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ABSTRACT
As cryptography is quickly entering the automotive domain, public-
key cryptographic functions are a vital building block and are part
of recent industry-proposed standards. Elliptic curves provide a
more compact representation for public/private keys making them
more suitable for embedded devices with limited amounts of mem-
ory. Nonetheless, they provide more compact signatures and open
road for identity-based cryptographic primitives by exploiting the
flexibility of bilinear pairings. In this work we carry a performance
evaluation on some modern libraries, e.g., MIRACL, RELIC, and
compare them to the more classical WolfSSL. The evaluation is
carried on a state-of-the-art representative controller from the auto-
motive industry, i.e., a 32 bit Infineon TC297. Having a crisper image
on computational requirements is relevant for future automotive
and industrial applications.

CCS CONCEPTS
• Computer systems organization → Embedded systems; •
Security andprivacy→ Software security engineering;Domain-
specific security and privacy architectures.
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1 INTRODUCTION
Cars are vulnerable to well determined adversaries, as proved by
recent research [8], [14]. Cryptography provides the main solution
for mitigating such threats. This only complements the image since
the industry has done lots of efforts in the previous decade to
secure industrial networks, supervisory control and data acquisition
systems (SCADA), distributed-control systems, etc.
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The recent introduction of standards for cryptographic primi-
tives in automotives [4], [5] is a clear statement that the industry
is adopting cryptographic security for in-vehicle units. Moreover,
adoption will be at a large scale and manufacturers will follow com-
mon design goals. But implementing cryptography on automotive-
grade controllers is not so immediate due to high computation
demands which become more problematic in case of public-key
primitives.

In this paper we take into account elliptical-curve based cryp-
tographic primitives (ECC) which form an indispensable building
block for integrating security in modern cars or other systems that
are build around embedded devices. There are numerous applica-
tions that can benefit from such primitives including key-exchange
for in-vehicle or industrial controllers, car access control by using
modern smart-phones, etc. We focus on two state-of-the-art li-
braries MIRACL [13] and RELIC [2] that have extensive support for
elliptic curves and moreover, they have support for pairing-friendly
curves that open road to compact signatures [7] and identity-based
cryptographic primitives [6]. As expected, these libraries are con-
trasted with the more classical WolfSSL library [22] which is widely
employed in the real-world. We find it appealing that the MIRACL
[13] and RELIC [2] libraries include support for pairing-friendly
curves that set room for the compact Boneh-Lynn-Shacham signa-
ture (BLS) [7]. This signature is the most compact signature known
to this day as it has only 160 bits (this is half of a regular DSA signa-
ture that has 320 bits). Table 1 provides a summary for the libraries
and functions that we evaluate. The Diffie-Hellman key exchange is
evaluated in all three libraries: MIRACL, RELIC and WolfSSL. The
BLS signature is only evaluated on MIRACL and RELIC since there
is no implementation for BLS in WolfSSL. The DSA signature is
evaluated only from WolfSSL and RELIC since for MIRACL we did
not manage to adapt the code to work on the Infineon TriCore. Still,
the image is comprehensive since our experiments give results for
almost all curves that are present in these libraries and these are
quite many.

The rest of the paper is organized as follows. In Section 2 we
discuss related work that has already focused on evaluating embed-
ded crypto-libraries and present our experimental setup. Section 3
makes an overview of the libraries and presents the computational
results. Finally, section 4 holds the conclusion of our work.

