
1

Control System Level Intrusion Detection
on J1939 Heavy-Duty Vehicle Buses

Camil Jichici, Adriana Berdich, Adrian Musuroi, Bogdan Groza

Abstract—As the security vulnerabilities of Controller Area
Networks (CAN) become well known, heavy-duty vehicles im-
plementing the SAE J1939 specification layer on this bus are
immediate targets. Recently released standards provide clear
cybersecurity requirements, but the exact methods to be imple-
mented are not specified and remain up to the manufacturers. In
this work we address adversary actions and countermeasures at
the control system level for a heavy-duty vehicle J1939 CAN bus.
This low level approach allows us to complement regular attacks
with more knowledgeable attacks that may evade detection and
discuss realistic countermeasures. Indeed, as we also show by
experiments, traditional approaches based on machine learning
algorithms will largely fail to detect such attacks. We present
experiments based on a model that links between the Simulink
environment, an extension of the MATLAB platform for the simu-
lation of in-vehicle control systems, with the CANoe environment,
which facilitates the simulation of in-vehicle networks.

Keywords-CAN bus, vehicle security, intrusion detection, SAE
J1939

I. INTRODUCTION AND MOTIVATION

The transportation infrastructure is continuously spreading
with the over increasing demand for passengers to commute
and for goods to be delivered. In this context, heavy-duty vehi-
cles, sometimes also referred as commercial vehicles, like trac-
tors, trailers or buses, play a key role. On highways, there are
millions of heavy-duty vehicles traveling daily for hundreds
of kilometers and thus it is essential to continuously improve
their safety. The last decade brought several enhanced driver
assisting technologies, like automatic emergency braking, lane
departure warning, blind-spot detection, etc. An immediate
target is to enable vehicles to travel autonomously, without
any human intervention, which is of specific importance in
case of heavy-duty vehicles due to the much longer distances
they travel. In order to achieve all these capabilities, vehicles
become complex cyber-physical systems equipped with dozens
of ECUs (Electronic Control Units) running millions lines of
code, using multiple sensors, actuators, cameras and radars.

Unfortunately, the very same scenario, turns vehicles into
potential targets for well-motivated adversaries that can easily
exploit existing security vulnerabilities. This has been proved
by a strong body of research performed in the past decade. The
first such reports from [1], [2] and [3] provide an extensive

This paper was financially supported by the Project “Network of excellence
in applied research and innovation for doctoral and postdoctoral programs
/ InoHubDoc”, project co-funded by the European Social Fund financing
agreement no. POCU/993/6/13/153437.

Camil Jichici, Adriana Berdich, Adrian Musuroi and Bogdan Groza are
with the Faculty of Automatics and Computers, Politehnica University of
Timisoara, Romania, Email: {camil.jichici, adriana.berdich, adrian.musuroi,
bogdan.groza}@aut.upt.ro

Fig. 1. Typical SAE J1939 CAN bus inside a heavy-duty vehicle

experimental analysis of attack surfaces and adversary capa-
bilities inside vehicles. These attacks can be performed by an
adversary that connects to the bus, e.g., via the OBD port [4],
or compromises an existing unit, e.g., the telematics unit [5].
Some recent attacks were also done from remote. For example,
a remote attack based on the exploitation of the web browser
from a TESLA car was demonstrated in [6] and the authors
from [7] managed to remotely compromise several safety
critical ECUs from TESLA cars by exploiting the over-the-air
(OTA) software update process. Regardless of the entry point,
one of the main cause for the reported attacks is the insecurity
of the CAN bus which was designed by BOSCH in the
80s without security specifications [8]. Security requirements
were standardized only much more recently in the automotive
industry, e.g., the ISO/SAE 21434 specifications [9].

The SAE J1939 standard, developed since the mid 90s, com-
plements the standard CAN bus protocol by adding specific
features, to which we will refer later, and targets the CAN
communication inside heavy-duty vehicles. Besides several
J1939 protocol specific features (like address claims and
multiframe transmissions), the standard also clarifies part of
the frame content. While the standard is intended for the car
and heavy-duty truck industry, this also makes it easier for the
research community to design intrusion detection systems that
are not content agnostic and account for the actual physical
significance of the data carried by each frame. Indeed, most
of the existing in-vehicle IDS proposals, which we discuss
in the related work section, are content agnostic and one of
the reasons is the fact that the content of the traffic in known
only to the manufacturer (although it can be understood by
proper reverse engineering as shown by some recent works
[10], [11]). We depict the concrete J1939 network architecture
that we address in Figure 1. The network includes two CAN
buses, one of them, having six ECUs, is responsible for
powertrain functions and the other is the Fleet Management
System (FMS) which has one gateway ECU (more details

2

(i)
surge attack (ii) geometric attack

Fig. 2. Example of surge attack and geometric attacks on vehicle speed

about this network architecture will be discussed later). As
expected, the J1939 specifications do not include security
elements either. There are only some recent research proposal
for securing J1939 buses which we discuss in the related work
section. However, none of the existing works for securing the
J1939 bus are addressing specific details at the control system
level. Needless to say, these fine grain details can be exploited
by adversaries and require distinct attention. Moreover, there
are many recent proposals for deploying in-vehicle intrusion
detection systems (IDS), which will be accounted in the related
work section, but they come with three additional problems.
Firstly, they require increased computation costs and memory,
especially when relying on more demanding machine learning
(ML) algorithms, as we show in the experimental section.
Secondly, and perhaps a much more important aspect that is
neglected by related works, it is nearly impossible to provide
a dataset that covers all the states of a vehicle. Needless to
say, a car is on road for years and travels several hundred
thousand miles while the training datasets usually capture a
few minutes, maybe hours or so, of runtime. Thirdly, small
variations in the transmitted data may easily go undetected
by the intrusion detection system. As a practical example,
Figure 2 shows a surge attack in the left and a geometric
attack on the right, such attacks were commonly accounted in
control systems [12]. It is understandable that if the training
was performed on data before the surge attack occurred, this
attack will go unrecognized by a signature-based IDS. While
for the geometric attack, the changes are initially very small
and increase at a latter point which may evade detection by
an anomaly-based IDS. Finally, by exploiting minute changes
in the signals and the appropriate control system model, as
discussed in this work, the detection mechanism requires only
simple computations related to a change detection, e.g., a
cumulative sum (CUSUM) which is a well-known sequen-
tial analysis technique. Because of the simplicity of such
computations, the IDS can be easily integrated on existing
microcontrollers (including low-end ones, such as the NXP
S12 which we use in our experiments) and the IDS can actively
block intrusion frames, if it is present on each microcontroller.
This turns the proposed IDS into an intrusion prevention
system since it can actively block the adversarial interventions.
This approach complies with the recent specifications for IDS
deployment from the AUTOSAR standard [13].

In the light of the above, the contributions of our work are
threefold:

1) we develop an experimental setup which connects be-

tween CANoe, the industry leading software for simulat-
ing in-vehicle buses, and Simulink, the leading environ-
ment for the design of control systems,

2) we analyze attacks at the control system level, on various
signals (vehicle speed, trip distance, engine speed, torque)
that circulate on the bus of a J1939 heavy-duty vehicle
and remain stealthy, being hard or impossible to detect
by traditional intrusion detection systems and discuss the
appropriate countermeasures,

3) we present concrete experimental results on both low-end
(Freescale S12X) and high-end (Infineon TC series) mi-
crocontrollers, to prove that the solution can be deployed
in real-world automotive scenarios.

Our work is organized as follows. In Section II we provide
an overview of related works. Section III provides some
background on CAN buses, relevant details of the SAE J1939
standard and some details on the CANoe-Simulink integration.
In Section IV we present an overview of the J1939 CAN
bus simulation, show the details for the control systems
in Simulink and introduce the adversary model. Section V
presents the experimental results with the attacks and counter-
measures. Section VI holds the conclusions of our work.

