi-releases-2020-crime-statistics

2http://archive.ncpc.org/resources/files/pdf/celebrate-safe-communities/
NCPC-autotheft-101.pdf
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Fig. 1. Internal block diagram of an automotive ECU with architectural
components required for CAN communication

10 cars, which was not considered by any of the previous
works (which are generally experimenting with 2 or 3 cars at
most).

Sources for fingerprinting. Figure 1 depicts the physical
components that exist inside an ECU which are needed to
support its functions, including CAN communication. Auto-
motive ECUs are supplied from the battery voltage VBAT and
connected to the vehicle ground GND. Internal supplies for
the microcontroller and CAN transceiver denoted as VCC-M
and VCC-T are provided from the ECU power management
module denoted in the figure as PWR. CAN frames are
transmitted and received using the CAN-TX and CAN-RX
serial lines by the CAN Controller usually embedded inside
the Microcontroller. These frames are converted to and from
differential voltages on the CAN-H (CAN High) and CAN-L
(CAN Low) lines by a CAN Transceiver. An external os-
cillator OSC provides the clock signal CLK required by the
Microcontroller to manage the internal operations allowing it
to perform specific timing related actions, e.g., adjust CAN
bit time or transmit periodic CAN frames, etc.

In the light of the above, there are two main physical
characteristics that are exposed by ECUs on the CAN bus:
i) clock skews which can be extracted from the timing of
CAN frames and ii) voltages which can be extracted from
the physical signal on the bus. Both these characteristics have
been used by previous works to identify ECUs, although to the
best of our knowledge no previous work has addressed them
both in a single paper for the same or several vehicles. Table
I provides a summary of the vehicles used in our experiments
and the amount of data that has been collected from each
of them. Our study focuses on 10 vehicles from which we
sample more than two hundred thousand bits for voltage
fingerprinting and collect more than eight million frames for
skew computations that lead to the identification of 54 ECUs.
Therefore, one of the first contributions that we exhibit is to
provide comprehensive data on these two types of fingerprints
for ECUs inside vehicles, ranging from personal cars up to
heavy-duty vehicles that comply with the SAE J1939 standard.
The advantage offered by heavy-duty vehicles is that the SAE
J1939 standard provides clear information on the source of the

messages and fingerprints can be directly linked to a specific
sender. In case of passenger cars, such information is largely
missing but we show that the CAN frames nicely cluster
around specific ECUs and thus the fingerprint of each sender
is easy to recognize.

A few words on the relevance of using both timing and
voltage characteristics may be in order. Table II presents a
brief summary on the weak and strong points for skews and
voltages. Skews are easier to collect and they may be preserved
when frames are retransmitted by gateways. This depends on
the specific implementation, i.e., it will work in case when
the retransmission is on-event, similar to the case of computers
connected via gateways over large networks as previous works
have shown that computers can be fingerprinted from remote
[12] despite the fact that packets are running over multi hops
in the network. If the gateway buffers the frames and transmits
them using interrupts generated by the local timers, then
indeed, the skew will not be preserved. Also, the frame arrival
time allows the implementation of covert channels based on
frame inter-arrival timings [13], [14]. The downside of skews
is that they are easier to forge [15]. Moreover, they will not
work for on-event transmissions and are affected by processing
and arbitration delays. Extracting skews also requires large
number of frames for correct estimation. On the other hand,
voltage levels are harder to forge, they are feature rich and
a single bit may be sufficient to recognize the sender. On
the downside, they are harder to collect as they require high
sampling rate ADCs and physical access to the bus. Because
of this mixed image with pros and cons for both, it seems that
using both timing and voltage fingerprints may help and we
try to present them in a comparative manner in our work.

Summary of contributions. Briefly, the contributions of
our work can be summarized as follows:

1) We collect comprehensive experimental data on skews
and voltages from 10 vehicles, ranging from small cars
to SUVs and a heavy-duty vehicle, totaling 54 ECUs. Our
datasets will be made public and we hope that they can
serve for future research works concerned with design-
ing fingerprinting methodologies or intrusion detection
systems based on physical characteristics.

2) From the collected data, we extract and analyze five
features, partly used in previous research works, which
can help to link each frame with a physical ECU and
serve as a compact fingerprint for the ECU: clock skews,
mean voltage, maximum voltage, bit and plateau time.

3) We present results on skews and the extracted voltage
features in a comparative manner, showing concrete data
on the intra and inter-distances, which are generally
neglected in previous works, with respect to the afore-
mentioned physical features for 54 ECUs.

4) We give a clear quantitative depiction on how these char-
acteristics vary while two of the vehicles are operating
for 1 hour.

The rest of the paper is organized as follows. Section II dis-
cusses the background on CAN, J1939 and related works while
in Section III we show how data collection was performed
and present the vehicles from our experiments. In Section IV
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TABLE I
SUMMARY OF VEHICLES AND COLLECTED DATA∗

Vehicle Model year No. ECUs∗∗ No. IDs Busload Temperature Battery voltage Collected frames (skew) Collected bits (voltage)
Honda Civic 2012-2017 6 43 31% 9 ◦C 12.8 V 1,039,512 40,073
Opel Corsa 2006-2014 4 29 23% 8 ◦C 13.9 V 442,992 9,187
Hyundai i20 2014-2020 7 40 35% 12 ◦C 14.2 V 616,296 17,767

John Deere Tract. 2010-2018 3 33 19% 4 ◦C 14.2 V 154,779 4,021
Dacia Duster 2010-2017 3 12 14% 10 ◦C 14.4 V 247,154 9,086
Dacia Logan 2012-2019 6 46 14% 10 ◦C 12.6 V 629,662 31,579
Hyundai ix35 2009-2015 6 26 45% 9 ◦C 13.5 V 847,161 23,104
Ford Fiesta 2017-2020 6 46 51% 5-7 ◦C 14.9 V 2,243,359 43,861
Ford Kuga 2013-2019 9 70 65% 9 ◦C 13.7 V 1,233,545 28,024

Ford Ecosport 2018-2021 4 87 43% 9 ◦C 15.0 V 759,421 22,808
Total 54 432 8,213,881 229,510

∗ the dataset is publicly released to serve for future investigations and can be retrieved from the ECUPrint project on GitHub and the authors institution server
∗∗ based on the fingerprinting methodology in this work

TABLE II
COMPARISON BETWEEN SKEW AND VOLTAGE FINGERPRINTING

Advantages Disadvantages
Skews ✓easy to collect

✓may be preserved through
gateways (possible to retrieve
from distinct buses)

✗easier to forge
✗do not work for on-event frames
✗affected by arbitration and processing
delay
✗require many frames for estimation

Voltage ✓harder to forge
✓single bit/frame is sufficient

✗harder to collect, may require high
sampling rate ADCs

✓feature rich fingerprint ✗require physical access to the same
bus

we set up the theoretical framework for our analysis. Section
V presents the results over the collected experimental data.
Finally, in Section VI, we state the conclusions of our work.

II. BACKGROUND AND RELATED WORKS

In this section we provide some brief background on CAN
and the J1939 upper layer implementation that is present in
one of our vehicles, then we account the related works.

A. Background on CAN and J1939

CAN networks allowing electronic control units or sensors
to exchange data at a baudrate of up to 1Mbps using a twisted
two-wire cable. Transmissions over the two differential lines,
CAN-H and CAN-L, are encoded using dominant (logical
’0’) and recessive (logical ’1’) bits and organized into frames
with a specific bit structure. Voltage levels for transmission
and reception lines between the microcontroller and the CAN
transceiver, i.e. CAN-TX and CAN-RX, are nominally 5V
TTL for a recessive bit and 0V TTL for a dominant bit. The
voltage level is around 2.5V for both differential lines, i.e.
CAN-H and CAN-L, when the bus is idle or a recessive bit is
transmitted and around 1.5V on CAN-L with 3.5V on CAN-H
when a dominant bit is transmitted.

Each frame starts with a dominant bit which represents the
start of frame field followed by the arbitration field containing
the frame identifier of 11-bit for standard frames and 29-bit
for extended frames. Next is the control field which includes
the number of bytes contained in the frame data field. The
data field holds the actual frame content of up to 8 bytes
and is followed by a CRC field used after reception for
data integrity check. The last parts of the frame are the
acknowledge field and the end-of-frame field. Since two or

more nodes may start bit transmission at the same time, all
nodes compared each own bit transmission with the actual
bus value during the arbitration field. Nodes detecting a lost
arbitration will have to wait for the bus to be idle again and
restart the transmission. Each receiver must acknowledge the
successful frame reception transmitting a dominant bit during
the acknowledge field. The standard frame and extended frame
structures, i.e. 11-bit ID and 29-bit ID, are shown in Figure
2. The extended frame has a higher arbitration field and
structure bit count when compared to the standard frame with
20 additional bits, 18 bits for the identifier, one for the SRR
(substitute remote request) bit which is always recessive and
one reserved. The IDE (identifier extension) bit is recessive
and part of the arbitration field for extended frames while for
standard frames it is dominant and part of the control field.
There are two reserved bits, i.e., r0 and r1, in the control field
for extended frames and only one for the standard frame.
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Fig. 2. Frame size and structure illustrated for standard CAN frames (top)
and extended CAN frames (bottom)

J1939 specifics. Various higher layer protocols were de-
fined over CAN such as ISO-TP and UDS for diagnos-
tics, DeviceNet for industrial automation or SAE J1939 for
commercial vehicles. All these protocols make use of the
CAN physical and data link layers described earlier and
define specific behavior at other OSI layers. According to the
standard [16], J1939 uses 29-bit identifiers which are only
found in extended frames. The 29-bit J1939 frame identifier
contains a frame-priority field of 3 bits used to optimize bus
traffic, a 1 bit extended data page field, required to be 0 for
J1939, a data page field of 1 bit which defines the page
of the Parameter Group Number (PGN), the PDU Format
field of 8 bits, the PDU specific field of 8 bits and the 8-bit
Source Address which identifies the frame transmitter. Source
addresses are unique values and are assigned to network nodes
statically or dynamically after initialization according to the
J1939 standard.
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B. Related works

The academic community was quick to react with various
solutions for preventing attacks on in-vehicle networks re-
ported in past years [2], [17], due to the inherent vulnerabilities
of the CAN protocol. One way intruders can be prevented from
transmitting malicious signals on the vehicle bus is to include
authentication data inside CAN frames [18] but considering
the maximum allowed payload for a CAN frame, i.e., 8 bytes,
there is little space to fit both the authentication tag and
actual data. The AUTOSAR standard for Secure On-board
Communication (SecOC) [19] recommends truncated message
authentication codes, i.e., MACs, and random freshness data
bits to be included in frames with safety critical information.
Another proposal is to use ID-hopping techniques [20], [21]
for frame identifiers which makes it very hard or impossible
for an attacker to find the correlation between the frame
identifier and frame content.

Other lines of work have considered fingerprinting ECUs,
removing the need of modifying the CAN frame content,
by using physical characteristics, i.e., clock skews derived
from cyclic frames or voltage fingerprints. Clock skews have
been initially proposed to fingerprint computers [12] and well
after that they been shown to be effective in fingerprinting
smartphones [22]. They have also been analyzed as possible
features that can be used to detect intrusions in several types
of networks such as nodes in wireless sensor networks [23]
and access points in wireless networks [24]. Only recently they
were suggested for in-vehicle networks to identify electronic
control units from the bus [25]. However, clock skews can be
faked by the host and their use as fingerprints is vulnerable
to cloaking attacks as shown by [15], [26]. Clock skews are
still efficient for identifying legitimate ECUs which will not
change their skew to evade correct classification [11]. Clock
offset variations over temperature were analyzed in [27] where
temperature-varied ECU fingerprinting is discussed for source
identification and intrusion detection.

Fingerprinting ECUs based on voltages is a research topic
that attracted much more interest in recent years. While similar
approaches were used in the past for fingerprinting devices in
wireless communication [28] and even wired Ethernet [29],
the first work to present voltage based physical fingerprinting
of CAN nodes by using basic signal processing tools is
[30]. The authors in [31] used voltage profiles and ACK
voltage thresholds from CAN frames to fingerprint ECUs
and detect adversarial ECUs testing their approach both on
experimental and real in-vehicle networks. Choi et. al [32]
have used an experimental setup based on Arduino boards and
real data from two cars, a Hyundai Sonata and a Kia Soul.
Single frame based physical fingerprinting has been shown as
feasible in [33] on extracted voltage information done with an
oscilloscope and a USB data acquisition board.

A different approach is presented in [34] where voltage
samples are split in 3 separate groups before being used for
fingerprinting. Rising edge, falling edge and the dominant
bit level are evaluated using several statistical characteristics:
mean, standard deviation, variance, skewness, etc. Two vehi-
cles were used for data collection: a Fiat 500 and a Porsche

Panamera, each of them having 6 ECUs on the analyzed bus.
An extension of the work was done in [35] with more details
related to the outside temperature when the voltage data was
collected, the number of frames and other properties for each
data set. Edge based identification is studied in a recent work
[36] using voltage data collected with a PicoScope 5204 and
a resolution of 8 bits down to a sample rate of 2 MS/s. Kneib
et. al [37] analyze the impact of voltage sampling method for
a previously proposed intrusion detection methods [34], [35],
[36]. They emphasize the effects of the sampling selection
over the signal quality and perform an evaluation of the
performance impact change due to the sampling method on a
vehicle concluding that using an average of samples is the best
option for the IDS. The same authors propose a low-resource
constraint voltage-based intrusion detection method that can
be implemented on automotive graded microcontrollers [38].

Average and standard deviation of voltage distribution were
considered as features for voltage fingerprinting done in [39]
on a CAN bus prototype with nodes communicating at 500
kbps. The bus contained 9 different types of ECUs along
with a dedicated node which verified if the transmitters are
genuine based on the specified fingerprints proving that their
method reduces the false alarm rate, miss detection rate and
the authentication latency if compared to the proposal from
[31]. A common aspect with all these approaches is that
they all fingerprint CAN nodes based on signals transmitted
by individual nodes. In contrast, the work in [40] proposes
fingerprinting the network layout with the ability to detect the
insertion of new nodes based on time domain reflectometry.
Fingerprinting ECUs using the bit time was proposed in [41]
where the authors define a classification model using statistical
measurements of the collected data, e.g., mean, standard
deviation, etc. Similarly, the physical characteristics used in
[42], i.e., voltage thresholds, rising and falling edge, open the
room for detecting spoofing and bus-off attacks. Authors from
[43] suggest a voltage based IDS that can be connected on
the CAN bus as an independent device without influencing
the behavior of the CAN network, e.g., bandwidth, and has an
accuracy of more than 97% for detection of malicious voltage
signals.