2 RELATEDWORK AND SETUP FOR
EXPERIMENTS

In this section we discuss related work on evaluating performances
of crypto-libraries and the we present the embedded platform that
is target for our work.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


ARES’19, August 26 - 29, 2019, University of Kent, Canterbury, UK Lucian Popa, Bogdan Groza, and Pal-Stefan Murvay

Table 1: Summary of libraries and evaluated cryptographic
primitives

Library BLS Signature DSA Signature DH-Key Exchange

MIRACL [13] ✓ - ✓
RELIC [2] ✓ ✓ ✓

WolfSSL [22] N/A ✓ ✓

2.1 Related work
Pigatto et. al [16] have evaluated the time performance of MIRACL
[13] and RELIC [2] using two types of curves (having key size of
160 and 256 bits) and different message lengths (50 KB and 100
KB) as inputs for the Elliptic Curve ElGamal encryption executed
in Ubuntu Linux 11.04 operating system running on a 2.10 GHz
Pentium Dual-Core. The encryption performed using 160 bit/256
bit key took 3.3 s/10.6 s with RELIC and 9 s/20.9 s when using
MIRACL having as input a 50 KB message and 6.6 s/21.1 s with
RELIC and 18.1 s/41.7 s when using MIRACL having as input a 100
KB message. It is quite obvious that performance characteristics
of an Intel Pentium do not match our embedded platform so a
comparison of the results would be out of scope.

Ruan de Clercq et. al [9] have implemented a cryptographic li-
brary on the ARMCortex-M0+ evaluating fixed point multiplication
(kG) and random point multiplication (kP ) using the Koblitz NIST
K-233 elliptic curvey2+xy = x3+1 over the binary field defined by
2233. The computational time for random point multiplication was
of 59.18 ms and for fixed point multiplication was of 39.7 ms when
testing their implementation compared with 117.1 ms and 115.7
ms when testing with RELIC [2] on the same curve. The random
point multiplication required 2,814,827 clock cycles on the ARM
Cortex-MO+ which has the base frequency of 48 MHz.

Hinterwälder et. al [12] have evaluated the power consumption
of ECDH on the MSP430 microcontroller by testing different config-
urations (Karatsuba, Carry-save, Operand-caching) and using the
Curve25519 elliptic curve y2 = x3 + 486662x2 + x over the prime
field defined by 2255 − 19 measuring the lowest power consumption
of 14.046 µW using 32-bit operand-caching. The number of opera-
tions performed by MSP430 was of 6,513,011 clock cycles having
the base frequency of 8 MHz so the ECDH using Curve25519 was
completed in ∼814 ms.

Previous efforts have been focusing on evaluating performances
of cryptographic functions on automotive-grade controllers exist
as well. In [15] an evaluation that takes into account AUTOSAR
compliance is presented. However, the evaluation considers only
symmetric cryptographic functions. More expensive, public-key
primitives, including pairing-based primitives, have been accounted
in [1]. This evaluation is done however on a distinct implementation
from [20].

Zelle et. al [23] have analyzed the integration of TLS in Auto-
motive Ethernet considering different types of certificates to be
used with RSA-3072 or ECDSA-256 as asymmetric algorithms and
(AES-128 CBC + SHA) or (HC-128 + Poly1305) as symmetric ciphers.
The certificate generation and certificate-based encryption were im-
plemented using wolfSSL [22] while the communication was tested
between two Infineon TriCore TC297 based development boards.

The time for ECDSA signing and verifying is, in average, 177 ms
and 345 ms based on 100 trials. All the time measurements were
analyzed in order to determine which is the maximum achievable
data rate and the additional latency if transferring encrypted infor-
mation considering small data types transferred in the in-vehicle
networks but also big data types like sensor data or video streams.

Figure 1: Experimental setup

2.2 Experimental setup and target platform
The large variaety of automotive applications, e.g., related to power-
train, body, chasis, etc., have led to the development of a great
variety of automotive-grade microcontrollers that cover distinct
needs of themarket. Available automotive embedded platforms vary
in a number of aspects, e.g., processor architecture, number of cores,
operating frequency, available memory and on-chip peripheral
modules.

For implementing security mechanisms the microcontroller’s
ability to implement and perform cryptographic operations is lim-
ited by its clock and available memory. Some platforms benefit from
additional support provided by hardware security modules (HSM)
for basic operations such as random number generation, hashing
and encryption. However, this support is commonly limited to
several standardized primitives, e.g., SHA-2 and AES, and require
software implementations for any other cryptographic algorithm.