II. RELATED WORKS

A comprehensive image of the recent technological chal-
lenges for automotive embedded systems, including standards,
methodologies, hardware and software solutions, network ar-
chitectures, functional safety and security design strategies is
presented in [14]. Some vulnerabilities of in-vehicle networks,
attack strategies and countermeasures are also summarized in
[15]. Various practical attacks and defense mechanisms were
proposed in the past decade but the attention was concentrated
mostly on passenger cars, not on heavy-duty vehicles. Only a
small number of recent works started to address the security of
heavy-duty vehicles compliant with the SAE J1939 standard.
The vulnerabilities of the SAE J1939 specific features were
examined and an authentication protocol was proposed in [16].
The authors from [17] describe a DoS (Denial of Service)
attack focused on the J1939 specific transport protocols used
for multipacket transmissions. The authors in [18] showed
that injection and replay attacks on J1939 CAN buses inside
commercial vehicles can have serious consequences. Hariharan
et al. [19] offer a verification and validation framework that
relies on a security testing mechanism tailored for J1939
heavy-duty vehicle buses.

In what follows, we describe the recently proposed coun-
termeasures as a response for the aforementioned attacks. The
encryption of the J1939 diagnostic traffic was examined in
[20]. Some steps were also done towards the deployment of in-
trusion detection systems on J1939. A machine learning based
approach was proposed in [21] in order to detect DoS and
fuzzing attacks and a precedence graph-based approach was
evaluated in [22] for anomaly detection. Recently, a two-stage
intrusion detection mechanism for J1939 was proposed in [23].
The first stage is responsible for checking the legitimacy of the
encrypted addresses (source and destination) from the CAN
ID while the second stage detects single bit changes of the

3

datafield by proper range checks. The detection of adversarial
manipulations is facilitated by the avalanche effect of block
ciphers as the datafields of CAN frames are encrypted. An-
other recent approach relies on both timing and data analysis
in order to detect spoofing and masquerade attacks in J1939
and NMEA2000 networks [24]. The mechanism is able to
detect manipulation attacks, i.e., single bit flips, by inspecting
anomalous changes in the electric potential during a transition
from a dominant to a passive state. However, none of the
previous works on J1939 security accounts for the control
system level, which is the main objective of our work.

Outside the J1939 context, there is a large number of
works that are addressing the deployment of intrusion detec-
tion mechanisms on classical CAN. Issues related to attack
surfaces, attack strategies, costs and real-time constraints,
methods for implementing IDS and challenges are surveyed in
[25]. A clock offset based algorithm for attacker identification
in CAN networks is discussed in [26]. The use of clock
skews has been originally proposed in [27]. The use of neural
networks for intrusion detection was explored in [28] and
[29]. Convolutional neural networks with long and short-
term memory (LSTM) were proposed in [30] while LSTM
autoencoders were investigated in [31]. Traditional machine
learning algorithms were also used, e.g., k-Nearest Neighbor
(k-NN) was analyzed in [32], support vector machine classi-
fiers (SVM) in [32], [33] and [34] while decision trees were
examined in [35]. A hybrid IDS based on discrete wavelet
transform and SVM is suggested in [36]. Other lines of work
use finite-state automatons [37], Hidden Markov Models [38]
or entropy characteristics [39], [40]. The use of the time
interval between remote frames and response data frames for
detecting malicious activity is investigated in [4]. The work in
[41] uses the deviation from the periodicity of the frames.

Most of the previous proposals for in-vehicle IDS are
content-agnostic. However, as pointed out by many recent
works on cyber-physical systems security, these methods may
be quite ineffective. For example, it is clearly stated by the
authors from [42] that, in case of cyber-physical systems
(which include the automotive domain), intrusion detection
systems that do not use domain-specific knowledge will per-
form poorly. And, as acknowledged by the authors, the work in
[43] has already proved that data with high variability makes
it impossible to deliver high detection rates and low positive
rates at the same time. This makes it clear that content-agnostic
approaches have limitations and should be used only when
specific information is not available. While this is the case in
many applications, fortunately, in-vehicle control systems do
have a well-understood physical behavior that can be used for
a finer-grain detection of adversarial manipulations.

As we later show in the experimental results, traditional
machine learning approaches, like k-nearest neighbors (k-NN),
decision trees classifier (DTC) and the random forest classifier
(RFC), fail to detect the attacks that we analyze (the results
are summarized in Table III). Also, simple metrics like the
Hamming distance would be ineffective. For example, in case
of a surge attack, a Hamming distance equal to just 1 will
cause exponential variation depending on the bit which is
affected, e.g., the most significant bit. Historically speaking,

the Hamming distance was always effectively used for error
detection and correction, but in case of intrusion detection it is
generally used only if a more effective domain-specific metric
is unknown [44]. Keeping in mind that physical processes
have monotonic variations, using state predictors and checking
cumulative sums of the recorded errors, i.e., CUSUM, is likely
more effective. This kind of approach is commonly used for
detecting intrusions in cyber-physical systems [45], [46].

III. BACKGROUND

In this section we discuss the CAN background and the
SAE J1939 standard specific features. Then we proceed to
a presentation of the CANoe environment and its integration
with the Simulink environment.

A. CAN bus description

The effectiveness and simplicity of the classical Controller
Area Network (CAN) bus has been proven by more than three
decades of use, during which it remained the most employed
solution for internal communication inside vehicles. Newer
extensions of the CAN protocol, i.e., the CAN with Flexible
Data Rate (CAN-FD) and more recently, the CAN Extra Long
(CAN-XL), set the room for future uses of the CAN protocol,
at least for the decade that follows. The CAN protocol supports
transmission rates of up to 1 Mbit/s when high-speed CAN is
employed. Enhanced speed performance and payload can be
accomplished by using the CAN-FD or the CAN-XL protocol.
CAN-FD supports speeds from 2 to 5 Mbit/s and up to 64 data
bytes, while CAN-XL enables transmissions at 10 Mbit/s and
payloads up to 2048 bytes.

As we depict in Figure 3, each microntroller or interface
is connected to the bus via two wires (CAN-High and CAN-
Low) terminated by 120 Ohm resistors. Bus communication
is mediated by the CAN data frames which are broadcast by
each CAN node. The extended CAN data frame format is
presented in Figure 4. The start of a CAN frame is indicated
by a dominant start-of-frame bit (SOF). Each CAN frame has
an 11 bit ID (identifier) in case of the standard format or a 29
bit ID in case of the extended format. In addition to the role of
uniquely identifying a CAN message, the CAN ID also ensures
the bus arbitration mechanism, i.e., if multiple nodes try to
occupy the bus at the same time, the node which transmits the
lowest valued ID wins the arbitration. Only nodes interested
for certain CAN IDs take into account the signals that are
packed inside the CAN frame. The control field specifies the
amount of data (0-8 bytes) that will be packed inside the data
field. An error detecting code, i.e, a 15 bit Cyclic Redundancy
Check (CRC), is computed over the frame content in order
to verify data correctness and protect communication in case
of accidental alterations, e.g., errors inflicted by noise, of
the frame content. Each node that correctly receives a frame
confirms this by writing a 0 in the ACK slot, which remains
otherwise set to 1. The end of the CAN message is marked
by a recessive EOF bit.

4

Fig. 3. SAE J1939 typical CAN bus topology

Fig. 4. Extended CAN data frame

B. SAE J1939 features

The J1939 standard collection was released by the Society
of Automotive Engineers (SAE) and is dedicated to a specific
sector from the automotive industry, i.e., commercial vehicles
which includes various industry groups, varying from agri-
cultural (tractors) and construction equipment (mobile cranes,
trucks) or on-highway equipment (highway cabs) to marine
(yacht, boats) or industrial processes. Concretely, SAE J1939
defines a full communication stack on top of the CAN protocol
by adding the data link and network upper layers. The speci-
fications inside the SAE J1939-71 [47] document are relevant
for the proposed IDS since they outline specifics related to
in-vehicle frames which can be also used for a better design
of an IDS. This is not the case with regular passenger vehicles
where there are no such specifications.