Xiao et. al [44] define a CAN bus authentication scheme
using reinforcement learning that is based on the CAN bus
physical layer features, i.e., signal voltages and arrival in-
tervals and emphasize the framework evaluation experiments
performed on a 500 kbps CAN bus with 18 legitimate ECUs
and one adversarial ECU.

Additionally to the voltage fingerprinting proposals, authors
from [45] evaluate voltage corruption techniques that would
result in masquerade attacks not detected by voltage-based
intrusion detection systems. As prevention for the voltage
corruption attacks, they propose a defense method that is
applied during re-training due to required fingerprint updates.

III. VEHICLES AND DATA COLLECTION

In this section we present the vehicles that were subject to
our experiments, then we describe the tools that were used for
data collection.



5

A. The vehicles in our experiments

For evaluating the physical characteristics of automotive
control units we considered 10 different vehicles, 9 cars
and 1 tractor, for which we monitored the in-vehicle CAN
communication. The cars used fall in three different body con-
figurations: hatchback (Hyundai i20, Ford Fiesta, Opel Corsa,
Dacia Logan), sedan (Honda Civic) and SUV (Dacia Duster,
Hyundai ix35, Ford Kuga, Ford Ecosport) with manufacturing
dates between 2006 and 2021 as already shown in Table I. The
diversity of cars was chosen by considering that Ford vehicles
are designed in the United States of America, Hyundai and
Honda originate from the Asian Market while Opel and Dacia
have the design facilities in Europe. Also, the tractor employed
is a contemporary machinery produced by John Deere, a famed
worldwide manufacturer of agriculture equipment.

The graphical depiction of vehicles used for collecting
data for our experiments and their CAN bus networks is
shown in Figure 3. The topologies illustrated in the figure are
derived from the identification of the ECUs based on physical
characteristics as we will later detail. This does not represent
the exact wiring of the ECUs inside the car of which we are
unaware and which is not within the scope of our work. We
are specifically interested in the number of ECUs and their
fingerprints.

For some of these vehicles we were however able to identify
the role of specific ECUs, as outlined in Figure 3, based
on service manuals available on-line as discussed next. We
identified the ECUs using the electrical wiring diagrams for
the Ford Fiesta module communication networks posted at
[46]. The gateway module (GWM), sync module (APIM),
headlamp control module (HCM), powertrain control module
(PCM), body control module (BCM) and parking aid module
(PAM) are the 6 ECUs from the Fiesta OBD network. For
Ford Kuga, the communication network diagram posted on
[47] includes nodes communicating on the CAN bus connected
to the OBD-II port, also named data link connector, i.e., DLC.
In this case, we extracted data from 9 control units as follows.
The keyless vehicle module (KVM), instrument cluster module
(IC), powertrain control module (PCM), fuel additive system
module (FUEL), ABS module (ABS), yawrate sensor (YAW),
headlamp leveling module (HLM), all-wheel drive control unit
(AWD) and electrohydraulic power steering module (EPS)
are the Ford Kuga nodes. A Dacia Forum for UK owners
[48] hosts the electrical wiring diagram for the Dacia Duster
which includes the network diagrams. We used it to extract
the ECU names connected on the OBD-CAN bus from the
SSESP diagram. In this case there are only 3 ECUs, the ABS
control unit (ABS), the injection system control unit (INJ)
and the front/rear torque distribution control unit (FRTD). We
determined that the John Deere tractor has 3 ECUs, the body
control module (BCM), transmission control unit (TCM) and
engine control module (ECM) based on the content of the
frames specified in the J1939 standard.

For the rest of the vehicles, we do not know the specific role
of the ECUs and we simply enumerate the ECUs in Figure 3.
For Honda Civic we identified 6 distinct control units and for
Opel Corsa 4 ECUs. On the Hyundai i20 we have determined

that there are 7 nodes transmitting through the OBD II port.
We determined that there are 6 ECUs connected on the Dacia
Logan bus, 6 ECUs in the Hyundai ix35 diagnostic network
and 4 ECUs in the Ford Ecosport OBD-CAN bus.

B. Tools for data collection

In order to enable the CAN data collection from the cars and
tractor, we employed two devices: a CANcaseXL and a Pico
Scope 5000 Series. The CANcaseXL belongs the XL Family
devices produced by Vector, the most widely used networking
tools provider in the automotive domain. The CAN communi-
cation networks can be interfaced through CANcaseXL using
a large variety of software tools developed by Vector, e.g.
CANoe, CANalyzer, CANape. We built a custom application
using the XL Driver Library which facilitates easy access to
several protocol specific functions, e.g., receive CAN frames
with a specific baud rate, and it also supports interfacing with
the CANcaseXL.

We accessed CAN data from the cars and tractor using the
diagnostic port connected to the internal CAN networks having
the data collection setup as shown in Figure 4 (i). The cars
use communication based on the standard CAN specifications
while the tractor uses SAE J1939 standard. Therefore, the
J1939 OBD port has a specific shape and layout with 9 pins as
described in [49]. The OBD port and the pins used to collect
the data from the Ford Fiesta are shown in Figure 4 (ii) while
Figure 4 (iii) depicts the specific J1939 9-PIN OBD port inside
the tractor. Both pictures outline the CAN-H, CAN-L, GND
pins which are of interest for collecting the skew and voltage
data.

The clock skew data contains the frame identifiers and
associated timestamps. In order to perform data collection
for skews we built the XL Driver Library based application,
configured with a baudrate of 250 kbps for the tractor and 500
kbps for the vehicles, to receive the available CAN frames
through the diagnostic port. We connected the CAN cables
directly to the diagnostic port CAN pins and interfaced them
via a DB9 female connector to the CANcaseXL. Having the
setup ready, we proceeded to log the CAN traffic over periods
of 5 to 10 minutes for each vehicle while it was already turned
on. Note that the CAN IDs that were collected are part of
normal functioning and do not include the initialization phase,
i.e. startup processes, in which some specific actions may be
performed, e.g. address claiming procedures for J1939.

For voltage data collection, the probes of a 5000 Series
Picoscope were connected to the CAN-H and CAN-L lines of
the diagnostic port using a specific connector with accessible
pins. Several files were extracted from each car and the tractor
in order to capture the voltage data for all frames transmitted
on the CAN bus, i.e., for each frame identifier, considering the
frame identifiers extracted from the timestamp data collection
step. We configured the voltage capture settings using the
PicoScope 6 version 6.14.23.5207 software tool. Since the
monitored lines have the maximum accepted voltage of 4.5V
for CAN-H the voltage range configured on the PicoScope for
both channels was of ± 5V. In order to collect an adequate
amount of data required for fingerprinting transmitters, the
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Fig. 3. ECUs communicating on the High-Speed CAN Bus accessible through the OBD-II Connector for Honda Civic (i), Opel Corsa (ii), Hyundai i20
(iii), Dacia Duster (v), Dacia Logan (vi), Hyundai ix35 (vii), Ford Fiesta (viii), Ford Kuga (ix), Ford Ecosport (x) and through the J1939 Connector for John
Deere tractor (iv)
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Fig. 4. Setup for OBD-II CAN differential voltage data collection from Ford
Fiesta (i), the OBD-II port from the Ford Fiesta (ii) and the J1939 diagnostic
port from the John Deere tractor (iii) with specified connection points

sample rate was set to 500 MS/s, with a sample interval of 2
nanoseconds, which is maximally achievable on our Picoscope

device when using two channels. Frames are transmitted by
nodes from the tractor with a bit rate of 250 kbps according
to SAE J1939-11, so, we were able to capture voltage data
of up to 9-10 separate frames in a window of 5 milliseconds
assuming a 500 microseconds average duration for one frame.
For the cars, nodes exchange data using a bit rate of 500 kbps
following the recommendation of SAE J2284-3 so it would
take up to around 260 microseconds on average for a frame
to be transmitted, allowing us to lower the capture window
to 2 milliseconds. The window size and baud rate are the
only differences between the tractor and the car data collection
setup.

While the Picoscope tool is indeed a more expensive
laboratory device, similar hardware components such as the
Xilinx XC6SLX25 FPGA used in the Picoscope 5000 series
or a high performance ADCs such as the 2 channel, 500
MSPS ADC08D502 from Texas Instruments are both below
100 USD. So the practical deployment of a tool with the
capabilities required in our work should not be extremely
expensive.

IV. FRAMEWORK FOR ANALYSIS

In this section we present the theoretical framework for
the two fingerprinting methodologies: clock skews and voltage
levels.

A. Clock skews

To set up a theoretical framework, we rely on the well
established formalism from [50]. The clock of the system is
defined as a piecewise continuous function C : R → R that is
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(i) cycle time

(ii) clock offsets

(iii) skew convergence

Fig. 5. Cycle time (i), clock offsets (ii) and convergence of the skew (iii)
for two IDs with 50ms and 100ms cycle (left vs. right)

twice differentiable. With respect to this function, we will use
the offset of each device clock, which is the difference between
the reported time and the true time, e.g., CA

offset = CA(t)− t.
Subsequently, the first derivative of the clock function C′(t)
represents the clock frequency and its second derivative C′′(t)
is the clock drift. The clock skew between two clocks can
be then defined as the difference in the first derivative, i.e.,
CA,B

skew = C′A(t)−C′B(t). Further, the drift of a clock relative
to another is the difference between the second derivative of
the clocks, i.e., CA,B

drift = C′′A(t)− C′′B(t).
In our practical scenario, we consider that the true clock is

the frame cycle time multiplied with the frame number, i.e.,
t = i× δid where δid is the cycle time of the frame carrying
a specific ID. The clock skew can be estimated from cyclic

frames carrying a specific ID as: Cskew(id) ≈
tj − ti

(j − i)× δid
.

Here ti and tj are the timestamps of the i-th and j-th frame
respectively. We note that the work in [50] proposes the use
of more complex linear approximation algorithms to extract
the clock skews from network packets. The fact that CAN
bus frames have fixed cycle time makes the previous simple
formula to work reasonably well in estimating the skews if
one simply takes the mean or median over the arrival time of
sufficient frames. Of course, more demanding algorithms will
lead to more accurate results.

To serve as a graphical example, Figure 5 shows the cycle
time (i), clock offsets (ii) and the convergence of the skew (iii)
computed with the above approximation for two IDs from a
trace of 30 seconds. The left side of the figure is for an ID with
a cycle time of 50ms and the right side for an ID with a cycle
of 100ms. In our setup the true time is the expected arrival
time of each frame based on its pre-defined cycle time and the
current clock on the tool which records the data (a CANcase as

earlier discussed in the data collection section). Note that while
the cycle time is very distinctive for the two IDs, the slope
of the clock offset is identical, i.e., the same skew equal to
1.00009, demonstrating that these IDs originate from the same
ECU. The clock offset is significantly affected between the 50-
th and 150-th frame for the ID on the right side of the figure,
which is likely due to its lower priority. Computing the skew in
this specific portion may lead to erroneous results. Such events
are rare, but they show that clock skews may occasionally be
unreliable and more frames have to be considered to get a
correct image. As shown in (iii), for the first ID the value of
the skew converges after just a dozen frames due to its more
stable arrival time which is likely due to its higher priority.
However, for the second ID the skew is wrongly estimated to
be between 1.00010 and 1.00020 during frames 50–150. This
suggests that for correct computation of the skew more than
100 frames may be needed. As a partial conclusion, skews are
good for fingerprinting ECUs if there are sufficient frames but
not very good for detecting intrusions in real-time since the
arrival time of individual packets may be deceiving.

B. Voltage features

As already stated, another approach for fingerprinting ECUs
is based on unique characteristics of the physical signals
generated by each node on the CAN bus. These unique features
can be observed by analyzing minute variations in the voltage
levels of the CAN High and CAN Low lines. There are several
causes for the uniqueness of signal characteristics. First, there
are minute, uncontrollable, differences in the manufacturing
process of CAN transceivers which will generate unique char-
acteristics in their signaling behavior. Second, the shape of the
transmitted signal is influenced by the transmission medium
itself and all the other nodes located along the transmission
path [51]. In the current analysis we focus on four features that
can be extracted from the voltage levels: the mean voltage,
maximum voltage, bit time and plateau time for isolated
dominant bits, i.e., between two recessive bits. The last two
characteristics depend also on the clock of the node. We now
formally define these characteristics.

We use the following voltage features, which are going
to be formalized next, and are already considered in related
works: i) the mean voltage level in [34], [36], [52], ii) max
voltage level in [32], [34], [36], [52] and iii) bit time in
[41], [53], [54], [55]. In addition to these, we also note that
the plateau time of the bit (not used in previous works)
also provides good indications on the sender ECU, so we
introduce this as an additional metric to compare it with
existing metrics. Nonetheless, in the experimental analysis,
by combining these four metrics the identification results are
significantly improved. While machine learning techniques
may give a much better separation between distinct ECUs,
the experimental analysis that follows will show that these
characteristics seem sufficient to distinguish between ECUs
and thus they may serve as a compact fingerprint for ECUs
inside the car.

By mean voltage we refer to the mean voltage during
the dominant state of the bus, i.e., as the bit approaches
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the nominal value of ∼2V. Other papers, have also included
the rising and falling edges in computing the mean voltage,
however, we only refer to the mean value as long as the bit
stays in the dominant voltage range. For each frame carrying
a specific ID, having the collected samples for an isolated
dominant bit which is a transition from recessive to dominant
and back, i.e., s1, s2, ..., sℓ, we define the mean and maximum
value based on a fixed range τ as follows:

Vmean(id) = mean

{
si : i = ℓ/2− τ..ℓ/2 + τ

}

Vmax(id) = max

{
si : i = 1..ℓ/2− τ

}
The value of τ has to be chosen based on the duration of a

bit and the number of samples per second such that the middle
portion lies on the plateau. For example, in our experiments
with a 500 kbps CAN and 500 MS/s we have ℓ = 2000 and
one sample each 2ns for which we set the value of τ = 150
which fitted the plateau for all bits inside all cars from the
experiments.