Not all automotive embedded platforms are capable of imple-
menting public key cryptography. This is mainly due to the small
amount of memory available (i.e., flash required for storing the
program as well as RAM needed during execution which becomes
more problematic for RSA-like functions that require a large mod-
ulus of 1024–2048 bits). Moreover, some of the platforms that are
equipped with sufficient memory to support such implementations
exhibit poor performance due to their simpler architecture or lower
operating frequency.

For our work we considered high-performance 32-bit automotive
microcontrollers and selected the Infineon TC297, a member of the
Tricore Aurix family, as being representative for the high-end of the
market. The TC297 is dedicated to high performance applications
such as radar and camera systems for advanced driver assistance.
It features three cores each capable of operating at up to 300MHz
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Figure 2: Barcharts of ECDH time for share generation Figure 3: Barcharts of ECDH time for key recovery

as well as DSP functionality. The TC297 provides a total of 728 KB
of RAM, 8 MB of program memory and 384 KB of EEPROM. The
chip is also equiped with a HSM that provides a trusted execution
environment complete with dedicated 32-bit CPU and protected
memory. A true random number generator and hardware accelera-
tion for AES-128 encryption are also available. Figure 1 presents
our experimental setup and the Infineon Tricore board.

3 BENCHMARKED LIBRARIES AND RESULTS
In this section we give more insights on the libraries that we bench-
mark and then present the concrete experimental results.

3.1 Libraries and cryptographic primitives
We choose RELIC as one of our targets because it is a cryptographic
library containing C implementations for many cryptographic al-
gorithms such as RSA [17], the elliptic curve version of the Diffie-
Hellman key exchange [10], SOKAKA [18], ECDSA [11] and BLS [7].
One of the many library’s configurable properties is the digit size
which can be set to match the CPU architecture enabling faster op-
eration execution. We configured this parameter to 32 bits since we
are using a 32 bit microcontroller, i.e. the TriCore TC297. For ECDSA
we employed SHA-1, SHA-256 and also BLAKE2S-160, BLAKE2S-
256 [3] for computing the hash value of the message to be signed.
We have considered the following prime fields based on the curves
used in our implementation:

• Prime field size (in bits) for BLS : 158, 256, 381, 382, 638, 1536
• Prime field size (in bits) for ECDH : 158, 160, 192, 221, 224,
226, 251, 254, 255, 256, 381, 382, 383, 384, 455, 477, 508, 511,
521, 638, 1536

• Prime field size (in bits) for ECDSA : 160, 192, 224, 256, 384
TheMIRACL library contains C and C++ implementations for the

various cryptographic algorithms contained. The BLS signature is
implemented in C++ while the ECDH is implemented in C. MIRACL
also allows the configuration of digit size which we set to 32 bits as
in the case of RELIC. For ECDH we have used only the NIST P-192

as curve over prime field and for BLS we have used the following
pairing-friendly curves:

• CP curve with Tate pairing embedding degree 2 and prime
field size of 512 bits

• MNT curve with ate pairing embedding degree 6 and prime
field size of 160 bits

• BN curve with ate pairing embedding degree 12 and prime
field size of 256 bits

• KSS curve with ate pairing embedding degree 18 and prime
field size of 512 bits

WolfSSL [22] represents an SSL library with implementation
in C of SSL/TLS functions including support for server and client,
various ciphers, key and certificate generation and revocation lists.
WolfCrypt [21] is the library which contains the cryptographic
primitives (hash functions, symmetric ciphers, public key algo-
rithms) used by wolfSSL. It is also certified by the Federal Informa-
tion Processing Standards (FIPS) 140-2, so it can be regarded as a
standard library that is used in the industry. As configuration we
used the default wolfCrypt setting for using 32-bit operations. For
ECDSA we used SHA-1 and SHA-256 for hashing the message to
be signed. We configured the library to generate ECC key pairs for
ECDH and ECDSA using the following standardized curves :