A specific choice in the J1939 specification is the use
of extended CAN IDs that have 29 bits in length (regular
identifiers have only 11 bits). Another one accounts for the
employment of specific transport protocols that enables pay-
loads of up to 1785 bytes through multi-frame transmissions.
The J1939-71 document describes the signals that are enclosed
by the standardized J1939 frames. Please note that sometimes
the terms parameter and signal are used interchangeably in
the J1939-71 standard (as well as in many other automotive
specifications) referring to the data packed inside the CAN
frame that corresponds to a specific variable, e.g., vehicles
speed, brake switch, cruise control status, etc. Another aspect
of J1939 networks is the integration of source and destination
addresses into CAN IDs, each address having the role of
identifying a node from the network.

A supplemental material for the J1939-71 document is the
J1939 Digital Annex [48] which presents the signals packed
inside J1939 messages in an easier form. An example of signal
layout inside a J1939 frame is presented in Table I for ID
0x18FEF100 which is further used in our experiments. The
second column specifies the start position of the parameter
inside the payload at byte level and for each byte it mentions
the bit position. The third column indicates the parameter
length in bits and the last column describes the meaning of
the parameter. The parameter marked with bold text, corre-
sponding to the wheel-based vehicle speed, will be used in

our experimental evaluation.

TABLE I
SPECIFIC J1939 SIGNALS FOR ID 0X18FEF100 ACCORDING TO [48]

No. Start position Length J1939 signal
1. Byte 1 - bit 1 2 bits Two Speed Axle Switch
2. Byte 1 - bit 3 2 bits Parking Brake Switch
3. Byte 1 - bit 5 2 bits Cruise Control Pause Switch
4. Byte 1 - bit 7 2 bits Park Brake Release Inhibit Request
5. Byte 2 - bit 1 16 bits Wheel-Based Vehicle Speed
6. Byte 4 - bit 1 2 bits Cruise Control Active
7. Byte 4 - bit 3 2 bits Cruise Control Enable Switch
8. Byte 4 - bit 5 2 bits Brake Switch
9. Byte 4 - bit 7 2 bits Clutch Switch
10. Byte 5 - bit 1 2 bits Cruise Control Set Switch
11. Byte 5 - bit 3 2 bits Cruise Control Coast (Decelerate) Switch
12. Byte 5 - bit 5 2 bits Cruise Control Resume Switch
13. Byte 5 - bit 7 2 bits Cruise Control Accelerate Switch
14. Byte 6 - bit 1 8 bits Cruise Control Set Speed
15. Byte 7 - bit 1 5 bits PTO Governor State
16. Byte 7 - bit 6 3 bits Cruise Control States
17. Byte 8 - bit 1 2 bits Engine Idle Increment Switch
18. Byte 8 - bit 3 2 bits Engine Idle Decrement Switch
19. Byte 8 - bit 5 2 bits Engine Diagnostic Test Mode Switch
20. Byte 8 - bit 7 2 bits Engine Shutdown Override Switch

C. CANoe-Simulink integration

CANoe is a market-leading development environment for
the design, real-time simulation and testing of in-vehicle buses.
It also provides integration with other industry standard tools
like Simulink which is a MATLAB-based environment that can
be used for simulating dynamical systems (such as in-vehicle
control systems).

A common CANoe simulation setup is suggested in Figure
5. A simulated bus in the CANoe environment is depicted on
the right side. This bus is compatible with hardware devices
developed by Vector which are used for transmitting CAN
frames on the actual physical bus from the left side. In
this example the simulation has three CAN nodes. Different
software layers are employed in order to describe the behavior
of a CAN node. On the upper side is the application layer
that interacts with the bus signals or with the values pro-
vided by several sensors or actuators, which can be retrieved
as inputs from the graphical interface. For the application
layer, the CANoe environment uses code written in CAPL
(Communication Access Programming Language). CAPL is
an event-controlled programming language having a slightly
similar syntax with the C language and complemented by
various specific functions that react to the real-time CAN
communication events, e.g., reception of a CAN frame. In
our setup, we use the CAPL code to mimic a real-world
adversary that injects the malicious frames on the CAN bus.
The interaction with the CAN parameters and frames or with
sensor measurements is facilitated by the use of a CAN
database. Furthermore, the CANoe environment supports the
extension or even the complete replacement of the CAPL
application layer with the Simulink models (a feature which
we actually used in this work).

The connection between the application layer and the
physical layer is handled by the following three layers: the
interaction layer (IL), the network management layer (NM)
and the transport protocol layer (TP). The IL assures the
connection between the application layer and the low level

5

Fig. 5. CANoe simulation setup

drivers. The proper operation of a CAN network is enabled
by the NM layer which performs several actions for bus
management. The TP manages the organization of the data link
layer. There are some circumstances when data larger than 8
bytes (which is the maximum limit for standard CAN) need to
be transmitted over CAN and cannot be packed into a single
CAN frame, e.g., in case of diagnostic buffers, multi-frame
messages, etc. The TP is responsible for splitting the data into
several frames and re-packing the data on the receiver side.

The interaction between Simulink and CANoe at run-time
can be achieved in three different ways as depicted in Figure
6. The first one, shown in Figure 6 (i), is the offline mode
in which the simulation is executed inside the Simulink
environment which acts as the lead system while the CANoe
environment is managed as a secondary system. The offline
mode uses the simulation time-base controlled by Simulink
and is mostly used for debugging purposes. In this mode, a
real-time simulation cannot be run and the interaction with
hardware devices is not available. In synchronized mode,
which is shown in Figure 6 (ii), similar to the offline mode,
the Simulink environment is the host for the simulation. The
difference from the previous mode is that the time-base for
the simulation is now taken from the CANoe environment.
Consequently, the simulation happens in real-time and the
opportunity for communication with Vector hardware devices
is also available. Last but not least, the hardware-in-the-loop
mode, depicted in Figure 6 (iii), operates differently from
the two aforementioned modes. In this setting, the CANoe
environment is the host for the simulation while the Simulink
models are integrated inside CANoe simulation through DLLs
(Dynamic Link Libraries) built from the C Code generated by
the Simulink Coder. In this work we use the synchronized
mode which copes with real-time constraints and allows us to
quickly change and test the Simulink models.

IV. CONTROL SYSTEMS AND ADVERSARY MODEL

This section presents the control system level from the
J1939 simulation and the adversary model that we use.

A. J1939 simulation and Simulink models

We address the J1939 simulation setup for a heavy-duty
vehicle that has already been depicted in Figure 1 and is
made available by the CANoe tool1. The J1939 network

1https://www.vector.com/int/en/products/products-a-z/software/canoe

(i) Offline mode

(ii) Synchronize mode

(iii) Hardware in the loop mode

Fig. 6. Interfacing CANoe with Simulink

Fig. 7. Signal mapping between ECUs on the PCAN bus

configuration contains two CAN buses, one for the Powertrain
and the other for the Fleet Management System (FMS). The
Powertrain bus has six ECUs. One of them plays the role of
a gateway, being also connected to the second CAN bus. The
main function of the employed ECUs, their assigned addresses
and signals are presented in Table II. The Tx column contains
the signals that are transmitted by the ECUs while the received
signals are presented in the Rx signals column. The flow of
the signals between ECUs is shown in Figure 7. The FMS bus
has just one ECU, i.e., the same gateway ECU (VGW) that is
also present in the first network. The role of this ECU is to
select the Parameter Groups according to the FMS standard
[49] and forward them from one CAN bus to the other.

We extend this J1939 CAN bus simulation by linking it
to Simulink models for the control systems, which allows us
to add adversarial behavior. To protect the CAN bus against
adversarial interventions, we need to make predictions for the
signals that are sent through the network. We depict how these
signals are computed, also showing the Simulink blocks, in
what follows.

1) Vehicle speed prediction: In Figure 8 we describe the
Simulink model which computes the vehicle speed in km/h
based on shaft vehicle speed in rpm which comes from the
TECU controller as follows:

v =
3600

1000
× r × 2× π

60
× vshaft ,

6

TABLE II
BRIEF DESCRIPTION OF NODES EMPLOYED IN POWERTRAIN NETWORK

Node Addr. Function Tx signal Rx signal

EMS 0x00 Engine management
system

Vehicle Speed,
Trip Distance,
Engine Speed,

Torque

–

TECU 0x03 Transmission ECU Shaft Speed Clutch Slip,
Gear, Torque

IC 0x17 Instrument cluster –

Vehicle Speed,
Shaft Speed,

Trip Distance,
Engine Speed,

VGW 0xE6 Vehicle gateway – Engine Speed

where v is the vehicle speed in km/h, r is the diameter
of the shaft axle in meters (in our case 0.151 meters) and
vshaft is the shaft vehicle speed measured in rpm. In general,
inside cars, the shaft vehicle speed is computed by the TCU
controller based on a PWM signal which measures the rotation
of the main axle.