Let indexes α ≤ ℓ/2, β > ℓ/2 and σ be the sampling time
of the signal s1, s2, ..., sℓ, then we define the bit time and
plateau time as follows:

Tbit(id) = min
α,β

{
(β − α)σ : |sα| ≤ ϵ, |sβ | ≤ ϵ

}

Tplat(id) = max
α,β

{
(β − α)σ : |sα − Vmean(id)| ≤ ϵ

}
For the datasets that we collected from all cars, the sampling

time σ is 2ns. The threshold ϵ was selected based on empirical
analysis on the intra/inter-distances at 20mV.

The previous definitions were concerned with isolated dom-
inant bits that occurred in almost all of the IDs which we
collected. If this is not the case, our approach can be easily
scaled as follows. According to the CAN standard, each 5
consecutive bits of the same value are to be followed by a bit
of distinct polarity (due to the CAN bit stuffing mechanism).
The plateau time can be immediately extracted from multiple
bits simply by dividing the entire plateau time with the number
of bits (that is 5 in the worst case). Bit time can be derived
from the overall time of multiple bits time by subtracting the
plateau for all but 1 bit (that is the plateau time of 4 bits in the
worst case). The mean and max voltage are unchanged when
defined over multiple bits.

Figure 6 provides a graphical depiction of the voltage
levels collected for IDs originating from distinct ECUs. The
first ID is from Ford Ecosport and the second one is from
Hyundai ix35. The first ID (i) shows a clear spike during the
rising time with the extracted features Vmean = 2.195mV ,
Vmax = 2.236mV , Tbit = 2.686µs, Tplat = 1.478µs. The
second ID (ii) has a flatter plateau with the extracted features
Vmean = 2.191mV , Vmax = 2.195mV , Tbit = 2.640µs,
Tplat = 1.417µs. Note that the figure presents the number of
samples on the X-axis and each sampling point corresponds to

(i) ID 171 (ii) ID 428

Fig. 6. Collected voltage levels for IDs from distinct ECUs

2ns, thus, the ∼1300 samples for the bit time lead to around
2.6 µs.

As a partial conclusion, voltage levels offer much more
features that can be extracted and they are also well suitable for
analysis with more demanding machine learning algorithms.
In this work we stay to the previously stated characteristics
which are easy to collect and offer enough data to distinguish
between the ECUs as shown later.

C. Distinguishability based on skews and voltage features

Having defined the skews and voltage features, we now
measure the distinguishability of the fingerprints based on
the intra and inter-distances between the fingerprints for each
frame carrying a specific ID. Since the skews and voltages
are real valued and not binary, we will use the Euclidean
distance as a metric, i.e., d(u, v) =

√
(u− v)2 represents the

Euclidean distance of two values which can be extended to
any number of features. The intra and inter-distances based
on skews, i.e., Dskew

ω , voltage features, i.e., Dmean
ω ,Dmax

ω ,
bit time, i.e., Dbit

ω , and plateau time, i.e., Dplat
ω , where

ω ∈ {inter, intra}, are defined as follows:

Dα
intra(i) =

{
d(φ(id ′), φ(id ′′)) : ∀id ′, id ′′∈ ECUi, id

′ ̸= id ′′
}

Dα
inter(i, j) =

{
d(φ(id ′), φ(id ′′)) : ∀id ′∈ECUi,∀id ′′∈ECUj

}
Where the pair (α,φ) runs over the five fingerprints,

i.e., (α,φ) ∈ {(skew,Cskew), (mean,Vmean), (max,Vmax),
(tbit,Tbit), (tplat,Tplat)} and i, j = 1..n run over all the
n ECUs. That is, the intra-distances account for the distances
between distinct IDs originating from the same ECU while the
inter-distances account for the distance between IDs sent by
distinct ECUs.

V. EXPERIMENTAL RESULTS

This section presents experimental results based on the
previous methodologies and data collected inside the cars and
the commercial vehicle.

A. ECU separation based on clock skews and voltage features

We now discuss the separation between ECUs in each
vehicle based on clock skews and voltage features. The results
that follow indicate that neither skews, nor single voltage
features like mean and max voltage, are sufficient for a fine
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(i) Honda Civic (ii) John Deere

Fig. 7. Separation for ECUs in the Honda Civic (i) and John Deere (ii) based on skews

(i) Honda Civic (ii) Opel Corsa (iii) Hyundai i20

(iv) John Deere (v) Dacia Duster (vi) Dacia Logan (vii) Hyundai ix35

(viii) Ford Fiesta (ix) Ford Kuga (x) Ford Ecosport

Fig. 8. Mean-max voltage separation in the Mean-max voltage separation in the Honda Civic (i), John Deere (ii), Dacia Logan (iii), Ford Kuga (iv), Hyundai
i20 (v), Dacia Duster (vi), Opel Corsa (vii), Ford Fiesta (viii), Hyundai ix35 (ix) and Ford Ecosport (x)

grain separation. A specific issue with skews is that frames
(IDs) coming from the same ECU may have distinct skews
if they are replayed by a gateway ECU. For voltage levels,
the mean and max voltage may at times be very close even
for distinct ECUs. These situations are outlined next in the
discussions according to the case.

1) Honda Civic: we determined that there are 6 ECUs
and 43 IDs on the network. The Honda Civic provides a
crisp separation between 6 ECUs. Figure 7 (i) shows the
separation of the ECUs based on skews suggesting 6 ECUs

right from the beginning. Regarding voltages, Figure 8 (i)
shows the separation of the ECUs based on the mean-max
voltage features. While a separation between 5 ECUs is clear,
the ID from ECU3 is quite close to the IDs from ECU2 and
ECU4 because of similar mean and max voltage features.
However, the skew suggests this is a distinct ECU and it
is indeed so as the voltage patterns from Figure 9 (i) and
(ii) prove that ID 18E from ECU3 has a distinct pattern
compared with ID 091 that is originating from ECU4. Figure
10 which provides separation based on the plateau and bit time
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(i) ID 18E (ii) ID 091

Fig. 9. A zero bit from ID 18E (i) and a zero bit from ID 091 (ii) for Honda
Civic

(i) Honda Civic (ii) Dacia Logan

(iii) Ford Fiesta (iv) Ford Kuga

Fig. 10. Bit-plateau time separation in the Honda Civic (i), Dacia Logan
(ii), Ford Fiesta (iii) and Ford Kuga (iv)

(i) confirms that there are 6 clusters corresponding to 6 ECUs.
2) Opel Corsa: we determined that there are 4 ECUs and

29 IDs. The separation between the ECUs was one of the
easiest from all cars. This was not only due to the small
number of ECUs but also due to the very stable ID arrival
timings and voltage features. Figure 8 (ii) shows how the IDs
separate along the mean-max voltages and leaves little doubts
on the separation.

3) Hyundai i20: we determined that there are 7 ECUs and
40 IDs on the network. The separation between the 7 ECUs
was effortless with no overlaps in terms of skews and voltages
similar to the case of the Honda Civic. We depict only the
mean-max voltage clustering of the IDs against the 6 ECUs
in Figure 8 (iii). Further details are given in the next section
related to the inter and intra-distances.

4) John Deere: we determined 3 ECUs and 33 IDs to
be present on the network. As stated, the address oriented
nature of J1939 upper layer specifications provide excellent
information for separating between ECUs as the sender ad-
dresses are already known. The resulting classification based
on skews is presented in Figure 7 (ii) which clearly shows the
IDs clustering around three physical ECUs. This supports the
findings from our analysis based on the J1939 specifications
which, according to sender addresses indicates the presence
of 3 ECUs. We have seen that the clock skews determined
for 3 IDs out of the 21 IDs sent by the BCM, i.e., ECU1,
are slightly different from the rest. However, the mean-max
voltage level separation from Figure 8 (iv) confirms that these
originate from the same ECU but since the skew is slightly

different for those IDs, we suspect that a 4th ECU may be
present behind the BCM which acts like a gateway.

5) Dacia Duster: has 3 ECUs and 12 IDs. This was the
simplest topology from our cars (only 3 ECUs similarly to
the John Deere tractor) and with the smallest number of IDs.
Figure 8 (v) shows how the IDs separate along the mean-max
voltages.

6) Dacia Logan: we determined 6 ECUs and 46 IDs. We
expected a similar simplicity to the Dacia Duster but this was
not the case. The fingerprint lead to the conclusion that this
model has 6 ECUs. Interestingly, this car has the ECUs with
the closest skews, with ECU2 and ECU3 differing with only
1ppm, i.e., 0.999973 vs. 0.999974. The voltages confirm that
these ECUs are distinct with a large difference in the mean
voltage levels of about 70mV. Figure 8 (vi) shows how the IDs
separate along the mean-max voltages. Figure 10 (ii) shows
the graphical separation based on the bit and plateau timings
which confirms the presence of 6 distinct ECUs.

7) Hyundai ix35: we determined 6 ECUs and 26 IDs. The
number of IDs is somewhat low for 6 ECUs which made
us suspect that there may be a gateway behind the OBD
port which filters and re-transmits incoming IDs from internal
buses. The voltage features shown in Figure 8 (vii) suggest
however the presence of 6 distinct ECUs.

8) Ford Fiesta: we determined 6 ECUs and 46 IDs. The
Ford Fiesta creates a few problems when attempting to sepa-
rate between some of the IDs using skews. The main problem
is that the timing of the IDs is not very stable. By taking
different portions of the trace the computed skew was slightly
different. Figure 11 gives such an example. ID 073 (i) has a
constant arrival time resulting in the same skew regardless of
the portion of the trace. For IDs 364 (ii) and 360 (iii) there is
a significant variation in the cycle time and the offsets change
during the second half of the plots. This means that the skew
that can be computed from the first 3000 frames is distinct
from the one computed from the first 6000 frames. In this
case the skew provides an unreliable separation between the
ECUs. Fortunately, in this case, the mean-max ECU voltage
separation works well as suggested in Figure 8 (viii). Figure 10
(iii) shows the bit and plateau time separation with 6 clusters
corresponding to the 6 distinct ECUs.

9) Ford Kuga: we determined 9 ECUs and 70 IDs. We
identified IDs that originate from the same ECU but have very
distinctive skews again suggesting the presence of a gateway.
The upper part of Figure 12 shows IDs 1D0 and 208, the
first having a cycle time of 20ms and the second a cycle
time of 25ms. This results in a skew of 0.999956 for the
first and 1.002180 for the latter. We again suspect that the
second one, i.e. ID 208, is redirected from another bus as the
inter-arrival time, i.e., the cycle plot, shows significantly more
noise. However, the mean-max voltage separation from Figure
8 (ix) allows us to identify separate clusters corresponding to 9
ECUs. Figure 10 (iv) contains the 9 groups of bit and plateau
time which leads to the same 9 ECUs identified by the other
two voltage features.

10) Ford Ecosport: we determined 4 ECUs and 87 IDs on
the network. We noticed similar problems when computing
the skews on Ford Ecosport as we had for Ford Kuga. The
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(i) ID 073

(ii) ID 364

(iii) ID 360

Fig. 11. Cycle time (left) and offset (right) for 3 IDs in the Ford Fiesta

(i) ID 1D0 (ii) ID 208 (iii) IDs 1D0 vs. 208 (offset)

(i) ID 045 (ii) ID 091 (iii) IDs 045 vs. 091 (offset)

Fig. 12. Cycle time and offsets for IDs 1D0 and 208 in Ford Kuga and IDs
045 and 091 in Ford Ecosport

Ecosport shows distinct skews for IDs coming from the same
ECUs. The lower part of Figure 12 shows such differences
for IDs 091 having a skew of 0.999610 and ID 045 having a
skew of 0.999929 both having a cycle time of 20ms although
they both originate from ECU4. Due to the clear differences
in the resulted skews we suspect that ECU4 acts as a gateway
and consequently some of the IDs come with a distinct skew.
Similar problems with the skews occur at ECU1 while all
the IDs from ECU2 and ECU3 separate well from the rest.
Voltage separation is almost perfect between the 4 ECUs in
the Ford Ecosport as it can be seen in Figure 8 (x).

B. Overview of intra and inter-distances

We now summarize the results on intra and inter-distances.
Figure 13 shows the skews and voltage inter and intra-
distances plotted as heatmaps. In the plots, we use a threshold
of 10ppms for the skews, 25mV for the mean, max voltage
separation and 10ns for the bit time and plateau time. The
inter-distances are much cleaner for ECUs inside the same
vehicles but there are far more collision in the inter-distances
between ECUs in distinct cars. We discuss these in detail in
what follows.

Skews provide a good separation for ECUs in the same
vehicle as shown in Figure 13 (i). There are some exceptions

considering the high variations in the skews extracted from
the Ford Kuga and Ford Ecosport, i.e., there are more clusters
based on skews compared to the number of ECUs that were
separated through voltage features. Inter-distances are rea-
sonable but insuficient as several overlaps exists, specifically
for Dacia Duster, John Deere, Hyundai i20, Hyundai ix35
and Honda Civic. For example, there is a notable collision
between ECU1 and ECU2 in the Dacia Duster and there are
several collisions in the Ford Kuga or Ford Ecosport. Smaller
collisions also occur between ECU1 and ECU2 in the Honda
Civic or between ECU5 and ECU7 for Hyundai i20.

The mean and max voltage fingerprint from Figure 13 (iii),
(iv) provide a crisper separation between the ECUs but there
are still overlaps for intra-distances in the Ford Kuga, John
Deere and Honda Civic. For Honda Civic there is an overlap
between ECU3, ECU4 and ECU5 as for John Deere the
overlap is between ECU1 and ECU2. Still, there is a notable
collision between ECU4 in the Hyundai i20 and ECU6, ECU7

in the Ford Kuga. Smaller collisions also occur between ECU2

in the Opel Corsa and ECU3 in the Honda Civic or ECU4 in
the Opel Corsa and ECU3 in the Ford Ecosport. The voltage
patterns may still be distinctive and a finer grain analysis
with machine learning algorithms will very likely distinguish
between the ECUs. Such an analysis is out of scope for the
current work but we leave our dataset public to be accessible
for future works.