• NIST Prime Curves : SECP192R1, PRIME192V2, PRIME192V3,
PRIME239V1, PRIME239V2, PRIME239V3, SECP256R1

• SECPCurves : SECP112R1, SECP112R2, SECP128R1, SECP128R2,
SECP160R1, SECP160R2, SECP224R1, SECP384R1, SECP521R1

• Koblitz Curves : SECP160K1, SECP192K1, SECP224K1, SECP256K1
• Brainpool Curves : BRAINPOOLP160R1, BRAINPOOLP192R1,
BRAINPOOLP224R1, BRAINPOOLP256R1, BRAINPOOLP320R1,
BRAINPOOLP384R1, BRAINPOOLP512R1

In order to evaluate the elliptic curve cryptographic capabilities
of RELIC [2], MIRACL [13] and wolfCrypt [21] we considered the
following primitives to be tested for all the mentioned libraries:

• BLS signature (except for wolfCrypt),
• the ECDH key agreement protocol,
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Figure 4: Barcharts of DSA time for key generation Figure 5: Barcharts of BLS time for key generation

Figure 6: Barcharts of BLS time for signing Figure 7: Barcharts of BLS time for signature verification

Figure 8: Barcharts of DSA time for signing Figure 9: Barcharts of DSA time for signature verification



Performance Evaluation of Elliptic Curve Libraries ARES’19, August 26 - 29, 2019, University of Kent, Canterbury, UK

Table 2: Operations benchmarked for each cryptographic
protocol

Security protocol Key generation Signature Verification Shared secret

BLS ✓ ✓ ✓ N/A
ECDSA ✓ ✓ ✓ N/A
ECDH ✓ N/A N/A ✓

• ECDSA signature (except for MIRACL).

3.2 Experimental results
In this section we present the results of our measurements consid-
ering timing tests performed on all three libraries. As hardware
equipment we have used the Infineon TC297 Application kit and
an 8 channel logic analyzer. We built our applications based on the
TriCore software framework by integrating the source code from
the mentioned libraries. As cryptographic operations we have used
all functions mentioned in Table 2.

Measuring the execution time of each operation was done using
the Salae 1.2.18 logic analyzer connected to a general purpose I/O
pin from the TC297 development board. The pin is configured as an
output and its state is toggled at the start and end of each evaluated
operation to generate a pulse width representing the execution
duration.

For testing the cryptographic algorithms for BLS, ECDH and
ECDSA we configured the prime field size in order to define the
size of the resulting signature or keys.

In order to evaluate the ECDH key exchange we have tested all
the available prime fields and associated curves with the purpose to
measure and compare the timing performance for all three libraries.
The number of elliptic curves whichwere testedwere 52 fromwhich
26 were available in wolfCrypt [21], 25 were available in RELIC [2]
and 1 was provided in the main sample code from MIRACL [13]
(more can be set manually). The prime fields which were available
for wolfCrypt [21] were from 112 bits up to 512 bits, for RELIC [2]
were from 158 bits up to 1536 bits and for MIRACL [13] 192 bits by
considering the sample code. The full results are shown in Table
3 and Table 4 and a graphic summary is in Figures 2 and Figure 3.
The RELIC [2] library was faster than wolfCrypt [21] and MIRACL
[13]. The generation time of the key-pair and computation time
of the shared secret over SECP192R1/NISTP192 was performed in
6.36 ms/15.06 ms for RELIC [2], 12.12 ms/13.9 ms for MIRACL[13]
and 36.8 ms/36.4 ms for wolfCrypt [21]. When considering elliptic
curves over larger prime fields, the generation and shared secret
computation times for wolfCrypt [21] with the duration of 132.2
ms/131.5ms for SECP384R1/NISTP384 are quite high compared with
RELIC [2] where we measured the duration of 37.44 ms/84.48 ms
for these operations.