2) Trip distance prediction: In Figure 9 we depict the
calculation of the trip distance based on the vehicle speed,
as follows:

dist =

∫
v × 0.1

3600
dx,

where dist is the trip distance, v is the vehicle speed and
the coefficient 0.1

3600 is used to convert the vehicle speed from
km/h into m/s.

3) Acceleration estimation: In Figure 10 we compute the
acceleration based on vehicle speed as follows:

acc =
dv

dt
,

where acc is the acceleration measured in m/s2, v is
the vehicle speed and t represents time. In order to use the
computed acceleration to predict other vehicle signals, i.e.,
the engine speed and torque, we used a low-pass filter on the
acceleration to remove undesired spikes.

4) Engine speed prediction: Based on the filtered accel-
eration and gear, in Figure 11, we depict the prediction of
the engine speed. To achieve this, we used lookup tables
(a commonly used object in automotive and control systems
projects) with 3 to 100 breakpoints, calibrated from a short
run-time during which various gear-shifts took place. These
allow us to determine the engine speed based on the filtered
acceleration and gear. The lookup tables were calibrated based
on the signals recorded inside the CANoe simulation, i.e., for
each gear we chose 3 to 100 values of the filtered acceleration
and set the value of the engine speed that corresponds to it
(intermediary values can be determined by interpolation). To
improve the accuracy of the prediction, when necessary, we
switch between two lookup tables based on the clutch slip
value. This is needed because when the clutch is engaged,
the engine speed ramps faster, while when the clutch is
disengaged, the engine speed is more stable. In case of idle
speed, if the vehicle is not moving and the acceleration or
brake pedals are not pressed by the driver, the predicted engine
speed is set to the idle speed, i.e., 250rpm .

5) Torque prediction: Similar with the prediction of engine
speed, in Figure 12, we predict the engine torque using one-
dimensional lookup tables based on the filtered values for the
acceleration and gear. When necessary, we switch between
three lookup tables. This is needed because the torque behavior
is different when the accelerator pedal value is pressed more
than 70% or when the power take-off module is engaged.
When the clutch is engaged, we do not have a driver torque
request, the torque losses are higher and the value of the actual
torque is set to the minimum value, i.e., -1650Nm , according
to the CANoe model.

We note that for the last two signals, engine speed and
torque, we don’t have a concrete physical model and the
prediction is done based on look-up tables constructed from
the behavior of the parameters inferred from previous runs of
the CANoe model. For this reason, in the experimental section,
the accuracy of the intrusion detection on these parameters
will be lower and should serve only as an example. Better
predictions can be achieved with improved models that were
out of reach for us at the moment.

B. Adversary model
Existing works focusing on attacks and intrusion detection

for CAN buses consider three types of attacks: replay, DoS
and fuzzing attacks. These attacks can be easily circumvented
by checking that the IDs are part of the legitimate set (in case
of fuzzing when IDs are random or DoS which is caused by
high priority IDs that are not part of the network) and that
the rate at which the IDs arrive is the expected one (which is
usually not the case for replays). Moreover, changes in the
datafield can be detected if, having the predicted value of
the signal y′♦(k) and a bias b, a change detection mechanism
is introduced by checking the following recurrent sum [12]:
S♦(k) = max

{
0, S♦(k−1)+ |y♦(k)−y′♦(k)|−b

}
, S(0) = 0.

By comparing this cumulative sum with an empirically defined
threshold τ , an intrusion can be detected. This approach for
change detection, introduced in [50], abbreviated as CUSUM
is commonly used in intrusion detection systems. A very
recent work dedicated to intrusion detection on J1939 also
uses it [24], but here we account for the control system level
and stealthy attacks, which were not addressed before in the
context of in-vehicle networks.

There are three flavors of stealthy attacks that can evade the
detection mechanism based on cumulative sums (CUSUM) as
pointed out in [12]: surge attacks, bias attacks and geometric
attacks. Previous works on CAN bus intrusion detection have
not considered these alternatives in the adversary model.
Therefore, we specifically focus on these attacks in our work.
Since replay and DoS attacks can be detected by simply
inspecting the arrival rate of frames (both these attacks require
multiple frames that would be unusual as CAN IDs are sent at
fixed periods), our adversary model incorporates the following
types of modification attacks:

1) fuzzing attacks - are the modification attacks in which
random values are injected in the datafield of CAN
frames,

2) surge attacks - are the modification attacks in which the
value of the signal is set to the maximum value (or

7

Fig. 8. Prediction of vehicle speed based on shaft speed

Fig. 9. Prediction of trip distance based on vehicle speed

Fig. 10. Acceleration estimation

Fig. 11. Prediction of engine speed based on acceleration and gear Fig. 12. Prediction of torque based on acceleration and gear and clutch slip

minimum value) such that it will inflict the maximum
damage on the system and yet remain undetected, i.e.,
the attack value at step k + 1 will be y♦,max only if the
corresponding sum at the next step S♦(k+1) ≤ τ while
otherwise the attack signal will stay at y′♦(k) + |τ + b−
S♦(k)|,

3) bias attacks - are the modification attacks in which a
small constant c = τ/n + b is added at each step to the
attacked signal, i.e., ỹ♦(k)← y♦(k) + τ/n+ b, ensuring
that the attack remains undetected for n steps,

4) geometric attacks - are the modification attacks in which
a small drift is added to the attacked signal in the
beginning and the drift becomes increasingly larger in
the next steps using a geometric expansion, i.e., ỹ♦(k)←
y♦(k)+βαn−k where α is fixed and β = (τ+nb)(α−1−1)

1−αn .

These adversarial actions and the countermeasures that we
address are independent from the entry point that is exploited
by the adversary. As stated in the introduction, most of
the attacks ask for an adversary that connects to the bus
or compromises a device from remote. It is worth noting
that a recent work [51] proposes a clever kind of attack in
which regular CAN frames are hidden inside CAN-FD frames.
Indeed, this possibility has not been previously explored.
However, regardless of how the attack is performed, since
the IDS that we design is supposed to run locally on each
node, the attack should be detected when the frame content is
inspected. Thus, our proposal should provide resilience to this
kind of attack too.

Our adversary model considers that the intruder has a fixed
success probability in modifying each frame. The rationale
behind this model goes as follows. The way in which at-

tacks are commonly performed on the CAN bus by injecting
additional (adversarial) messages on the network, is correct
from a networking perspective, but it offers a slightly mislead-
ing image regarding the way in which in-vehicle controllers
operate. Concretely, in-vehicle controllers run tasks that are
scheduled at precise time intervals, for example 10-100ms, and
consume one CAN message during each subsequent execution.
In general, messages are buffered on the controller and for
every CAN ID, each new message will overwrite the past
one. Therefore, even if an adversary injects multiple messages
between two legitimate messages, only one message is going
to be consumed by the controller, i.e., the most recent one.
Consequently, given that a number of adversarial messages
compete with legitimate messages on the bus, attacks are prob-
abilistic. This explains why rather than injecting messages, we
set a probability, e.g., 25%, that a message is or not corrupted,
which is consistent with the reality at the controller level
addressed in this paper.

Also, besides the obvious possibility that one task running
on the ECU is corrupted and simply replaces legitimate
messages from another task with corrupted ones, there are
two more considerations at the networking layer that make
this adversary model (which replaces legitimate frames with
corrupted ones rather than injecting new messages) more real-
istic. One is that ECUs may be subject to bus off attacks which
will keep the ECU dormant for a while, during which the
adversary may inject malicious messages. These attacks were
first demonstrated in [52]. The other is that messages may pass
through a corrupted gateway that may alter them. Nonetheless,
vehicles are now moving from domain oriented architectures,
in which ECUs that implement similar functionalities are

8

grouped on the same bus, toward zone oriented architectures,
where ECUs are grouped under a zonal controller according
to the location where they operate. In this newer paradigm,
even messages that are responsible for the same functionality
may need to be routed by gateways and thus have significantly
higher chances for being manipulated.