As expected since the bit time and plateau time depend
both on voltages and clocks they yield a cleaner separation.
The bit time heatmap from Figure 13 (v) is cleaner than the
plateau time heatmap from Figure 13 (vi) with regards to inter-
distances. Still, the bit time for several ECUs from the Honda
Civic is close to the bit time for ECU1 or ECU4 from the
Opel Corsa. Similarly, the bit times are close for some ECUs
from the Hyundai i20, Dacia Logan, Hyundai ix35, Ford Fiesta
and Ford Ecosport. As for inter-distances, there are negligible
collisions for the bit time measured for 2 ECUs in Honda
Civic, John Deere and Dacia Logan. Overlaps between the bit
time for more ECUs are visible for the Hyundai i20, Hyundai
ix35, Ford Fiesta, Ford Kuga and Ford Ecosport but there are
no bit time overlaps for ECUs from Opel Corsa, Dacia Duster.
The plateau time provides a clearer separation when it comes
to ECUs from the same vehicle but there are more overlaps
between ECUs from different vehicles as shown in Figure 13
(vi). The plateau time is also close for pairs of ECUs from
John Deere, Dacia Logan, Ford Fiesta, Ford Kuga and the Ford
Ecosport. The overlaps from inter-distance perspective are
clearly visible between ECU2 from Honda Civic and ECU5

from Hyundai i20 or ECU1 from Opel Corsa and ECU4 from
Hyundai i20. Same for ECU3 from Dacia Logan, ECU4 from
Hyundai ix35, ECU2 from Ford Fiesta and ECU5 from Ford
Kuga.

Finally, when merging multiple features, i.e., the mean, max,
bit and plateau time, the overlaps almost fully disappear as
Figure 13 (ii) shows. There is a minor overlap between the
IDs from the Ford Fiesta and three other cars, Hyundai i20,
Hyundai ix35 and Dacia Logan and some overlaps between
IDs from the Ford Kuga and the Ford Ecosport ECUs, but
the overlaps are minor. This suggests that at least 4 voltage
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(i) skews (ii) combined mean-max-bit-plateau

(iii) mean voltage (iv) max voltage (v) bit time (vi) plateau time

Fig. 13. Heatmaps for skews (i), combined mean-max-bit-plateau voltages (ii), mean voltage (iii), max voltage (iv), bit time (v) and plateau time (vi) for
the 432 IDs belonging to the 54 ECUs in the 10 vehicles from our experiments

features have to be used for a reliable separation.

C. Impact of environmental variations

We now put to test two cars from our experiments, i.e.,
the Honda Civic and the Ford Fiesta, against environmental
variation effects on skews and voltages. For this purpose,
we conducted tests by measuring the evolution of skews and
voltages before and after one hour of normal car operation. It
is known and well emphasized by previous research works
that physical parameters will exhibit variations during car
operation. However there are no details in related works on
how these values actually change. A reason for which we
proceed to further investigations. Briefly, our investigations
show that variations are non-uniform and not necessarily
increasing or decreasing as the car operates. This suggests
that predictions will be hard or impossible to make. The
use-case presented by us in the introduction will likely call
for the same environment, e.g., an authorized garage, and
thus environment changes should be minimal. Clearly, a more
comprehensive study will be needed in order to determine how

such variations occur over a larger time interval, e.g., one or
several years. Such a large interval was out of reach for us in
the current research communication. If insufficient over long
time intervals, the proposed fingerprinting methodology will
at least allow one to construct a quick mapping of the ECUs
inside the car based on data collected from the bus, in a similar
vein to the work in [11].

Figure 14 shows the evolution of the skews before and after
1 hour runtime for the Honda Civic (left) and the Ford Fiesta
(right). In both cars the values are shifting to the right, meaning
either that clocks on ECUs run faster or that the CANCase
clock (used in the measurements) actually runs slower. Since
the shifts are unequal, we suspect that the controllers are
mainly responsible for the shift in skews and thus the oscillator
begin to run slightly faster as the car is running (this may also
be due to the battery charging as the car is running).

Figure 15 shows the shifts in mean voltage levels after
1 hour of runtime. For the Ford Fiesta (left) the voltage is
shifting to the right showing higher voltages after 1 hour
of runtime. For the Honda Civic however, the shifts are not
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Fig. 14. Skew variations in the Honda Civic (left) and Ford Fiesta (right) from a cold start (blue) to 60 minutes driving (red)

Fig. 15. Voltage variations in the Honda Civic (left) and Ford Fiesta (right) from a cold start (blue) to 60 minutes driving (red)

always positive, notably, ECU6 exhibits negative variations.
The variations are in the 10-20mV range for the Ford Fiesta but
for the Honda Civic they are much higher commonly around
40mV and topping for ECU3 at 59mV. This is generally above
our separation threshold of 20mV.

The increase in both clock speeds and voltage levels makes
us suspect that as the car runs the battery charges and an
increased voltage supply results in faster clocks and higher
voltages on the bus. This rule however does not apply to
one ECU in the Honda Civic which has a decreased voltage.
These variations, due to environmental changes, indicate that
physical fingerprints need to be continuously updated to avoid
misclassification. This has been already pointed out by previ-
ous works, but no details were given regarding these variations.
Since our investigations show that these variations are not
necessarily monotonic, predicting them seems infeasible in the
general case. Indeed, in the case of intrusion detection systems
re-training and fingerprint updates proved to be necessary as
already suggested in works like [31], [34].

VI. CONCLUSION

Clock skews are much easier to collect, but various abnor-
malities due to bus loads or computational load on the host
controller make skews a much less accurate and less stable fin-
gerprinting mechanism. They also require a significant amount

of frames for correct estimation (dozens to hundreds) and
deviations are possible for legitimate frames which make clock
skews a poor indicator when a small number of samples is
available. On the other hand, clock skews may work to identify
ECUs behind gateways which cannot be separated based on
voltages. Voltage features are more difficult to collect, in our
analysis we used a digital oscilloscope while regular in-vehicle
controllers usually don’t have this kind of signal acquisition
capabilities. But they offer a much more accurate classification
even based on single bits. Regarding voltage features, it seems
that bit time and plateau time are a better feature to classify
senders, however they are insufficient in a large pool of ECUs.
In our analysis, grouping four features, i.e., mean voltage,
max voltage, bit time and plateau time, seemed to yield a far
better classification. Since our dataset is publicly available, we
welcome future research works to try various other statistical
tests or more demanding machine learning classifiers on the
collected data.
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APPENDIX A - CONCRETE NUMERICAL DATA FOR THE
COMPUTED SKEWS AND VOLTAGES

Due to space constraints, in this appendix we provide
numerical data for the skews and voltages in four of the
vehicles from our experiments (Dacia Logan, John Deere,
Ford Fiesta and Honda Civic). Numerical data for the rest
of the vehicles will be included as a supplemental material
along with the datasets. All tables contain specific IDs grouped
around each ECU. This association is based on the computed
physical fingerprints (skews and voltages) to the best we
could ascertain based on the methodology in this work. Since
our dataset is public, we invite future research works to
examine this association in more detail and possibly come
with amendments.

The hexadecimal value of the frame identifier is presented
the ID column and the cycle time of the frame in milliseconds,
generally taken as a median, is shown in the Cycle column.
The following columns contain data for the clock skew, Cskew,
the extracted mean voltage, Vmean, and maximum voltage,
Vmax, measured in Volts, and the identified bit time, Tbit,
and plateau time, Tplat, measured in microseconds, from data
collected while the vehicle was running, after it was started.

Data for the Dacia Logan is presented in Table III. Table
IV contains the information for the John Deere tractor but
omitting IDs 0CFFFF21, 18EAFF21, 18FEE500, 18FFFA21,
18FFFB21, 1CEBFF00, 18FFFF21, 1CECFF00 which are
on-event frames and IDs which are used for multi-frame
transmission. All omitted IDs for the John Deere tractor can
be easily classified on the voltage levels.

Tables V and VI for the Honda Civic and Ford Fiesta
have additional columns, ∆, which contain the deviations
compared to the column before for each value obtained from
data collected after 60 minutes of driving. In Table V we
illustrate the cyclic IDs with the associated information from
Ford Fiesta. The following IDs: 455, 720, 727, 728, 72F, 7A5,
7AD, have been omitted since they are on-event (non-cyclic).
The last of them in particular, occurred only when the car was
started and was not seen again afterwards. As skews cannot
be computed for on-event IDs, we remove them from the
analysis in order to make the plots in Figure 13 comparable
between skews and voltage features. If needed, these IDs can
be classified based on the voltage features alone. Table VI
contains the measurement data for the 43 IDs from Honda
Civic.

https://www.daciaforum.co.uk/threads/dacia-duster-electrical-wiring-diagrams.39232/
https://www.daciaforum.co.uk/threads/dacia-duster-electrical-wiring-diagrams.39232/
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TABLE III
DACIA LOGAN

No. ECU ID Cycle Cskew Vmean Vmax Tbit Tplat
1 ECU1 500 100 0.997246 1.940 1.941 2.734 1.451
2 ECU1 1B0 20 0.999574 1.940 1.941 2.734 1.452
3 ECU1 552 100 0.999574 1.940 1.941 2.735 1.452
4 ECU1 657 100 0.999574 1.941 1.942 2.734 1.452
5 ECU1 2BC 100 0.999574 1.940 1.941 2.734 1.451
6 ECU1 69F 1000 0.999574 1.941 1.941 2.729 1.451
7 ECU1 4DE 100 0.999574 1.942 1.940 2.736 1.448
8 ECU1 55D 100 0.999574 1.940 1.940 2.735 1.451
9 ECU1 5DE 100 0.999574 1.940 1.941 2.733 1.452

10 ECU1 575 100 0.999574 1.940 1.941 2.734 1.451
11 ECU1 45C 100 0.999574 1.940 1.942 2.733 1.451
12 ECU1 5DF 100 0.999574 1.941 1.942 2.734 1.451
13 ECU1 350 100 0.999574 1.940 1.941 2.735 1.452
14 ECU1 4AC 100 0.999574 1.941 1.941 2.734 1.451
15 ECU2 217 20 0.999974 2.046 2.050 2.655 1.428
16 ECU2 2C6 20 0.999974 2.044 2.048 2.655 1.428
17 ECU2 2A9 20 0.999974 2.044 2.049 2.654 1.427
18 ECU2 18A 10 0.999974 2.045 2.050 2.655 1.428
19 ECU2 186 10 0.999974 2.044 2.048 2.654 1.428
20 ECU2 66A 100 0.999974 2.045 2.048 2.655 1.427
21 ECU2 511 100 0.999974 2.043 2.046 2.652 1.428
22 ECU2 1F6 10 0.999974 2.045 2.049 2.655 1.428
23 ECU2 5DA 100 0.999974 2.043 2.046 2.653 1.428
24 ECU2 648 100 0.999974 2.043 2.046 2.653 1.428
25 ECU2 65C 100 0.999974 2.042 2.045 2.653 1.428
26 ECU2 41A 100 0.999974 2.044 2.047 2.652 1.427
27 ECU2 41D 100 0.999974 2.046 2.049 2.657 1.427
28 ECU3 090 10 0.999973 2.118 2.128 2.679 1.459
29 ECU3 0C6 10 0.999973 2.116 2.126 2.681 1.459
30 ECU3 666 100 0.999973 2.124 2.133 2.674 1.458
31 ECU3 352 40 0.999973 2.117 2.128 2.677 1.460
32 ECU3 29C 20 0.999973 2.119 2.129 2.678 1.459
33 ECU3 12E 10 0.999973 2.117 2.128 2.680 1.459
34 ECU3 242 20 0.999973 2.116 2.127 2.680 1.460
35 ECU3 354 40 0.999973 2.122 2.133 2.678 1.459
36 ECU3 2B7 20 0.999973 2.118 2.129 2.680 1.459
37 ECU3 29A 20 0.999973 2.118 2.128 2.679 1.460
38 ECU3 5D7 100 0.999973 2.118 2.128 2.682 1.459
39 ECU4 1A0 100 1.000530 2.190 2.222 2.676 1.492
40 ECU4 62B 100 1.000530 2.192 2.225 2.677 1.492
41 ECU5 4F8 100 0.999507 2.201 2.222 2.739 1.415
42 ECU5 646 500 0.999507 2.200 2.222 2.742 1.414
43 ECU5 3B7 100 0.999507 2.199 2.220 2.738 1.415
44 ECU5 6FB 3000 0.999507 2.200 2.220 2.740 1.415
45 ECU6 564 100 1.000510 2.221 2.237 2.739 1.439
46 ECU6 653 100 1.000510 2.229 2.246 2.743 1.439

TABLE IV
JOHN DEERE

No. ECU ID Cycle Cskew Vmean Vmax Tbit Tplat
1 ECU1 18FFC921 250 1.000082 1.970 1.991 4.515 3.404
2 ECU1 18FEF021 100 1.000082 1.964 1.981 4.516 3.399
3 ECU1 0CFE4421 100 1.000082 1.965 1.981 4.517 3.398
4 ECU1 0CEF0321 100 1.000082 1.968 1.990 4.511 3.405
5 ECU1 0CFDCC21 1000 1.000082 1.966 1.982 4.510 3.400
6 ECU1 0C010321 50 1.000082 1.971 1.991 4.512 3.405
7 ECU1 1CFDDF21 500 1.000082 1.972 1.993 4.510 3.404
8 ECU1 0CFE4321 100 1.000082 1.970 1.989 4.511 3.403
9 ECU1 0CFE4521 100 1.000082 1.969 1.989 4.511 3.404