For BLS, the implementation is available in C++ for MIRACL
[13] and in C for RELIC [2]. We considered as input a string with
20 bytes size for both MIRACL [13] and RELIC [2]. The execution
time is graphically summarized in Figure 5, Figure 6 and Figure
7. The AES bits near the curve name represent the security level
of the curve as depicted inside the MIRACL library. The complete
data is in Table 5. Again, for RELIC [2] it took less time to execute
the key generation, short signature and verification compared to

Table 3: Operation time for ECDH ordered by output size

Library Elliptic curve Output size Operation type Duration [ms]

wolfCrypt SECP112R1 112 bits generate 19.8
compute shared secret 19.6

wolfCrypt SECP112R2 112 bits generate 23.7
compute shared secret 23.8

wolfCrypt SECP128R1 128 bits generate 21.9
compute shared secret 21.6

wolfCrypt SECP128R2 128 bits generate 27.6
compute shared secret 27.2

RELIC BNP158 158 bits generate 3.29
compute shared secret 6.01

wolfCrypt SECP160R1 160 bits generate 30
compute shared secret 29.6

wolfCrypt SECP160R2 160 bits generate 30.2
compute shared secret 29.8

wolfCrypt SECP160K1 160 bits generate 34.6
compute shared secret 34.3

wolfCrypt BRAINPOOLP160R1 160 bits generate 37.5
shared secret 37.2

RELIC SECGP160 160 bits generate 4.01
compute shared secret 9.78

RELIC SECGK160 160 bits generate 3.27
compute shared secret 5.78

wolfCrypt SECP192R1 192 bits generate 36.8
compute shared secret 36.4

wolfCrypt PRIME192V2 192 bits generate 37.4
compute shared secret 37

wolfCrypt PRIME192V3 192 bits generate 38.2
compute shared secret 37.8

wolfCrypt BRAINPOOLP192R1 192 bits generate 50.4
compute shared secret 49.9

wolfCrypt SECP192K1 192 bits generate 45.4
compute shared secret 45

RELIC SECGK192 192 bits generate 5.15
compute shared secret 8.94

RELIC NISTP192 192 bits generate 6.36
compute shared secret 15.06

MIRACL NISTP192 192 bits generate 12.127
compute shared secret 13.93

RELIC CURVE22103 221 bits generate 10.14
compute shared secret 25.92

wolfCrypt SECP224R1 224 bits generate 48.8
compute shared secret 48.4

wolfCrypt SECP224K1 224 bits generate 57.3
compute shared secret 56.8

wolfCrypt BRAINPOOLP224R1 224 bits generate 62.8
compute shared secret 62.4

RELIC NISTP224 224 bits generate 9.28
compute shared secret 21.31

RELIC SECGK224 224 bits generate 7.71
compute shared secret 13.01

RELIC CURVE4417 226 bits generate 12.73
compute shared secret 31.84

wolfCrypt PRIME239V1 239 bits generate 56.6
compute shared secret 56.2

wolfCrypt PRIME239V2 239 bits generate 55.7
compute shared secret 55.2

wolfCrypt PRIME239V3 239 bits generate 56.1
compute shared secret 55.7

RELIC CURVE1174 251 bits generate 13.88
compute shared secret 35.27

RELIC BNP254 254 bits generate 10.52
compute shared secret 17.54

RELIC CURVE25519 255 bits generate 14.72
compute shared secret 36.7

wolfCrypt BRAINPOOLP256R1 256 bits generate 78.4
compute shared secret 77.9

wolfCrypt SECP256R1 256 bits generate 60.3
compute shared secret 59.8

wolfCrypt SECP256K1 256 bits generate 69.1
compute shared secret 68.7

RELIC NISTP256 256 bits generate 13.04
compute shared secret 29.48

RELIC BSIP256 256 bits generate 14.64
compute shared secret 35.64

RELIC SECGK256 256 bits generate 10.36
compute shared secret 18.07

RELIC BNP256 256 bits generate 10.52
compute shared secret 18.22

wolfCrypt BRAINPOOLP320R1 320 bits generate 116.2
compute shared secret 115.7
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Table 4: Operation time for ECDH ordered by output size
(continued)