V. EXPERIMENTAL RESULTS

In this section, we first discuss some J1939 specific pa-
rameters then we introduce the metrics employed in our
performance assessment of the IDS. Afterwards, we present
the detection results and some computational requirements on
automotive-grade controllers.

A. Specific attacks on J1939 signals

For our work we target J1939 specific signals that can
be easily identified based on J1939 specifications [47]. Con-
cretely, our evaluation considers 4 parameters: vehicle speed
(km/h), trip distance (km), engine speed (rpm) and torque
(Nm). To provide a better understanding about the behaviour
of the attacks and the impact they produce, we depict the
variations of the J1939 signals under several attack scenarios.

Figure 13 shows the variation of the vehicle speed. The
legitimate signal is marked with blue while the modifications
inflicted by the adversary are marked with green. Figure 13 (i)
shows the fuzzing attacks which appear as spikes around the
legitimate signal. When a surge attack occurs, i.e., Figure 13
(ii), the falsified signal reaches 90km/h but this happens only
as the legitimate signal approaches the targeted value. Only
small deviations of the legitimate signals occur in case of the
bias attacks from Figure 13 (iii) and the geometric attacks
from Figure 13 (iv). The difference between these last two
types of attack is that the distance from the genuine signal to
the attack signal remains constant in case of the bias attacks
while the distance grows slowly for the latter. As can be seen
in Figure 14 the trip distance signal has a different waveform
compared to other parameters, i.e, the signal is incremented
for every 125m traveled. Under the surge attack, presented in
Figure 14 (ii), the altered signal exhibits a top level of 1.2km.
The behavior for the bias and geometric attacks, depicted in
Figures 14 (iii) and (iv), is comparable with the behavior for
the previous signal. The range in which the legitimate engine
speed signal varies is greater, i.e., 0–2050rpm, as can be seen
in Figure 15. In this case, the manipulated signal reaches
2250rpm when a surge attack is mounted, i.e., Figure 15
(ii). The deviations from the legitimate signals are greater
than those from the vehicle speed signal when the bias and
geometric attacks take place, i.e., Figures 15 (iii) and (iv). We
omit the plots for the torque signal since the attacks are similar
to the case of the attacks on the engine speed.

B. Metrics for evaluating detection efficiency

Intrusion detection is a binary classification issue between
legitimate and intruder frames. Thus, a performance assess-
ment has to rely on the four commonly used parameters: true
positives (TP), i.e., the number of intrusion messages that

are correctly labelled as attacks, true negatives (TN), i.e., the
number of legitimate messages that are correctly labelled as
legitimate, false positives (FP), i.e., the number of legitimate
messages that are incorrectly labelled as attacks, and false
negatives (FN), i.e., the number of intrusion messages that
are incorrectly labelled as legitimate.

We will also use as a metric the false positive rate, i.e.,
the ratio between the number of frames that are wrongly
reported as attacks and the total number of legitimate frames,
i.e., FPR = FP/(FP + TN). And also, the false nega-
tive rate (FNR) which is the ratio between the number of
frames that are incorrectly reported as legitimate and the total
number of intrusions, i.e., FNR = FN /(FN + TP). It is
also easy to derive two more metrics that we are going to
use as they are commonly employed in related works too.
The accuracy combines all four parameters in order to get
the ratio between the number of correctly classified frames
(intrusions or legitimate frames) and the total number of
frames: Accuracy = (TP + TN)/(TP + TN + FP + FN).
The precision is the ratio between the correctly classified
intrusion frames and all the frames classified as intrusions:
Precision = TP/(TP + FP).

C. Results on detecting intrusions

On each CAN signal, we programmed the adversary to
act with a predefined attack probability patt (this complies
with the usual attack model in which legitimate traffic is
injected with adversarial actions). This attack probability is
employed for the fuzzing, bias and geometric attacks while
the surge attack takes place once the conditions described in
the adversary model from the previous section are reached in
order to avoid detection. Attacks resulting in values that are
out range, i.e., negative values, will not be carried since they
can be immediately detected by range checks. The change
detection mechanism runs in the Simulink environment and
retrieves data from the CANoe simulation with which it
communicates in synchronized mode.

TABLE III
ENGINE SPEED - RESULTS WITH MACHINE LEARNING ALGORITHMS

Algorithm Attack FPR FNR Accuracy Precision
type (%) (%) (%) (%)

k-NN fuzzing 16.20 74.87 69.50 33.33
k-NN surge 1.18 0.00 99.38 98.68
k-NN bias 1.06 98.54 82.25 22.22
k-NN geom 0.15 98.26 83.00 50.00
DTC fuzzing 28.26 37.95 69.38 41.44
DTC surge 0.00 0.00 100.00 100.00
DTC bias 0.45 100.00 82.50 0.00
DTC geometric 9.19 99.26 75.50 1.61
RFC fuzzing 12.73 55.38 76.88 53.05
RFC surge 0.00 0.00 100.00 100.00
RFC bias 0.60 100.00 82.38 0.00
RFC geometric 0.15 99.26 83.00 50.00

First, we note that the machine learning algorithms cannot
cope with the modifications attacks. To implement these
algorithms in our system, we use the Statistics and Machine
Learning Toolbox provided by MATLAB as well as the
Python scikit-learn library https://scikit-learn.org/stable/ and

https://scikit-learn.org/stable/

9

(i) fuzzing attack (ii) surge attack (iii) bias attack (iv) geometric attack

Fig. 13. The behavior of wheel based vehicle speed signal for different types of attacks

(i) fuzzing attack (ii) surge attack (iii) bias attack (iv) geometric attack
Fig. 14. The behavior of trip distance signal for different types of attacks

(i) fuzzing attack (ii) surge attack (iii) bias attack (iv) geometric attack
Fig. 15. The behavior of engine speed signal for different types of attacks

the sklearn-porter library https://github.com/nok/sklearn-porter
to generate C code in order to measure the runtime of the
detection algorithms on the embedded devices. We build our
classification models based on portions of the full CAN traces.
We split the CAN traffic in two parts: 20% for training and
80% for testing. The results from Table III rely on classical
machine learning algorithms: k-nearest neighbors (k-NN),
decision trees classifier (DTC) and the random forest classifier
(RFC). The attack was carried only on frames that contain the
targeted signal. As can be seen, the machine learning based
IDS has considerable failures in detecting fuzzing, bias and
geometric attacks (the surge attacks are the only attacks on
which the detection works). The false negative rate is over
98% in case of the bias and geometric attacks, so these attacks
remain largely undetected. For the fuzzing attacks the FNR is
smaller, around 37%-74%, but still unsatisfactory. Cells that
contain a lower precision are marked with grey.

On the contrary, the change detection mechanism is highly
successful. Now we discuss the detection results that are
shown in Table IV. The bias and the threshold values for the
IDS and the adversary were empirically determined. If we
employ the same threshold values for the adversary and the
IDS, only small deviations from the legitimate signals occur,
and the impact is very small while the attack goes undetected
by the IDS. For example, in case of the vehicle speed, the
IDS threshold is at 2km/h , and, for the engine speed, the
threshold is at 150rpm - such variations, even if produced

by the adversary to mislead the driver, will have almost no
effect. Thus, the adversary will be interested in causing higher
variations that can have more relevance in misleading the
driver (like changing the reported speed with 10km/h). This
explains the selection of the thresholds from Table IV.

When using larger thresholds for the adversary than for the
IDS, the attack has a significant impact but the IDS will be able
to detect it. The results for the first two parameters (vehicle
speed and trip distance) are excellent, i.e., the accuracy and
precision are close to 100%. This is due to the fact that both
these signals are accurately predicted. On the other hand, for
the other two signals, Engine Speed and Torque, the detection
exhibits a lower accuracy and precision, i.e., 94%-99% and
95%-98%. There is an increase of the FPR and FNR, but this
still seems acceptable at 0%-1% and 0%-20% respectively.
This is caused by a poorer estimation of the legitimate signals
with the lookup tables described previously. Better estimations
can be achieved based on the mechanical parameters of the
vehicle which are out of scope for our work here.