10 ECU1 18F00621 500 1.000082 1.963 1.977 4.517 3.395
11 ECU1 18FFF821 100 1.000082 1.968 1.984 4.511 3.401
12 ECU1 18FEFC21 1000 1.000082 1.955 1.974 4.513 3.404
13 ECU1 18EF0021 1000 1.000082 1.970 1.989 4.512 3.389
14 ECU1 18EFFF21 500 1.000082 1.971 1.994 4.512 3.406
15 ECU1 18FEF721 1000 1.000082 1.965 1.986 4.521 3.402
16 ECU1 18FEF121 100 1.000082 1.964 1.982 4.515 3.400
17 ECU1 18FEAE21 1000 1.000082 1.978 1.997 4.515 3.403
18 ECU1 04EF0021 20 1.000082 1.968 1.987 4.515 3.401
19 ECU1 18FF9721 100 1.000077 1.969 1.985 4.511 3.399
20 ECU1 18FFBF21 100 1.000077 1.978 2.002 4.512 3.408
21 ECU1 1CFFFF21 1000 1.000077 1.968 1.984 4.511 3.400
22 ECU2 0CF00300 50 1.000018 1.989 1.994 4.490 3.318
23 ECU2 18EFFA00 1000 1.000019 1.988 1.992 4.491 3.315
24 ECU2 18FEF600 500 1.000018 1.986 1.991 4.490 3.316
25 ECU2 18EF2100 100 1.000018 1.990 1.994 4.490 3.314
26 ECU2 18FEF700 1000 1.000018 1.989 1.997 4.491 3.326
27 ECU2 0CF00400 20 1.000018 1.990 1.995 4.490 3.319
28 ECU2 18FEF200 100 1.000018 1.987 1.992 4.490 3.320
29 ECU2 18FEEE00 1000 1.000019 1.986 1.992 4.491 3.327
30 ECU2 18FEEF00 500 1.000019 1.989 1.993 4.490 3.321
31 ECU2 18FEDF00 250 1.000018 1.994 1.998 4.491 3.315
32 ECU3 18F00503 100 1.000044 2.013 2.020 4.515 3.401
33 ECU3 1CFEC303 100 1.000047 2.008 2.015 4.516 3.401

TABLE V
FORD FIESTA

No. ECU ID Cycle Cskew ∆ Vmean ∆ Vmax ∆ Tbit ∆ Tplat ∆

1 ECU1 023 100 0.999861 -0.000145 2.117 0.020 2.158 0.023 2.705 0.009 1.475 -0.004
2 ECU1 04A 100 0.999861 -0.000145 2.113 0.019 2.154 0.021 2.701 0.009 1.476 0.001
3 ECU1 04B 100 0.999861 -0.000145 2.113 0.018 2.152 0.020 2.699 0.007 1.475 0.003
4 ECU1 460 100 0.999862 -0.000147 2.108 0.025 2.148 0.029 2.699 0.013 1.479 -0.001
5 ECU2 073 10 0.999948 0.000013 2.154 0.011 2.173 0.011 2.725 0.028 1.458 -0.001
6 ECU2 090 10 0.999948 0.000013 2.151 0.011 2.168 0.011 2.725 0.024 1.458 0.000
7 ECU2 20E 10 0.999948 0.000015 2.155 0.010 2.173 0.010 2.725 0.028 1.458 -0.001
8 ECU2 20F 10 0.999948 0.000015 2.155 0.010 2.174 0.009 2.725 0.027 1.458 -0.001
9 ECU2 211 10 0.999948 0.000015 2.152 0.010 2.169 0.010 2.725 0.018 1.458 0.000

10 ECU2 212 100 0.999946 0.000017 2.150 0.015 2.167 0.015 2.723 0.023 1.457 0.000
11 ECU2 213 20 0.999948 0.000015 2.156 0.009 2.175 0.008 2.725 0.032 1.458 0.000
12 ECU2 215 20 0.999946 0.000017 2.150 0.010 2.167 0.010 2.725 0.015 1.458 0.000
13 ECU2 216 20 0.999946 0.000017 2.150 0.010 2.168 0.010 2.727 0.016 1.458 0.000
14 ECU2 2C3 1000 0.999946 0.000019 2.160 0.009 2.180 0.008 2.726 0.012 1.458 -0.001
15 ECU2 4B0 10 0.999948 0.000017 2.155 0.010 2.175 0.009 2.725 0.029 1.458 0.001
16 ECU3 150 25 1.000000 0.000009 2.182 0.003 2.200 0.004 2.691 0.004 1.444 0.000
17 ECU4 190 20 1.002000 -0.000119 2.212 0.020 2.234 0.017 2.753 0.017 1.421 -0.007
18 ECU4 275 100 1.001990 -0.000118 2.214 0.017 2.236 0.015 2.755 0.002 1.422 -0.005
19 ECU4 400 100 1.001990 -0.000118 2.214 0.017 2.236 0.014 2.749 0.019 1.420 -0.005
20 ECU4 405 100 1.002000 -0.000119 2.208 0.021 2.228 0.020 2.753 0.017 1.417 -0.002
21 ECU4 430 100 1.002000 -0.000119 2.212 0.020 2.234 0.017 2.756 0.016 1.421 -0.005
22 ECU4 432 100 1.002000 -0.000113 2.218 0.014 2.240 0.010 2.762 0.010 1.421 -0.006
23 ECU4 433 100 1.001990 -0.000108 2.212 0.019 2.235 0.015 2.751 0.018 1.423 -0.009
24 ECU4 4E3 30 1.002000 -0.000118 2.210 0.020 2.232 0.018 2.754 0.013 1.420 -0.005
25 ECU4 2C1 1000 1.001990 -0.000106 2.211 0.013 2.233 0.014 2.753 0.007 1.420 -0.002
26 ECU4 4F2 1000 1.001990 -0.000116 2.209 0.023 2.229 0.022 2.748 0.019 1.421 -0.007
27 ECU5 0FD 20 0.999908 0.000019 2.242 0.022 2.312 0.020 2.705 0.008 1.480 -0.002
28 ECU5 200 10 0.999908 0.000020 2.243 0.021 2.312 0.019 2.705 0.009 1.480 -0.002
29 ECU5 201 10 0.999908 0.000020 2.241 0.022 2.311 0.021 2.705 0.008 1.480 -0.002
30 ECU5 203 30 0.999908 0.000020 2.245 0.020 2.314 0.018 2.706 0.008 1.480 -0.002
31 ECU5 205 10 0.999908 0.000020 2.241 0.023 2.311 0.021 2.705 0.006 1.480 -0.002
32 ECU5 228 25 0.999908 0.000019 2.242 0.023 2.312 0.021 2.705 0.000 1.480 -0.002
33 ECU5 231 10 0.999908 0.000022 2.238 0.024 2.308 0.022 2.704 0.007 1.480 -0.002
34 ECU5 232 10 0.999908 0.000019 2.243 0.022 2.313 0.021 2.705 0.011 1.480 -0.002
35 ECU5 261 50 0.999908 0.000022 2.246 0.019 2.315 0.019 2.709 0.002 1.479 0.000
36 ECU5 268 10 0.999908 0.000022 2.242 0.022 2.311 0.020 2.705 0.007 1.480 0.002
37 ECU5 280 50 0.999908 0.000022 2.243 0.023 2.312 0.021 2.706 0.004 1.479 0.002
38 ECU5 2BA 100 0.999906 0.000025 2.244 0.022 2.313 0.020 2.706 0.001 1.480 -0.003
39 ECU5 360 10 0.999908 0.000022 2.243 0.022 2.313 0.020 2.705 0.007 1.480 -0.002
40 ECU5 364 30 0.999908 0.000022 2.242 0.021 2.312 0.020 2.705 0.010 1.480 -0.002
41 ECU5 420 100 0.999909 0.000013 2.242 0.021 2.312 0.020 2.705 0.012 1.480 -0.001
42 ECU5 424 100 0.999910 0.000017 2.243 0.021 2.313 0.020 2.706 0.003 1.480 -0.002
43 ECU5 428 100 0.999906 0.000025 2.243 0.021 2.312 0.020 2.705 0.001 1.480 -0.003
44 ECU5 4F1 1000 0.999905 0.000028 2.240 0.019 2.311 0.019 2.710 0.017 1.480 -0.001
45 ECU6 080 15 0.956060 -0.000290 2.433 0.016 2.450 0.012 2.681 -0.002 1.370 -0.013
46 ECU6 240 10 0.956059 -0.000270 2.433 0.015 2.449 0.013 2.681 -0.003 1.368 -0.007

TABLE VI
HONDA CIVIC

No. ECU ID Cycle Cskew ∆ Vmean ∆ Vmax ∆ Tbit ∆ Tplat ∆

1 ECU1 039 40 1.000220 0.000007 1.871 0.014 1.870 0.014 2.591 0.011 1.400 -0.015
2 ECU1 305 100 1.000220 0.000007 1.884 0.013 1.883 0.012 2.590 0.011 1.399 -0.011
3 ECU1 401 300 1.000220 0.000007 1.882 0.016 1.881 0.016 2.591 0.010 1.399 -0.003
4 ECU2 1A6 20 1.000240 0.000005 1.997 -0.047 2.017 -0.050 2.575 0.003 1.473 -0.003
5 ECU2 21E 40 1.000240 0.000005 1.996 -0.044 2.016 -0.047 2.575 0.003 1.473 -0.003
6 ECU2 221 40 1.000240 0.000005 1.994 -0.042 2.014 -0.044 2.575 0.004 1.473 -0.003
7 ECU2 294 40 1.000240 0.000005 1.997 -0.045 2.018 -0.048 2.576 0.002 1.473 -0.003
8 ECU2 295 40 1.000240 0.000005 1.996 -0.044 2.015 -0.047 2.576 0.002 1.473 -0.004
9 ECU2 309 100 1.000240 0.000005 2.001 -0.048 2.020 -0.051 2.575 0.005 1.472 -0.003

10 ECU2 372 100 1.000240 0.000005 1.996 -0.047 2.016 -0.050 2.574 0.004 1.473 -0.003
11 ECU2 374 100 1.000240 0.000005 1.997 -0.048 2.018 -0.052 2.575 0.000 1.473 -0.002
12 ECU2 377 100 1.000240 0.000005 1.994 -0.049 2.013 -0.051 2.575 0.002 1.472 -0.003
13 ECU2 378 100 1.000240 0.000005 1.995 -0.048 2.015 -0.050 2.575 0.002 1.473 -0.003
14 ECU2 386 100 1.000240 0.000005 1.994 -0.041 2.014 -0.043 2.576 0.005 1.473 -0.003
15 ECU2 405 300 1.000240 0.000005 1.991 -0.040 2.011 -0.041 2.576 0.002 1.472 -0.002
16 ECU2 428 300 1.000240 0.000005 1.987 -0.040 2.004 -0.040 2.575 0.005 1.472 -0.003
17 ECU2 42D 300 1.000240 0.000004 1.991 -0.040 2.011 -0.042 2.575 0.004 1.472 -0.003
18 ECU2 42E 300 1.000240 0.000004 1.993 -0.040 2.012 -0.041 2.576 0.004 1.473 -0.004
19 ECU3 18E 10 0.999994 0.000010 2.003 0.059 2.029 0.058 2.631 0.010 1.508 -0.003
20 ECU4 091 10 0.999969 0.000011 2.018 0.002 2.027 0.004 2.617 0.010 1.422 0.002
21 ECU4 19B 10 0.999968 0.000012 2.019 -0.002 2.028 -0.001 2.617 0.010 1.422 0.002
22 ECU4 1A4 20 0.999968 0.000012 2.018 0.003 2.028 0.004 2.617 0.010 1.422 0.002
23 ECU4 1AA 20 0.999968 0.000012 2.016 0.004 2.026 0.004 2.617 0.011 1.422 0.002
24 ECU4 1B0 20 0.999968 0.000012 2.020 0.002 2.029 0.003 2.617 0.012 1.422 0.002
25 ECU4 1D0 20 0.999968 0.000012 2.020 0.002 2.030 0.003 2.617 0.011 1.422 0.002
26 ECU4 1EA 20 0.999968 0.000015 2.019 0.002 2.028 0.003 2.617 0.013 1.421 0.002
27 ECU4 255 40 0.999968 0.000015 2.018 0.003 2.027 0.003 2.618 0.010 1.422 0.001
28 ECU4 3D9 200 0.999966 0.000018 2.018 0.005 2.028 0.006 2.616 0.014 1.422 0.001
29 ECU4 406 300 0.999965 0.000019 2.017 0.004 2.027 0.002 2.618 0.013 1.422 -0.003
30 ECU5 13C 10 0.999860 0.000023 2.107 0.035 2.155 0.035 2.635 0.010 1.528 0.001
31 ECU5 158 10 0.999860 0.000023 2.108 0.034 2.155 0.035 2.635 0.010 1.528 0.002
32 ECU5 17C 10 0.999860 0.000023 2.107 0.036 2.154 0.037 2.636 0.010 1.528 0.001
33 ECU5 1DC 20 0.999861 0.000023 2.105 0.035 2.153 0.036 2.635 0.008 1.528 0.001
34 ECU5 1ED 20 0.999861 0.000023 2.103 0.038 2.151 0.038 2.635 0.009 1.529 0.001
35 ECU5 320 100 0.999861 0.000023 2.105 0.040 2.152 0.044 2.636 0.011 1.528 0.001
36 ECU5 324 100 0.999861 0.000024 2.105 0.039 2.153 0.036 2.635 0.008 1.528 -0.001
37 ECU5 328 100 0.999861 0.000024 2.107 0.035 2.155 0.035 2.636 0.006 1.528 0.001
38 ECU5 3D7 200 0.999862 0.000023 2.109 0.039 2.157 0.040 2.636 0.020 1.529 0.001
39 ECU5 400 300 0.999861 0.000023 2.107 0.039 2.155 0.037 2.636 0.008 1.529 -0.001
40 ECU5 40C 300 0.999861 0.000023 2.105 0.037 2.153 0.036 2.635 0.012 1.529 0.001
41 ECU5 454 300 0.999860 0.000024 2.105 0.039 2.154 0.038 2.636 0.009 1.528 0.001
42 ECU5 465 300 0.999860 0.000024 2.105 0.037 2.152 0.038 2.635 0.010 1.528 0.002
43 ECU6 156 10 1.000030 0.000017 2.194 0.007 2.204 0.005 2.637 0.016 1.430 -0.013
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CONCRETE NUMERICAL DATA FOR THE COMPUTED SKEWS
AND VOLTAGES

In this supplemental material we provide numerical data
for the skews and voltages in each of the vehicles from our
experiments. All tables contain specific ID grouped around
each ECU. This association is based on the computed physical
fingerprints (skews and voltages) to the best we could ascertain
based on the methodology in this work. Since our dataset is
public, we invite future research works to examine this asso-
ciation in more detail and possibly come with amendments.

The hexadecimal value of the frame identifier is presented in
the ID column and the cycle time of the frame in milliseconds,
generally taken as a median, is presented in the Cycle column.
The following columns contain data for the clock skew, Cskew,
the extracted mean voltage, Vmean, and maximum voltage,
Vmax, both measured in Volts, and the identified bit time,
Tbit, and plateau time, Tplat, both measured in microseconds,
from data collected while the vehicle was running, after it was
started.