Library Elliptic curve Output size Operation type Duration [ms]

RELIC B12P381 381 bits generate 18.45
compute shared secret 62.06

RELIC CURVE67254 382 bits generate 41.72
compute shared secret 101.33

RELIC BNP382 382 bits generate 29.88
compute shared secret 50.23

RELIC CURVE383187 383 bits generate 41.15
compute shared secret 102.8

wolfCrypt SECP384R1 384 bits generate 132.2
compute shared secret 131.5

wolfCrypt BRAINPOOLP384R1 384 bits generate 168.4
compute shared secret 167.9

RELIC NISTP384 384 bits generate 37.44
compute shared secret 84.48

RELIC B12P455 455 bits generate 33.88
compute shared secret 107.8

RELIC B24P477 477 bits generate 51.44
compute shared secret 144.7

RELIC KSSP508 508 bits generate 48.02
compute shared secret 128.75

RELIC CURVE511187 511 bits generate 91.09
compute shared secret 221.7

wolfCrypt BRAINPOOLP512R1 512 bits generate 314.2
compute shared secret 313.4

RELIC SECP521R1 521 bits generate 262.4
compute shared secret 261.5

RELIC NISTP521 521 bits generate 94.28
compute shared secret 208.22

RELIC BNP638 638 bits generate 115.62
compute shared secret 194.76

RELIC B12P638 638 bits generate 83.72
compute shared secret 136.05

RELIC SSP1536 1536 bits generate 327.24
compute shared secret 4241.16

Table 5: Operation time for BLS ordered by output size

Library Elliptic curve Output size Operation
type

Duration [ms]

RELIC BNP158 158 bits
generate 11.89
sign 19.5
verify 99

MIRACL MNT 160 bits
generate 237
sign 36
verify 470

RELIC BNP256 256 bits
generate 35
sign 58.4
verify 280

MIRACL BN 256 bits
generate 166.5
sign 59.2
verify 726

RELIC B12P381 381 bits
generate 313
sign 78
verify 456

RELIC BNP382 382 bits
generate 434
sign 83
verify 548

RELIC B12P455 455 bits
generate 522
sign 132
verify 722

MIRACL CP 512 bits
generate 463
sign 939
verify 1878

MIRACL KSS 512 bits
generate 1978
sign 366
verify 5443

RELIC B12P638 638 bits
generate 1182
sign 373
verify 1664

RELIC SSP1536 1536 bits
generate 4355
sign 4854
verify 7032

the time of using MIRACL [13]. Considering the prime fields of 256
bits we have measured the execution time for generation, signature
and verification as 35 ms/58.4 ms/280 ms when using RELIC [2]
compared with 166.5 ms/59.2 ms/726 ms when using MIRACL [13].
Also, there are more pairing-friendly curves available for BLS in
RELIC [2] than in MIRACL [13].

The ECDSAwas tested only on RELIC [2] andwolfCrypt [21] and
wewere able to test the signature usingmore than one hash function
as it can be seen in Table 6. All the operationswere executed faster in
RELIC [2] than in wolfCrypt [21]. We have performed the tests over
similar prime fields being able to compare the execution time which
was, for example, in case of SECP256R1/NISTP256, 14.3 ms/38.6
ms when using BLAKE2S-256 and 14.1 ms/38.4 ms when using
SHA-256 for RELIC [2] and 46.3 ms/121 ms when using SHA-256
for wolfCrypt [21]. The choice of the hash function has less impact
since the elliptical curve operations are the most computational
intensive. The total of 18 measurements is compared in Figures 4, 8
and Figure 9.