The previous experiments were based on a 100 seconds
simulation, having a 0.1 second simulation step, which leads
to a total of 1000 CAN frames. True indeed, other works
based on in-vehicle collected CAN bus data use traces of one
or more hours. This is not necessarily a better approach for
testing the validity of an IDS since it is the variability of
the data, not the duration of the trace, which determines the
complexity of detecting attacks. The rather short trace of 1000

https://github.com/nok/sklearn-porter

10

CAN frames that we used accounts for significant variations
of the recorded parameters, while a several hours long trace
is not necessarily more convincing if the vehicle parameters
do not exhibit significant variations.

To prove this, we also run the detection mechanism in a sce-
nario that lasts more than an hour. For this we created a more
intricate traffic trace that contains several specific actions, e.g.,
gear shifts, sudden braking, speed variations, etc. The results
are presented in Table V. With a few exceptions, the false
positives and negatives dropped significantly compared to the
short trace. That is, the false positives dropped below 1%,
while the false negatives, with the exception of fuzzing attacks,
are between 0%-5%. On a closer inspection, the cause for
the drop in false positives became immediately visible for us:
almost all of the false positives are caused by gear shifts due
to the imperfect look-up tables that we used for deriving the
engine speed and torque. The long trace that we used had 30
gear shifts for more than one hour, while the short trace had
10 gear shifts during 100 seconds. This also suggests that to
avoid false alarms, abrupt changes in engine speed or torque
that happen during a gear shift may be neglected.

It is difficult to delve further into this matter since unex-
pected gear shifts may occur due to various innocuous reasons.
For example, a driver may downshift gears instead of pressing
the brake pedal to slow down the car or to increase torque
when approaching a slope (in case of a manual gearbox,
otherwise, the same actions will be done by a dedicated ECU).
None of these actions is an attack, yet they may lead to abrupt
changes in engine speed and torque.

By consulting the related works, the reported FPR is 1.60%
in [28], 4.68% in [36] or even 6.45% in [33]. The work
in [23] reports a FPR of 0% with the use of cryptographic
security. Regarding the FNR, this is 2.80% in [28], 2.40% in
[36] and 3.90% in [33]. Again, the work in [23] reports a
0.01% FNR but by using cryptographic security. Therefore,
if better FPR and FNR are needed, the only solution would
be to rely on cryptography and add security elements to each
CAN frame. According to the AUTOSAR SecOC [53], 32
bits of security elements are recommended for each CAN
frame, consisting of an authentication tag and a timestamp.
In this case, the authentication tag is 24–28 bits (according to
security profiles 1–3) and the chances of forgery 2−24–2−28

[53]. We note however that the freshness parameter is just 0–8
bits (depending on the security profile) and thus the chance
of successful replay attacks is still at least 2−8 which is quite
high, the freshness parameter repeats after only 256 frames.

The impact of the aforementioned attacks on safety is
immediate since all these signals, e.g., vehicle speed, torque
and engine speed, are used by various ADAS (Advanced
Driver Assistance Systems) systems and they can also produce
unintended acceleration/deceleration of the vehicle which may
lead to collisions. Note that a mere 5km/h deviation from the
actual vehicle speed translates into 1m/s which may have
serious consequences when estimating the time to a collision.

D. Runtime performance
We evaluate the performance of the detection algorithms

on four automotive-graded platforms from well-known manu-

facturers: S12XF (NXP), SAM V71 (Microchip), TC277 and
TC297 (Infineon). One of them is from the low-end sector, the
16-bit S12XF clocked at maximum 50MHz that is equipped
with 512KB of Flash and 32KB of RAM. The other controllers
are high-end operating on 32 bits. The Microchip SAM V71
Xplained Ultra board is powered by the ATSAMV71Q21 mi-
crocontroller, which follows the ARM Cortex M7 specification
and is capable of a clock frequency of 300MHz.

The Infineon devices are powered by the TC277 and TC297
microcontrollers, both of them based on the Aurix TriCore
architecture but with different quantities of available resources,
e.g., the TC277 board clocks at 200MHz and the TC297 at
300MHz. The experimental setup employed in our evaluation
is depicted in Figure 16. All processors were configured to
run at the maximum supported speed.

Fig. 16. Experimental setup employed in our evaluation

Regarding the detection algorithms, both DTC and RFC
were configured to operate with the default parameters and the
number of estimators for RFC was set to 15. k-NN was not
ported on the controllers since it requires to much memory for
storing the neighbors information regarding legitimate or intru-
sion frames. Table VI summarizes our results. We only show
performance for the engine speed as the results are similar for
the rest. Columns two and three specify the classifier that was
employed and the attack type. Finally, the last four columns
present the execution time of the classifier. Not surprisingly,
the RFC executes substantially slower than the DTC as it relies
on multiple estimators. On the low-end platform, for both
machine learning classifiers, the runtime varies from 60.74µs
to 715µs while the simpler change detection mechanism takes
only 39µs. On the high-end platforms, the runtime of the
machine learning classifiers is between 0.74µs and 18.89µs
while for the change detection mechanism is between 0.13µs
and 1.32µs. This allows us to conclude that, besides the much
better detection rate, which was proved in the previous section,
the change detection classifier is 2-65 times faster. Also,
the change detection mechanism has extremely low memory
requirements since it needs only a few lines of code while the
machine learning algorithms have a footprint of 10-30Kb.

VI. CONCLUSION

Our work shows that despite increasing efforts in address-
ing CAN bus intrusions by the mean of machine learning
algorithms, such algorithms cannot cope with modifications

11

TABLE IV
WHEEL BASED VEHICLE SPEED, TRIP DISTANCE, ENGINE SPEED AND TORQUE - DETECTION RESULTS FOR 1000 CAN FRAMES

(SHORT 100S SIMULATION)

Adversary / IDS parameters Detection results
J1939 Att. Att. Bias Threshold TN TP FP FN FPR FNR Accuracy Precision
signal type prob. Adv. / IDS Adv. / IDS (frames) (frames) (frames) (frames) (%) (%) (%) (%)

Vehicle Speed
(km/h)

fuzzing 25% - / 0.5 - / 2 759 233 0 8 0.00 3.32 99.20 100.00
surge - 5 / 0.5 10 / 2 734 266 0 0 0.00 0.00 100.00 100.00
bias 25% 5 / 0.5 10 / 2 842 158 0 0 0.00 0.00 100.00 100.00

geometric 25% 5 / 0.5 10 / 2 838 162 0 0 0.00 0.00 100.00 100.00

Trip Distance
(km)

fuzzing 25% - / 0.05 - / 0.075 759 229 0 12 0.00 4.98 98.80 100.00
surge - 0.2 / 0.05 0.25 / 0.075 614 386 0 0 0.00 0.00 100.00 100.00
bias 25% 0.2 / 0.05 0.25 / 0.075 842 158 0 0 0.00 0.00 100.00 100.00

geometric 25% 0.2 / 0.05 0.25 / 0.075 847 153 0 0 0.00 0.00 100.00 100.00

Engine Speed
(rpm)

fuzzing 25% - / 100 - / 150 753 196 6 45 0.79 18.67 94.90 97.03
surge - 400 / 100 600 / 150 636 357 7 0 1.09 0.00 99.30 98.08
bias 25% 400 / 100 600 / 150 820 172 6 2 0.73 1.15 99.20 96.63

geometric 25% 400 / 100 600 / 150 820 174 6 0 0.73 0.00 99.40 96.67

Torque
(Nm)

fuzzing 25% - / 200 - / 250 752 192 7 49 0.92 20.33 94.40 96.48
surge - 500 / 200 1000 / 250 698 277 12 13 1.69 4.48 97.50 95.85
bias 25% 500 / 200 1000 / 250 752 230 7 11 0.92 4.56 98.20 97.05

geometric 25% 500 / 200 1000 / 250 752 239 7 2 0.92 0.83 99.10 97.15

TABLE V
WHEEL BASED VEHICLE SPEED, TRIP DISTANCE, ENGINE SPEED AND TORQUE - DETECTION RESULTS FOR 36000 CAN FRAMES

(LONG 1H SIMULATION)