Table I contains the information for the John Deere truck
but omitting IDs IDs 0CFFFF21, 18EAFF21, 18FEE500,
18FFFA21, 18FFFB21, 1CEBFF00, 18FFFF21, 1CECFF00
which are on-event frames and IDs which are used for multi-
frame transmission. All omitted IDs for the John Deere tractor
can be easily classified on the voltage levels. Table II includes
the data for Dacia Duster.

Tables III and IV for the Honda Civic and Ford Fiesta
have additional columns, ∆, which contain the deviations
compared to the column before for each value obtained from
data collected after 60 minutes of driving. Table III contains
the measurement data for the 43 IDs from Honda Civic. In
Table IV we illustrate the cyclic IDs with the associated
information from Ford Fiesta omitting data for IDs 455, 720,
727, 728, 72F, 7A5, 7AD which are on-event (non-cyclic), the
last of them occurred only at the car start and was never seen
again. Again, these IDs may be classified based on the voltage
level.

The highest number of identifiers, i.e. 87 IDs, with their
associated data is shown in Table V for Ford Ecosport omitting
data for ID 35E which is on-event (non-cyclic). An interesting
finding for this vehicle is that IDs 3A8, 3A9, 3AA, 3AB and
3AE have higher Tbit and Tplat compared to other IDs from
the same ECU, i.e., ECU1. Information for the Ford Kuga
frames where we identified the highest number of ECUs based
on voltage separation is contained in Table VI.

Data for Hyundai ix35 is presented in Table VII and for
Dacia Logan in Table VIII. Details for Hyundai i20 and Opel
Corsa are shown in Tables IX and X.

TABLE I
JOHN DEERE

No. ECU ID Cycle Cskew Vmean Vmax Tbit Tplat
1 ECU1 18FFC921 250 1.000082 1.970 1.991 4.515 3.404
2 ECU1 18FEF021 100 1.000082 1.964 1.981 4.516 3.399
3 ECU1 0CFE4421 100 1.000082 1.965 1.981 4.517 3.398
4 ECU1 0CEF0321 100 1.000082 1.968 1.990 4.511 3.405
5 ECU1 0CFDCC21 1000 1.000082 1.966 1.982 4.510 3.400
6 ECU1 0C010321 50 1.000082 1.971 1.991 4.512 3.405
7 ECU1 1CFDDF21 500 1.000082 1.972 1.993 4.510 3.404
8 ECU1 0CFE4321 100 1.000082 1.970 1.989 4.511 3.403
9 ECU1 0CFE4521 100 1.000082 1.969 1.989 4.511 3.404

10 ECU1 18F00621 500 1.000082 1.963 1.977 4.517 3.395
11 ECU1 18FFF821 100 1.000082 1.968 1.984 4.511 3.401
12 ECU1 18FEFC21 1000 1.000082 1.955 1.974 4.513 3.404
13 ECU1 18EF0021 1000 1.000082 1.970 1.989 4.512 3.389
14 ECU1 18EFFF21 500 1.000082 1.971 1.994 4.512 3.406
15 ECU1 18FEF721 1000 1.000082 1.965 1.986 4.521 3.402
16 ECU1 18FEF121 100 1.000082 1.964 1.982 4.515 3.400
17 ECU1 18FEAE21 1000 1.000082 1.978 1.997 4.515 3.403
18 ECU1 04EF0021 20 1.000082 1.968 1.987 4.515 3.401
19 ECU1 18FF9721 100 1.000077 1.969 1.985 4.511 3.399
20 ECU1 18FFBF21 100 1.000077 1.978 2.002 4.512 3.408
21 ECU1 1CFFFF21 1000 1.000077 1.968 1.984 4.511 3.400
22 ECU2 0CF00300 50 1.000018 1.989 1.994 4.490 3.318
23 ECU2 18EFFA00 1000 1.000019 1.988 1.992 4.491 3.315
24 ECU2 18FEF600 500 1.000018 1.986 1.991 4.490 3.316
25 ECU2 18EF2100 100 1.000018 1.990 1.994 4.490 3.314
26 ECU2 18FEF700 1000 1.000018 1.989 1.997 4.491 3.326
27 ECU2 0CF00400 20 1.000018 1.990 1.995 4.490 3.319
28 ECU2 18FEF200 100 1.000018 1.987 1.992 4.490 3.320
29 ECU2 18FEEE00 1000 1.000019 1.986 1.992 4.491 3.327
30 ECU2 18FEEF00 500 1.000019 1.989 1.993 4.490 3.321
31 ECU2 18FEDF00 250 1.000018 1.994 1.998 4.491 3.315
32 ECU3 18F00503 100 1.000044 2.013 2.020 4.515 3.401
33 ECU3 1CFEC303 100 1.000047 2.008 2.015 4.516 3.401

TABLE II
DACIA DUSTER

No. ECU ID Cycle Cskew Vmean Vmax Tbit Tplat
1 ECU1 161 10 0.999967 2.464 2.535 2.477 1.452
2 ECU1 181 10 0.999967 2.464 2.535 2.477 1.452
3 ECU1 1F9 10 0.999967 2.463 2.534 2.477 1.452
4 ECU1 511 100 0.999967 2.462 2.527 2.478 1.450
5 ECU1 65C 100 0.999967 2.464 2.533 2.477 1.451
6 ECU1 5DD 100 0.999967 2.463 2.534 2.477 1.452
7 ECU1 551 100 0.999967 2.462 2.532 2.477 1.452
8 ECU2 284 20 0.999975 1.932 1.952 2.555 1.526
9 ECU2 285 20 0.999975 1.936 1.959 2.554 1.530

10 ECU2 244 20 0.999975 1.935 1.956 2.555 1.530
11 ECU2 354 40 0.999975 1.936 1.959 2.555 1.531
12 ECU3 1A5 10 1.000220 2.084 2.084 2.547 1.404
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TABLE III
HONDA CIVIC

No. ECU ID Cycle Cskew ∆ Vmean ∆ Vmax ∆ Tbit ∆ Tplat ∆

1 ECU1 039 40 1.000220 0.000007 1.871 0.014 1.870 0.014 2.591 0.011 1.400 -0.015
2 ECU1 305 100 1.000220 0.000007 1.884 0.013 1.883 0.012 2.590 0.011 1.399 -0.011
3 ECU1 401 300 1.000220 0.000007 1.882 0.016 1.881 0.016 2.591 0.010 1.399 -0.003
4 ECU2 1A6 20 1.000240 0.000005 1.997 -0.047 2.017 -0.050 2.575 0.003 1.473 -0.003
5 ECU2 21E 40 1.000240 0.000005 1.996 -0.044 2.016 -0.047 2.575 0.003 1.473 -0.003
6 ECU2 221 40 1.000240 0.000005 1.994 -0.042 2.014 -0.044 2.575 0.004 1.473 -0.003
7 ECU2 294 40 1.000240 0.000005 1.997 -0.045 2.018 -0.048 2.576 0.002 1.473 -0.003
8 ECU2 295 40 1.000240 0.000005 1.996 -0.044 2.015 -0.047 2.576 0.002 1.473 -0.004
9 ECU2 309 100 1.000240 0.000005 2.001 -0.048 2.020 -0.051 2.575 0.005 1.472 -0.003

10 ECU2 372 100 1.000240 0.000005 1.996 -0.047 2.016 -0.050 2.574 0.004 1.473 -0.003
11 ECU2 374 100 1.000240 0.000005 1.997 -0.048 2.018 -0.052 2.575 0.000 1.473 -0.002
12 ECU2 377 100 1.000240 0.000005 1.994 -0.049 2.013 -0.051 2.575 0.002 1.472 -0.003
13 ECU2 378 100 1.000240 0.000005 1.995 -0.048 2.015 -0.050 2.575 0.002 1.473 -0.003
14 ECU2 386 100 1.000240 0.000005 1.994 -0.041 2.014 -0.043 2.576 0.005 1.473 -0.003
15 ECU2 405 300 1.000240 0.000005 1.991 -0.040 2.011 -0.041 2.576 0.002 1.472 -0.002
16 ECU2 428 300 1.000240 0.000005 1.987 -0.040 2.004 -0.040 2.575 0.005 1.472 -0.003
17 ECU2 42D 300 1.000240 0.000004 1.991 -0.040 2.011 -0.042 2.575 0.004 1.472 -0.003
18 ECU2 42E 300 1.000240 0.000004 1.993 -0.040 2.012 -0.041 2.576 0.004 1.473 -0.004
19 ECU3 18E 10 0.999994 0.000010 2.003 0.059 2.029 0.058 2.631 0.010 1.508 -0.003
20 ECU4 091 10 0.999969 0.000011 2.018 0.002 2.027 0.004 2.617 0.010 1.422 0.002
21 ECU4 19B 10 0.999968 0.000012 2.019 -0.002 2.028 -0.001 2.617 0.010 1.422 0.002
22 ECU4 1A4 20 0.999968 0.000012 2.018 0.003 2.028 0.004 2.617 0.010 1.422 0.002
23 ECU4 1AA 20 0.999968 0.000012 2.016 0.004 2.026 0.004 2.617 0.011 1.422 0.002
24 ECU4 1B0 20 0.999968 0.000012 2.020 0.002 2.029 0.003 2.617 0.012 1.422 0.002
25 ECU4 1D0 20 0.999968 0.000012 2.020 0.002 2.030 0.003 2.617 0.011 1.422 0.002
26 ECU4 1EA 20 0.999968 0.000015 2.019 0.002 2.028 0.003 2.617 0.013 1.421 0.002
27 ECU4 255 40 0.999968 0.000015 2.018 0.003 2.027 0.003 2.618 0.010 1.422 0.001
28 ECU4 3D9 200 0.999966 0.000018 2.018 0.005 2.028 0.006 2.616 0.014 1.422 0.001
29 ECU4 406 300 0.999965 0.000019 2.017 0.004 2.027 0.002 2.618 0.013 1.422 -0.003
30 ECU5 13C 10 0.999860 0.000023 2.107 0.035 2.155 0.035 2.635 0.010 1.528 0.001
31 ECU5 158 10 0.999860 0.000023 2.108 0.034 2.155 0.035 2.635 0.010 1.528 0.002
32 ECU5 17C 10 0.999860 0.000023 2.107 0.036 2.154 0.037 2.636 0.010 1.528 0.001
33 ECU5 1DC 20 0.999861 0.000023 2.105 0.035 2.153 0.036 2.635 0.008 1.528 0.001
34 ECU5 1ED 20 0.999861 0.000023 2.103 0.038 2.151 0.038 2.635 0.009 1.529 0.001
35 ECU5 320 100 0.999861 0.000023 2.105 0.040 2.152 0.044 2.636 0.011 1.528 0.001
36 ECU5 324 100 0.999861 0.000024 2.105 0.039 2.153 0.036 2.635 0.008 1.528 -0.001
37 ECU5 328 100 0.999861 0.000024 2.107 0.035 2.155 0.035 2.636 0.006 1.528 0.001
38 ECU5 3D7 200 0.999862 0.000023 2.109 0.039 2.157 0.040 2.636 0.020 1.529 0.001
39 ECU5 400 300 0.999861 0.000023 2.107 0.039 2.155 0.037 2.636 0.008 1.529 -0.001
40 ECU5 40C 300 0.999861 0.000023 2.105 0.037 2.153 0.036 2.635 0.012 1.529 0.001
41 ECU5 454 300 0.999860 0.000024 2.105 0.039 2.154 0.038 2.636 0.009 1.528 0.001
42 ECU5 465 300 0.999860 0.000024 2.105 0.037 2.152 0.038 2.635 0.010 1.528 0.002
43 ECU6 156 10 1.000030 0.000017 2.194 0.007 2.204 0.005 2.637 0.016 1.430 -0.013

TABLE IV
FORD FIESTA

No. ECU ID Cycle Cskew ∆ Vmean ∆ Vmax ∆ Tbit ∆ Tplat ∆

1 ECU1 023 100 0.999861 -0.000145 2.117 0.020 2.158 0.023 2.705 0.009 1.475 -0.004
2 ECU1 04A 100 0.999861 -0.000145 2.113 0.019 2.154 0.021 2.701 0.009 1.476 0.001
3 ECU1 04B 100 0.999861 -0.000145 2.113 0.018 2.152 0.020 2.699 0.007 1.475 0.003
4 ECU1 460 100 0.999862 -0.000147 2.108 0.025 2.148 0.029 2.699 0.013 1.479 -0.001
5 ECU2 073 10 0.999948 0.000013 2.154 0.011 2.173 0.011 2.725 0.028 1.458 -0.001
6 ECU2 090 10 0.999948 0.000013 2.151 0.011 2.168 0.011 2.725 0.024 1.458 0.000
7 ECU2 20E 10 0.999948 0.000015 2.155 0.010 2.173 0.010 2.725 0.028 1.458 -0.001
8 ECU2 20F 10 0.999948 0.000015 2.155 0.010 2.174 0.009 2.725 0.027 1.458 -0.001
9 ECU2 211 10 0.999948 0.000015 2.152 0.010 2.169 0.010 2.725 0.018 1.458 0.000