Table 6: Operation time for ECDSA ordered by output size

Library Elliptic curve Hash function Output size Operation type Duration [ms]

wolfCrypt SECP160R1 SHA-1 320 bits
generate 30
sign 22.56
verify 59.3

wolfCrypt SECP160R2 SHA-1 320 bits
generate 30.1
sign 23.2
verify 59.8

RELIC SECGP160 BLAKE2S-160 320 bits
generate 4.54
sign 4.86
verify 13

RELIC SECGP160 SHA-1 320 bits
generate 4.54
sign 5.27
verify 13

RELIC SECGK160 BLAKE2S-160 320 bits
generate 3.65
sign 4.01
verify 8.94

RELIC SECGK160 SHA-1 320 bits
generate 3.65
sign 4.26
verify 9.78

RELIC NISTP192 SHA-1 384 bits
generate 7.23
sign 7.34
verify 19.43

RELIC SECGK192 SHA-1 384 bits
generate 5.81
sign 5.83
verify 14.37

wolfCrypt SECP224R1 SHA-1 448 bits
generate 48.7
sign 37.4
verify 95.2

RELIC NISTP224 SHA-1 448 bits
generate 10.6
sign 10.1
verify 28.31

wolfCrypt PRIME239V2 SHA-1 478 bits
generate 56.3
sign 41.9
verify 112.4

wolfCrypt PRIME239V3 SHA-1 478 bits
generate 56.8
sign 42.3
verify 110.7

wolfCrypt SECP256R1 SHA-256 512 bits
generate 61.2
sign 46.3
verify 121

RELIC NISTP256 BLAKE2S-256 512 bits
generate 14.9
sign 14.3
verify 38.6

RELIC NISTP256 SHA-256 512 bits
generate 14.8
sign 14.1
verify 38.4

wolfCrypt SECP384R1 SHA-256 768 bits
generate 130.8
sign 94.6
verify 254.1

RELIC NISTP384 BLAKE2S-256 768 bits
generate 43.4
sign 38.4
verify 107.6

RELIC NISTP384 SHA-256 768 bits
generate 44.1
sign 40.4
verify 107.1
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Based on the results from our measurements, visible differences
exist between the same operations performed using different li-
braries. From the execution time point of view we notice that RELIC
[2] is the fastest library among the three evaluated libraries. How-
ever, wolfCrypt [21] has been FIPS 140-2 validated by security
experts, and thus may be safer to integrate in applications from
various industries (e.g., connected car systems) as a cryptographic
library on numerous embedded devices in order to implement the
standard security protocols. In case an application requires security
protocols implemented in C++, MIRACL [13] is the only one of the
benchmarked open-source projects which offers support for this
object-oriented programming language. Moreover, MIRACL and
RELIC have extensive support for pairing-friendly curves which is
not available in wolfCrypt. Further optimizations may be possible
as recently suggested in [19].

4 CONCLUSION
The high-end 32-bit automotive-grade Infineon TC297 was able
to handle well all the ECC-based cryptographic primitives from
the three state-of-the-art libraries: MIRACL, RELIC and WolfSSL.
This proves that in-vehicle units are ready for adopting some of
the most recent developments in the field of cryptography, e.g.,
pairing-friendly cryptographic operations. This enables them to
implement secure interactions with other devices from the IoT
ecosystem. Our measurements indicate RELIC [2] as the fastest and
with the most configuration possibilities compared with MIRACL
[13] and wolfCrypt [21]. Nonetheless, RELIC [2] and MIRACL [13]
have extensive support for pairing-friendly curves. Still, wolfCrypt
[21] is a more popular choice and may have been analyzed by a
larger number of community members which may give additional
security guarantees.
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