Adversary / IDS parameters Detection results
J1939 Att. Att. Bias Threshold TN TP FP FN FPR FNR Accuracy Precision
signal type prob. Adv. / IDS Adv. / IDS (frames) (frames) (frames) (frames) (%) (%) (%) (%)

Vehicle Speed
(km/h)

fuzzing 25% - / 0.5 - / 2 26988 8676 0 336 0.00 3.73 99.07 100.00
surge - 5 / 0.5 10 / 2 2036 33964 0 0 0.00 0.00 100.00 100.00
bias 25% 5 / 0.5 10 / 2 27202 8798 0 0 0.00 0.00 100.00 100.00

geometric 25% 5 / 0.5 10 / 2 27192 8808 0 0 0.00 0.00 100.00 100.00

Trip Distance
(km)

fuzzing 25% - / 0.05 - / 0.075 26988 8974 0 38 0.00 0.42 99.89 100.00
surge - 0.2 / 0.05 0.25 / 0.075 35221 779 0 0 0.00 0.00 100.00 100.00
bias 25% 0.2 / 0.05 0.25 / 0.075 27071 8929 0 0 0.00 0.00 100.00 100.00

geometric 25% 0.2 / 0.05 0.25 / 0.075 27076 8422 0 502 0.00 5.63 98.61 100.00

Engine Speed
(rpm)

fuzzing 25% - / 100 - / 150 26851 7481 137 1531 0.51 16.99 95.37 98.20
surge - 400 / 100 600 / 150 25145 10758 97 0 0.38 0.00 99.73 99.11
bias 25% 400 / 100 600 / 150 27021 8803 137 39 0.50 0.44 99.51 98.47

geometric 25% 400 / 100 600 / 150 27021 8798 137 44 0.50 0.50 99.50 98.47

Torque
(Nm)

fuzzing 25% - / 200 - / 250 26805 7023 183 1989 0.68 22.07 93.97 97.46
surge - 500 / 200 1000 / 250 34352 1450 179 19 0.52 1.29 99.45 89.01
bias 25% 500 / 200 1000 / 250 26805 8828 183 184 0.68 2.04 98.98 97.97

geometric 25% 500 / 200 1000 / 250 26805 8964 183 48 0.68 0.53 99.36 98.00

TABLE VI
PERFORMANCE OF IDS ALGORITHMS ON AUTOMOTIVE PLATFORMS

J1939 sig. Algorithm Attack Execution time on target (µs)

S12XF SAM
V71 TC277 TC297

Engine Speed

DTC

fuzzing 199.12 18.89 2.34 1.86
surge 60.74 5.49 0.91 0.74
bias 130.23 12.48 1.64 1.28

geometric 153.83 15.07 1.94 1.51

RFC

fuzzing 575.20 16.92 13.12 8.55
surge 355.65 7.69 7.41 5.35
bias 620.38 15.44 8.91 6.41

geometric 715.00 16.98 9.15 6.56
Change

detection all 39.10 1.32 0.34 0.13

inside the data carried by CAN frames. The shortcomings
are due to two obvious facts: the limited time available for
training which implies that the training dataset cannot cover
all possible states of the bus, and the small changes that can

be induced by adversaries making the attack stealthy. By using
specific change detection mechanisms, the computational costs
are lower and attack detection has much higher accuracy
and precision. The implementation of such mechanisms does
require redundancy, but we have shown that this is possible in
the J1939 model that served our experiments. Consequently, as
there are little or no papers to address such fine grain details,
we hope that our work paves way in this direction.

REFERENCES

[1] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham et al., “Experimental
security analysis of a modern automobile,” in Security and Privacy (SP),
2010 IEEE Symposium on. IEEE, 2010, pp. 447–462.

[2] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham,
S. Savage, K. Koscher, A. Czeskis, F. Roesner, T. Kohno et al., “Com-
prehensive Experimental Analyses of Automotive Attack Surfaces.” in
USENIX Security Symposium. San Francisco, 2011.

[3] C. Miller and C. Valasek, “A survey of remote automotive attack
surfaces,” Black Hat USA, 2014.

12

[4] H. Lee, S. H. Jeong, and H. K. Kim, “OTIDS: A Novel Intrusion
Detection System for In-vehicle Network by using Remote Frame,” in
Procedings of PST (Privacy, Security and Trust), 2017.

[5] I. Foster, A. Prudhomme, K. Koscher, and S. Savage, “Fast and vul-
nerable: A story of telematic failures,” in 9th USENIX Workshop on
Offensive Technologies (WOOT 15), 2015.

[6] S. Nie, L. Liu, and Y. Du, “Free-fall: Hacking Tesla from Wireless to
CAN bus,” Briefing, Black Hat USA, vol. 25, pp. 1–16, 2017.

[7] S. Nie, L. Liu, Y. Du, and W. Zhang, “Over-the-air: How we remotely
compromised the gateway, BCM, and autopilot ECUs of Tesla cars,”
Briefing, Black Hat USA, 2018.

[8] CAN Specification Version 2.0., Robert BOSCH GmbH, 1991.
[9] “ISO/SAE 21434:2021 Road vehicles — Cybersecurity engineering,”

ISO, Standard, 1st edition, Aug 2021.
[10] W. Choi, S. Lee, K. Joo, H. J. Jo, and D. H. Lee, “An Enhanced Method

for Reverse Engineering CAN Data Payload,” IEEE Transactions on
Vehicular Technology, vol. 70, no. 4, pp. 3371–3381, 2021.

[11] M. Marchetti and D. Stabili, “READ: Reverse Engineering of Auto-
motive Data Frames,” IEEE Transactions on Information Forensics and
Security, vol. 14, no. 4, pp. 1083–1097, 2019.

[12] A. A. Cárdenas, S. Amin, Z.-S. Lin, Y.-L. Huang, C.-Y. Huang, and
S. Sastry, “Attacks against process control systems: risk assessment,
detection, and response,” in ACM symposium on information, computer
and communications security, 2011, pp. 355–366.

[13] Requirements on Intrusion Detection System, AUTOSAR, 2020.
[14] L. L. Bello, R. Mariani, S. Mubeen, and S. Saponara, “Recent Ad-

vances and Trends in On-Board Embedded and Networked Automotive
Systems,” IEEE Trans. on Industrial Informatics, vol. 15, no. 2, pp.
1038–1051, 2019.

[15] J. Liu, S. Zhang, W. Sun, and Y. Shi, “In-Vehicle Network Attacks and
Countermeasures: Challenges and Future Directions,” IEEE Network,
vol. 31, no. 5, pp. 50–58, 2017.

[16] P. Murvay and B. Groza, “Security Shortcomings and Countermeasures
for the SAE J1939 Commercial Vehicle Bus Protocol,” IEEE Transac-
tions on Vehicular Technology, vol. 67, no. 5, pp. 4325–4339, 2018.

[17] S. Mukherjee, H. Shirazi, I. Ray, J. Daily, and R. Gamble, “Practical
DoS Attacks on Embedded Networks in Commercial Vehicles,” in
Information Systems Security. Springer, 2016, pp. 23–42.

[18] Y. Burakova, B. Hass, L. Millar, and A. Weimerskirch, “Truck Hacking:
An Experimental Analysis of the SAE J1939 Standard,” in 10th USENIX
Workshop on Offensive Technologies, 2016.

[19] S. Hariharan, A. V. Papadopoulos, and T. Nolte, “On in-vehicle network
security testing methodologies in construction machinery,” in 27th
International Conference on Factory Automation, 2022, pp. 1–4.

[20] M. Zachos, “”securing j1939 communications using strong encryption
with fips 140-2”,” in SAE Technical Paper. SAE International, 03 2017.

[21] H. Shirazi, I. Ray, and C. Anderson, “Using Machine Learning to Detect
Anomalies in Embedded Networks in Heavy Vehicles,” in Foundations
and Practice of Security, 2020, pp. 39–55.