10 ECU2 212 100 0.999946 0.000017 2.150 0.015 2.167 0.015 2.723 0.023 1.457 0.000
11 ECU2 213 20 0.999948 0.000015 2.156 0.009 2.175 0.008 2.725 0.032 1.458 0.000
12 ECU2 215 20 0.999946 0.000017 2.150 0.010 2.167 0.010 2.725 0.015 1.458 0.000
13 ECU2 216 20 0.999946 0.000017 2.150 0.010 2.168 0.010 2.727 0.016 1.458 0.000
14 ECU2 2C3 1000 0.999946 0.000019 2.160 0.009 2.180 0.008 2.726 0.012 1.458 -0.001
15 ECU2 4B0 10 0.999948 0.000017 2.155 0.010 2.175 0.009 2.725 0.029 1.458 0.001
16 ECU3 150 25 1.000000 0.000009 2.182 0.003 2.200 0.004 2.691 0.004 1.444 0.000
17 ECU4 190 20 1.002000 -0.000119 2.212 0.020 2.234 0.017 2.753 0.017 1.421 -0.007
18 ECU4 275 100 1.001990 -0.000118 2.214 0.017 2.236 0.015 2.755 0.002 1.422 -0.005
19 ECU4 400 100 1.001990 -0.000118 2.214 0.017 2.236 0.014 2.749 0.019 1.420 -0.005
20 ECU4 405 100 1.002000 -0.000119 2.208 0.021 2.228 0.020 2.753 0.017 1.417 -0.002
21 ECU4 430 100 1.002000 -0.000119 2.212 0.020 2.234 0.017 2.756 0.016 1.421 -0.005
22 ECU4 432 100 1.002000 -0.000113 2.218 0.014 2.240 0.010 2.762 0.010 1.421 -0.006
23 ECU4 433 100 1.001990 -0.000108 2.212 0.019 2.235 0.015 2.751 0.018 1.423 -0.009
24 ECU4 4E3 30 1.002000 -0.000118 2.210 0.020 2.232 0.018 2.754 0.013 1.420 -0.005
25 ECU4 2C1 1000 1.001990 -0.000106 2.211 0.013 2.233 0.014 2.753 0.007 1.420 -0.002
26 ECU4 4F2 1000 1.001990 -0.000116 2.209 0.023 2.229 0.022 2.748 0.019 1.421 -0.007
27 ECU5 0FD 20 0.999908 0.000019 2.242 0.022 2.312 0.020 2.705 0.008 1.480 -0.002
28 ECU5 200 10 0.999908 0.000020 2.243 0.021 2.312 0.019 2.705 0.009 1.480 -0.002
29 ECU5 201 10 0.999908 0.000020 2.241 0.022 2.311 0.021 2.705 0.008 1.480 -0.002
30 ECU5 203 30 0.999908 0.000020 2.245 0.020 2.314 0.018 2.706 0.008 1.480 -0.002
31 ECU5 205 10 0.999908 0.000020 2.241 0.023 2.311 0.021 2.705 0.006 1.480 -0.002
32 ECU5 228 25 0.999908 0.000019 2.242 0.023 2.312 0.021 2.705 0.000 1.480 -0.002
33 ECU5 231 10 0.999908 0.000022 2.238 0.024 2.308 0.022 2.704 0.007 1.480 -0.002
34 ECU5 232 10 0.999908 0.000019 2.243 0.022 2.313 0.021 2.705 0.011 1.480 -0.002
35 ECU5 261 50 0.999908 0.000022 2.246 0.019 2.315 0.019 2.709 0.002 1.479 0.000
36 ECU5 268 10 0.999908 0.000022 2.242 0.022 2.311 0.020 2.705 0.007 1.480 0.002
37 ECU5 280 50 0.999908 0.000022 2.243 0.023 2.312 0.021 2.706 0.004 1.479 0.002
38 ECU5 2BA 100 0.999906 0.000025 2.244 0.022 2.313 0.020 2.706 0.001 1.480 -0.003
39 ECU5 360 10 0.999908 0.000022 2.243 0.022 2.313 0.020 2.705 0.007 1.480 -0.002
40 ECU5 364 30 0.999908 0.000022 2.242 0.021 2.312 0.020 2.705 0.010 1.480 -0.002
41 ECU5 420 100 0.999909 0.000013 2.242 0.021 2.312 0.020 2.705 0.012 1.480 -0.001
42 ECU5 424 100 0.999910 0.000017 2.243 0.021 2.313 0.020 2.706 0.003 1.480 -0.002
43 ECU5 428 100 0.999906 0.000025 2.243 0.021 2.312 0.020 2.705 0.001 1.480 -0.003
44 ECU5 4F1 1000 0.999905 0.000028 2.240 0.019 2.311 0.019 2.710 0.017 1.480 -0.001
45 ECU6 080 15 0.956060 -0.000290 2.433 0.016 2.450 0.012 2.681 -0.002 1.370 -0.013
46 ECU6 240 10 0.956059 -0.000270 2.433 0.015 2.449 0.013 2.681 -0.003 1.368 -0.007

TABLE V
FORD ECOSPORT

No. ECU ID Cycle Cskew Vmean Vmax Tbit Tplat
1 ECU1 447 1000 0.965410 1.906 1.916 2.647 1.417
2 ECU1 041 20 0.982994 1.901 1.913 2.647 1.420
3 ECU1 331 500 0.996618 1.899 1.911 2.648 1.420
4 ECU1 3B3 500 0.978530 1.904 1.915 2.651 1.420
5 ECU1 084 1000 0.999990 1.905 1.917 2.643 1.419
6 ECU1 3A9 20 0.997814 1.907 1.909 2.738 1.470
7 ECU1 3A8 20 0.997814 1.906 1.908 2.718 1.471
8 ECU1 3AB 200 0.997813 1.907 1.909 2.716 1.471
9 ECU1 3AA 200 0.997813 1.906 1.908 2.717 1.472

10 ECU1 40A 197 0.997962 1.903 1.915 2.648 1.421
11 ECU1 3B7 250 0.982993 1.904 1.915 2.647 1.421
12 ECU1 3B6 250 0.982993 1.901 1.913 2.646 1.420
13 ECU1 3AE 1000 0.997806 1.911 1.911 2.725 1.466
14 ECU1 581 1000 0.982989 1.901 1.913 2.648 1.421
15 ECU1 3B4 1000 0.982993 1.893 1.906 2.650 1.421
16 ECU1 3E3 1000 0.983002 1.903 1.915 2.646 1.421
17 ECU1 3EB 1000 0.983003 1.900 1.912 2.648 1.420
18 ECU1 43C 1000 0.983003 1.903 1.914 2.652 1.420
19 ECU1 3B1 1000 0.983001 1.904 1.917 2.654 1.422
20 ECU1 3C7 1000 0.982992 1.901 1.913 2.646 1.421
21 ECU1 3C3 1000 0.982993 1.903 1.914 2.649 1.420
22 ECU1 38D 1000 0.983001 1.909 1.918 2.654 1.418
23 ECU1 3B8 500 0.983004 1.901 1.913 2.646 1.422
24 ECU1 3B5 500 0.982994 1.902 1.914 2.645 1.421
25 ECU1 42C 50 0.982992 1.899 1.912 2.647 1.421
26 ECU1 242 39 1.008200 1.902 1.914 2.648 1.420
27 ECU2 3E2 1000 0.999998 2.116 2.131 2.668 1.405
28 ECU2 3EA 1000 0.999998 2.122 2.135 2.671 1.402
29 ECU2 455 100 0.999998 2.114 2.127 2.670 1.404
30 ECU3 43D 50 0.999999 2.196 2.234 2.682 1.478
31 ECU3 43E 50 0.999996 2.196 2.235 2.684 1.478
32 ECU3 42F 30 0.999998 2.196 2.235 2.684 1.478
33 ECU3 171 30 1.000000 2.195 2.236 2.686 1.478
34 ECU3 421 100 1.000000 2.197 2.236 2.684 1.478
35 ECU3 424 100 1.000000 2.197 2.236 2.681 1.477
36 ECU3 41F 100 1.000000 2.193 2.231 2.682 1.478
37 ECU3 42D 100 1.000000 2.194 2.233 2.679 1.478
38 ECU3 230 20 1.000000 2.193 2.232 2.682 1.479
39 ECU3 595 1000 1.000000 2.188 2.228 2.679 1.478
40 ECU3 202 20 1.000000 2.194 2.233 2.684 1.478
41 ECU3 179 100 1.000000 2.196 2.234 2.683 1.479
42 ECU3 200 20 1.000000 2.194 2.233 2.683 1.478
43 ECU3 178 100 1.000000 2.195 2.234 2.684 1.478
44 ECU3 17C 100 1.000000 2.197 2.236 2.684 1.478
45 ECU3 156 100 1.000000 2.196 2.234 2.683 1.478
46 ECU3 166 100 1.000000 2.195 2.233 2.683 1.478
47 ECU3 167 10 1.000000 2.193 2.232 2.683 1.479
48 ECU3 204 10 1.000000 2.195 2.233 2.683 1.478
49 ECU3 047 20 1.000000 2.197 2.236 2.684 1.479
50 ECU3 165 20 1.000000 2.194 2.233 2.683 1.478
51 ECU4 332 100 0.999078 2.225 2.238 2.694 1.393
52 ECU4 333 100 0.999183 2.229 2.242 2.695 1.390
53 ECU4 439 1000 0.999614 2.227 2.239 2.695 1.390
54 ECU4 43A 1000 0.999614 2.227 2.239 2.694 1.390
55 ECU4 437 1000 0.999614 2.227 2.240 2.696 1.391
56 ECU4 438 1000 0.999614 2.227 2.241 2.695 1.391
57 ECU4 091 20 0.999611 2.224 2.237 2.694 1.391
58 ECU4 23A 100 0.999612 2.223 2.236 2.694 1.391
59 ECU4 430 100 0.999612 2.227 2.240 2.694 1.393
60 ECU4 434 100 0.999612 2.227 2.240 2.695 1.392
61 ECU4 2F1 1000 0.999612 2.231 2.242 2.686 1.384
62 ECU4 092 100 0.999612 2.228 2.241 2.694 1.392
63 ECU4 59E 1000 0.999612 2.223 2.237 2.693 1.392
64 ECU4 435 100 0.999613 2.227 2.240 2.695 1.392
65 ECU4 386 1000 0.999613 2.224 2.236 2.696 1.389
66 ECU4 07E 20 0.999613 2.225 2.238 2.694 1.390
67 ECU4 217 10 0.999927 2.227 2.240 2.694 1.392
68 ECU4 4B0 20 0.999926 2.226 2.239 2.694 1.392
69 ECU4 415 20 0.999925 2.224 2.237 2.694 1.392
70 ECU4 049 20 0.999926 2.227 2.240 2.694 1.393
71 ECU4 077 20 0.999926 2.224 2.237 2.694 1.392
72 ECU4 07D 20 0.999926 2.226 2.239 2.694 1.392
73 ECU4 07F 20 0.999926 2.224 2.237 2.695 1.392
74 ECU4 214 20 0.999925 2.227 2.240 2.694 1.391
75 ECU4 216 20 0.999925 2.226 2.240 2.694 1.392
76 ECU4 213 20 0.999925 2.223 2.236 2.694 1.391
77 ECU4 076 500 0.999926 2.228 2.240 2.694 1.391
78 ECU4 416 100 0.999930 2.225 2.238 2.695 1.391
79 ECU4 083 100 0.999930 2.222 2.237 2.693 1.395
80 ECU4 326 100 0.999940 2.228 2.240 2.694 1.391
81 ECU4 3DA 1000 0.999990 2.227 2.240 2.692 1.391
82 ECU4 3E0 1000 0.999993 2.229 2.241 2.696 1.389
83 ECU4 3C8 1000 0.999993 2.229 2.242 2.695 1.391
84 ECU4 04A 100 1.000080 2.225 2.239 2.694 1.392
85 ECU4 04B 100 1.000080 2.227 2.240 2.694 1.392
86 ECU4 04C 100 1.000080 2.225 2.238 2.694 1.391
87 ECU4 082 19 1.006160 2.227 2.240 2.694 1.391



3

TABLE VI
FORD KUGA

No. ECU ID Cycle Cskew Vmean Vmax Tbit Tplat
1 ECU1 140 20 0.999661 1.943 1.968 2.871 1.436
2 ECU1 0B0 20 0.999661 1.940 1.965 2.871 1.436
3 ECU2 455 100 0.999995 2.115 2.127 2.893 1.342
4 ECU2 3EA 1000 0.999995 2.115 2.127 2.892 1.346
5 ECU2 3E2 1000 0.999995 2.121 2.131 2.890 1.339
6 ECU3 2B0 40 1.000010 2.104 2.183 2.840 1.470
7 ECU3 06A 20 1.000010 2.105 2.186 2.840 1.471
8 ECU3 050 10 1.000010 2.106 2.187 2.840 1.471
9 ECU3 0E0 20 1.000010 2.106 2.186 2.839 1.470

10 ECU3 0D0 20 1.000010 2.105 2.185 2.840 1.470
11 ECU3 0F0 10 1.000010 2.104 2.185 2.840 1.470
12 ECU3 0F5 10 1.000010 2.106 2.184 2.840 1.470
13 ECU3 100 20 1.000010 2.106 2.187 2.840 1.470
14 ECU4 435 300 0.999983 2.134 2.178 2.905 1.400
15 ECU4 40A 125 0.999983 2.134 2.178 2.903 1.403
16 ECU4 581 1000 0.999980 2.130 2.175 2.905 1.401
17 ECU4 360 150 0.999982 2.135 2.178 2.901 1.401
18 ECU4 310 100 0.999983 2.136 2.179 2.903 1.401
19 ECU4 260 25 0.999982 2.135 2.178 2.904 1.402
20 ECU4 150 20 0.999982 2.135 2.179 2.903 1.401
21 ECU4 0C8 20 0.999982 2.134 2.177 2.904 1.401
22 ECU4 030 10 0.999983 2.134 2.179 2.903 1.405
23 ECU4 17E 100 0.999983 2.135 2.179 2.902 1.404
24 ECU4 290 30 0.999983 2.136 2.180 2.904 1.401
25 ECU4 400 250 0.999983 2.135 2.178 2.905 1.403
26 ECU4 380 300 0.999984 2.137 2.181 2.902 1.402
27 ECU4 3B4 300 0.999984 2.135 2.178 2.898 1.400
28 ECU4 420 600 0.999984 2.135 2.178 2.899 1.398
29 ECU4 405 250 1.028590 2.135 2.178 2.903 1.401
30 ECU5 090 10 1.000010 2.134 2.208 2.872 1.460
31 ECU5 060 15 1.000010 2.135 2.211 2.873 1.459
32 ECU5 2F0 90 1.000010 2.135 2.207 2.871 1.458
33 ECU5 280 30 1.000010 2.134 2.207 2.872 1.459
34 ECU5 200 25 1.000010 2.133 2.207 2.873 1.459
35 ECU5 270 30 1.000010 2.134 2.208 2.873 1.459
36 ECU5 0A0 15 1.000010 2.134 2.207 2.871 1.460
37 ECU5 1A0 20 1.000010 2.133 2.207 2.872 1.460
38 ECU5 1B0 30 1.000010 2.134 2.208 2.873 1.459
39 ECU5 130 20 1.000010 2.133 2.207 2.873 1.460
40 ECU5 138 20 1.000010 2.132 2.206 2.871 1.460
41 ECU5 080 20 1.000010 2.132 2.206 2.871 1.460
42 ECU5 120 20 1.000010 2.134 2.208 2.873 1.460
43 ECU5 070 20 1.000010 2.133 2.207 2.870 1.460
44 ECU5 0C0 20 1.000010 2.133 2.208 2.872 1.459
45 ECU5 0F8 20 1.000010 2.134 2.208 2.871 1.460
46 ECU5 2D8 60 1.000010 2.136 2.210 2.873 1.459
47 ECU5 340 120 1.000020 2.140 2.212 2.878 1.457
48 ECU6 2D0 40 0.999957 2.158 2.170 2.885 1.388
49 ECU6 218 30 0.999956 2.160 2.172 2.884 1.387
50 ECU6 252 20 0.999957 2.158 2.170 2.884 1.387
51 ECU6 190 10 0.999956 2.155 2.167 2.884 1.387
52 ECU6 2D4 60 0.999956 2.154 2.165 2.884 1.387
53 ECU6 180 20 0.999956 2.155 2.167 2.884 1.387
54 ECU6 1C0 20 0.999956 2.155 2.167 2.884 1.388
55 ECU6 1D0 20 0.999956 2.154 2.166 2.883 1.388
56 ECU6 1E0 20 0.999956 2.159 2.172 2.885 1.388
57 ECU6 210 20 0.999956 2.158 2.170 2.884 1.387
58 ECU6 160 20 0.999956 2.157 2.169 2.884 1.388
59 ECU6 213 20 0.999956 2.153 2.165 2.883 1.387
60 ECU6 388 801 1.000930 2.159 2.169 2.905 1.397
61 ECU6 208 25 1.002190 2.156 2.169 2.911 1.401
62 ECU6 2E0 70 1.000940 2.157 2.176 2.902 1.365
63 ECU7 2A0 40 0.999600 2.163 2.180 2.891 1.410
64 ECU7 2A5 40 0.999600 2.164 2.181 2.890 1.410
65 ECU7 229 40 0.999600 2.167 2.185 2.890 1.410
66 ECU7 170 20 0.999600 2.165 2.182 2.889 1.410
67 ECU7 04A 1000 1.002190 2.163 2.174 2.906 1.396
68 ECU7 04B 1000 1.002190 2.161 2.173 2.910 1.397
69 ECU8 010 10 0.999997 2.181 2.193 2.897 1.341
70 ECU9 269 30 1.000530 2.169 2.201 2.902 1.396

TABLE VII
HYUNDAI IX35

No. ECU ID Cycle Cskew Vmean Vmax Tbit Tplat
1 ECU1 350 10 0.999534 1.937 1.934 2.664 1.332
2 ECU2 5E4 100 0.999966 2.115 2.130 2.744 1.532
3 ECU2 165 10 0.999966 2.120 2.132 2.747 1.527
4 ECU2 2B0 10 0.999966 2.112 2.127 2.746 1.535
5 ECU3 4F0 20 0.998440 2.136 2.147 2.667 1.415
6 ECU3 690 100 0.998440 2.138 2.148 2.669 1.409
7 ECU4 430 21 1.000070 2.137 2.165 2.639 1.455
8 ECU4 4B1 21 1.000070 2.133 2.162 2.638 1.456
9 ECU4 4D0 21 1.000070 2.133 2.161 2.638 1.454

10 ECU4 153 7 1.000070 2.122 2.154 2.637 1.456
11 ECU4 164 7 1.000070 2.137 2.165 2.637 1.456
12 ECU4 220 7 1.000070 2.134 2.162 2.637 1.455
13 ECU4 1F1 21 1.000070 2.138 2.165 2.637 1.456
14 ECU5 316 10 1.000010 2.165 2.213 2.673 1.480
15 ECU5 0A1 10 1.000010 2.165 2.212 2.673 1.481
16 ECU5 0A0 10 1.000010 2.164 2.212 2.673 1.481
17 ECU5 18F 10 1.000010 2.166 2.213 2.673 1.481
18 ECU5 329 10 1.000010 2.165 2.213 2.673 1.481
19 ECU5 260 10 1.000010 2.166 2.213 2.673 1.481
20 ECU5 2A0 10 1.000010 2.165 2.214 2.673 1.481
21 ECU5 545 10 1.000020 2.165 2.213 2.673 1.480
22 ECU6 429 20 0.999900 2.198 2.205 2.666 1.428
23 ECU6 428 20 0.999900 2.191 2.195 2.640 1.417
24 ECU6 5A0 1000 0.999921 2.201 2.212 2.674 1.445
25 ECU6 5A2 1000 0.999921 2.204 2.213 2.673 1.443
26 ECU6 5A1 1005 0.999920 2.197 2.206 2.648 1.442

TABLE VIII
DACIA LOGAN

No. ECU ID Cycle Cskew Vmean Vmax Tbit Tplat
1 ECU1 500 100 0.997246 1.940 1.941 2.734 1.451
2 ECU1 1B0 20 0.999574 1.940 1.941 2.734 1.452
3 ECU1 552 100 0.999574 1.940 1.941 2.735 1.452
4 ECU1 657 100 0.999574 1.941 1.942 2.734 1.452
5 ECU1 2BC 100 0.999574 1.940 1.941 2.734 1.451
6 ECU1 69F 1000 0.999574 1.941 1.941 2.729 1.451
7 ECU1 4DE 100 0.999574 1.942 1.940 2.736 1.448
8 ECU1 55D 100 0.999574 1.940 1.940 2.735 1.451
9 ECU1 5DE 100 0.999574 1.940 1.941 2.733 1.452

10 ECU1 575 100 0.999574 1.940 1.941 2.734 1.451
11 ECU1 45C 100 0.999574 1.940 1.942 2.733 1.451
12 ECU1 5DF 100 0.999574 1.941 1.942 2.734 1.451
13 ECU1 350 100 0.999574 1.940 1.941 2.735 1.452
14 ECU1 4AC 100 0.999574 1.941 1.941 2.734 1.451
15 ECU2 217 20 0.999974 2.046 2.050 2.655 1.428
16 ECU2 2C6 20 0.999974 2.044 2.048 2.655 1.428
17 ECU2 2A9 20 0.999974 2.044 2.049 2.654 1.427
18 ECU2 18A 10 0.999974 2.045 2.050 2.655 1.428
19 ECU2 186 10 0.999974 2.044 2.048 2.654 1.428
20 ECU2 66A 100 0.999974 2.045 2.048 2.655 1.427
21 ECU2 511 100 0.999974 2.043 2.046 2.652 1.428
22 ECU2 1F6 10 0.999974 2.045 2.049 2.655 1.428
23 ECU2 5DA 100 0.999974 2.043 2.046 2.653 1.428
24 ECU2 648 100 0.999974 2.043 2.046 2.653 1.428
25 ECU2 65C 100 0.999974 2.042 2.045 2.653 1.428
26 ECU2 41A 100 0.999974 2.044 2.047 2.652 1.427
27 ECU2 41D 100 0.999974 2.046 2.049 2.657 1.427
28 ECU3 090 10 0.999973 2.118 2.128 2.679 1.459
29 ECU3 0C6 10 0.999973 2.116 2.126 2.681 1.459
30 ECU3 666 100 0.999973 2.124 2.133 2.674 1.458
31 ECU3 352 40 0.999973 2.117 2.128 2.677 1.460
32 ECU3 29C 20 0.999973 2.119 2.129 2.678 1.459
33 ECU3 12E 10 0.999973 2.117 2.128 2.680 1.459
34 ECU3 242 20 0.999973 2.116 2.127 2.680 1.460
35 ECU3 354 40 0.999973 2.122 2.133 2.678 1.459
36 ECU3 2B7 20 0.999973 2.118 2.129 2.680 1.459
37 ECU3 29A 20 0.999973 2.118 2.128 2.679 1.460
38 ECU3 5D7 100 0.999973 2.118 2.128 2.682 1.459
39 ECU4 1A0 100 1.000530 2.190 2.222 2.676 1.492
40 ECU4 62B 100 1.000530 2.192 2.225 2.677 1.492
41 ECU5 4F8 100 0.999507 2.201 2.222 2.739 1.415
42 ECU5 646 500 0.999507 2.200 2.222 2.742 1.414
43 ECU5 3B7 100 0.999507 2.199 2.220 2.738 1.415
44 ECU5 6FB 3000 0.999507 2.200 2.220 2.740 1.415
45 ECU6 564 100 1.000510 2.221 2.237 2.739 1.439
46 ECU6 653 100 1.000510 2.229 2.246 2.743 1.439

TABLE IX
HYUNDAI I20

No. ECU ID Cycle Cskew Vmean Vmax Tbit Tplat
1 ECU1 593 200 0.999477 1.950 1.949 2.718 1.374
2 ECU2 043 1000 0.999163 1.966 1.965 2.693 1.351
3 ECU2 044 1000 0.999163 1.968 1.963 2.691 1.355
4 ECU2 383 20 0.999163 1.970 1.968 2.706 1.357
5 ECU3 2B0 10 1.001009 1.987 1.996 2.678 1.399
6 ECU3 381 20 1.001009 1.991 2.000 2.679 1.398
7 ECU3 251 10 1.001009 1.991 2.001 2.680 1.397
8 ECU4 549 100 1.000030 2.160 2.173 2.731 1.447
9 ECU4 5CE 100 1.000030 2.157 2.172 2.729 1.449

10 ECU4 5CF 100 1.000032 2.158 2.171 2.731 1.446
11 ECU4 547 100 1.000036 2.160 2.173 2.732 1.446
12 ECU4 1BF 10 1.000031 2.156 2.172 2.730 1.447
13 ECU4 316 10 1.000031 2.155 2.169 2.729 1.448
14 ECU4 18F 10 1.000031 2.159 2.173 2.729 1.448
15 ECU4 260 10 1.000032 2.158 2.171 2.730 1.447
16 ECU4 329 10 1.000033 2.159 2.173 2.730 1.447
17 ECU4 4E5 100 1.000031 2.156 2.169 2.733 1.447
18 ECU4 4E6 100 1.000031 2.160 2.174 2.732 1.447
19 ECU4 545 100 1.000036 2.158 2.172 2.728 1.448
20 ECU4 4E7 100 1.000031 2.158 2.171 2.731 1.448
21 ECU4 200 10 1.000032 2.158 2.172 2.728 1.447
22 ECU4 492 50 1.000031 2.160 2.172 2.731 1.446
23 ECU4 556 100 1.000031 2.156 2.171 2.727 1.450
24 ECU4 557 100 1.000033 2.156 2.170 2.727 1.448
25 ECU5 164 10 0.999958 2.199 2.210 2.710 1.472
26 ECU5 220 10 0.999958 2.199 2.210 2.710 1.471
27 ECU5 153 10 0.999958 2.198 2.210 2.706 1.472
28 ECU5 387 20 0.999958 2.199 2.209 2.713 1.471
29 ECU5 386 20 0.999958 2.199 2.211 2.709 1.472
30 ECU5 507 100 0.999958 2.199 2.211 2.707 1.472
31 ECU6 500 100 0.999542 2.294 2.297 2.800 1.419
32 ECU6 5A0 1000 0.999543 2.298 2.300 2.827 1.422
33 ECU6 5A1 1000 0.999543 2.298 2.299 2.804 1.418
34 ECU7 4F1 20 0.999936 2.392 2.395 2.669 1.411
35 ECU7 50C 100 0.999936 2.393 2.398 2.671 1.412
36 ECU7 50E 200 0.999936 2.389 2.395 2.671 1.413
37 ECU7 541 100 0.999937 2.393 2.397 2.668 1.411
38 ECU7 52A 200 0.999937 2.396 2.400 2.668 1.411
39 ECU7 553 200 0.999937 2.389 2.396 2.669 1.413
40 ECU7 5B0 1000 0.999936 2.390 2.395 2.667 1.412

TABLE X
OPEL CORSA

No. ECU ID Cycle Cskew Vmean Vmax Tbit Tplat
1 ECU1 361 100 0.997619 2.443 2.466 2.582 1.447
2 ECU1 460 100 0.997619 2.438 2.462 2.582 1.447
3 ECU1 1F1 100 0.997619 2.441 2.465 2.582 1.446
4 ECU1 1E1 30 0.997618 2.439 2.463 2.582 1.447
5 ECU1 0F1 10 0.997619 2.441 2.465 2.582 1.447
6 ECU1 3F1 250 0.997617 2.439 2.463 2.581 1.448
7 ECU1 440 1000 0.997619 2.440 2.464 2.582 1.447
8 ECU2 265 1000 0.999940 2.027 2.031 2.666 1.520
9 ECU2 2F9 50 0.999940 2.025 2.032 2.666 1.522

10 ECU2 1C9 20 0.999939 2.022 2.030 2.666 1.522
11 ECU2 1E9 20 0.999939 2.020 2.029 2.666 1.523
12 ECU2 0C1 10 0.999939 2.024 2.031 2.666 1.522
13 ECU2 363 100 0.999940 2.023 2.030 2.667 1.522
14 ECU2 0C5 10 0.999939 2.024 2.031 2.666 1.522
15 ECU2 530 1000 0.999940 2.027 2.031 2.670 1.521
16 ECU3 370 500 0.999998 1.946 1.949 2.606 1.378
17 ECU3 1E5 10 0.999998 1.951 1.951 2.605 1.381
18 ECU4 3F9 250 1.000060 2.200 2.269 2.612 1.508
19 ECU4 772 1000 1.000060 2.196 2.263 2.613 1.507
20 ECU4 4C1 500 1.000060 2.195 2.262 2.616 1.509
21 ECU4 4D1 500 1.000060 2.196 2.262 2.614 1.509
22 ECU4 3E9 100 1.000060 2.198 2.266 2.612 1.508
23 ECU4 3D1 100 1.000060 2.198 2.264 2.612 1.508
24 ECU4 2C5 50 1.000060 2.199 2.266 2.614 1.508
25 ECU4 1BD 50 1.000060 2.199 2.265 2.613 1.508
26 ECU4 1BC 10 1.000060 2.198 2.264 2.611 1.507
27 ECU4 0C9 10 1.000060 2.199 2.266 2.613 1.508
28 ECU4 1C1 20 1.000060 2.199 2.266 2.613 1.508
29 ECU4 1F5 20 1.000060 2.201 2.267 2.612 1.508