[22] S. Mukherjee, J. Walkery, I. Rayz, and J. Daily, “A Precedence Graph-
Based Approach to Detect Message Injection Attacks in J1939 Based
Networks,” in 2017 15th Annual Conference on Privacy, Security and
Trust (PST), 2017, pp. 67–6709.

[23] C. Jichici, B. Groza, R. Ragobete, P.-S. Murvay, and T. Andreica, “Ef-
fective Intrusion Detection and Prevention for the Commercial Vehicle
SAE J1939 CAN Bus,” IEEE Trans. Intell. Transp. Syst., pp. 1–15, 2022.

[24] M. Rogers, P. Weigand, J. Happa, and K. Rasmussen, “Detecting CAN
Attacks on J1939 and NMEA 2000 Networks,” IEEE Transactions on
Dependable and Secure Computing, pp. 1–15, 2022.

[25] W. Wu, R. Li, G. Xie, J. An, Y. Bai, J. Zhou, and K. Li, “A Survey
of Intrusion Detection for In-Vehicle Networks,” IEEE Transactions on
Intelligent Transportation Systems, vol. 21, no. 3, pp. 919–933, 2020.

[26] Y. Chen, W. Hu, M. Alam, and T. Wu, “Fiden: Intelligent Fingerprint
Learning for Attacker Identification in the Industrial Internet of Things,”
IEEE Trans. on Industrial Informatics, vol. 17, no. 2, pp. 882–890, 2021.

[27] K.-T. Cho and K. G. Shin, “Fingerprinting electronic control units for
vehicle intrusion detection,” in 25th {USENIX} Security Symposium,
2016, pp. 911–927.

[28] M.-J. Kang and J.-W. Kang, “Intrusion detection system using deep
neural network for in-vehicle network security,” PloS one, vol. 11, no. 6,
p. e0155781, 2016.

[29] S. Boumiza and R. Braham, “An Anomaly Detector for CAN Bus
Networks in Autonomous Cars based on Neural Networks,” in Intl. Conf.
on Wireless and Mobile Comp., Networking and Comm. IEEE, 2019,
pp. 1–6.

[30] H. Sun, M. Chen, J. Weng, Z. Liu, and G. Geng, “Anomaly detection
for in-vehicle network using CNN-LSTM with attention mechanism,”
IEEE Trans. on Veh. Tech., vol. 70, no. 10, pp. 10 880–10 893, 2021.

[31] S. Longari, D. H. Nova Valcarcel, M. Zago, M. Carminati, and S. Zanero,
“CANnolo: An Anomaly Detection System Based on LSTM Autoen-
coders for Controller Area Network,” IEEE Transactions on Network
and Service Management, vol. 18, no. 2, pp. 1913–1924, 2021.

[32] A. Alshammari, M. A. Zohdy, D. Debnath, and G. Corser, “Classification
Approach for Intrusion Detection in Vehicle Systems,” 2018.

[33] M. Al-Saud, A. M. Eltamaly, M. A. Mohamed, and A. Kavousi-Fard,
“An intelligent data-driven model to secure intravehicle communications
based on machine learning,” IEEE Transactions on Industrial Electron-
ics, vol. 67, no. 6, pp. 5112–5119, 2019.

[34] A. Taylor, N. Japkowicz, and S. Leblanc, “Frequency-based anomaly
detection for the automotive CAN bus,” in 2015 World Congress on
Industrial Control Systems Security (WCICSS), 2015, pp. 45–49.

[35] D. Tian, Y. Li, Y. Wang, X. Duan, C. Wang, W. Wang, R. Hui, and
P. Guo, “An Intrusion Detection System Based on Machine Learning
for CAN-Bus,” in International Conference on Industrial Networks and
Intelligent Systems. Springer, 2017, pp. 285–294.

[36] A. Kavousi-Fard, T. Jin, W. Su, and N. Parsa, “An Effective Anomaly
Detection Model for Securing Communications in Electric Vehicles,”
IEEE Transactions on Industry Applications, pp. 1–1, 2020.

[37] I. Studnia, E. Alata, V. Nicomette, M. Kaâniche, and Y. Laarouchi, “A
language-based intrusion detection approach for automotive embedded
networks,” Intl. Journal of Embed. Sys., vol. 10, no. 1, pp. 1–12, 2018.

[38] S. N. Narayanan, S. Mittal, and A. Joshi, “OBD SecureAlert: An
Anomaly Detection System for Vehicles,” in Smart Computing (SMART-
COMP), 2016 IEEE International Conference on. IEEE, 2016, pp. 1–6.

[39] M. Marchetti, D. Stabili, A. Guido, and M. Colajanni, “Evaluation of
anomaly detection for in-vehicle networks through information-theoretic
algorithms,” in Research and Technologies for Society and Industry
Leveraging a better tomorrow (RTSI). IEEE, 2016, pp. 1–6.

[40] M. Müter and N. Asaj, “Entropy-based anomaly detection for in-vehicle
networks,” in Intell. Vehicles Symposium. IEEE, 2011, pp. 1110–1115.

[41] M. Gmiden, M. H. Gmiden, and H. Trabelsi, “An intrusion detection
method for securing in-vehicle CAN bus,” in 17th Intl. Conf. on Sciences
and Techn. of Automatic Ctrl. & Comp. Eng. IEEE, 2016, pp. 176–180.

[42] J. Giraldo, D. Urbina, A. Cardenas, J. Valente, M. Faisal, J. Ruths, N. O.
Tippenhauer, H. Sandberg, and R. Candell, “A survey of physics-based
attack detection in cyber-physical systems,” ACM Computing Surveys
(CSUR), vol. 51, no. 4, pp. 1–36, 2018.

[43] D. Hadžiosmanović, L. Simionato, D. Bolzoni, E. Zambon, and S. Etalle,
“N-gram against the machine: On the feasibility of the n-gram network
analysis for binary protocols,” in International Workshop on Recent
Advances in Intrusion Detection. Springer, 2012, pp. 354–373.

[44] C. Sinclair, L. Pierce, and S. Matzner, “An application of machine
learning to network intrusion detection,” in Proceedings 15th annual
computer security applications conference. IEEE, 1999, pp. 371–377.

[45] D. I. Urbina, J. A. Giraldo, A. A. Cardenas, N. O. Tippenhauer,
J. Valente, M. Faisal, J. Ruths, R. Candell, and H. Sandberg, “Limiting
the impact of stealthy attacks on industrial control systems,” in ACM
Conf. on Computer and Communications Security, 2016, pp. 1092–1105.

[46] F. Akowuah and F. Kong, “Real-Time Adaptive Sensor Attack Detection
in Autonomous Cyber-Physical Systems,” in 2021 IEEE 27th Real-Time
and Embedded Tech. and Applications Symposium, 2021, pp. 237–250.

[47] “J1939-71 – Vehicle Application Layer,” SAE International, Standard,
May 2006.

[48] “Digital Annex of Serial Control and Communication,” SAE Interna-
tional, Standard, January. 2020.

[49] “FMS-Standard description,” ACEA Task Force HDEI/BCEI, Standard,
September. 2021.

[50] E. S. Page, “Continuous inspection schemes,” Biometrika, vol. 41, no.
1/2, pp. 100–115, 1954.

[51] M. Ziv, “CANCAN: Encapsulation of CAN-FD Messages for Circum-
vention of Security Measures,” CYMOTIVE Technologies LTD, Report,
June. 2022.

[52] K.-T. Cho and K. G. Shin, “Error handling of in-vehicle networks makes
them vulnerable,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, 2016, pp. 1044–1055.

[53] Specification of Secure Onboard Communication, R20-11 ed., AU-
TOSAR, November 2020, no. 654.

13

Camil Jichici is a PhD student at Politehnica Uni-
versity of Timisoara (UPT) since 2018 and worked
as a young researcher in the PRESENCE project.
He received the Dipl.Ing. degree in 2016 and MsC.
degree in 2018, both from UPT. His research inter-
ests are on the security of in-vehicle components
and networks. He is also working as a software
integrator in the automotive industry for Continental
Corporation in Timisoara since 2014.

Adriana Berdich is a PhD student at Politehnica
University of Timisoara (UPT). She received the
Engineer title in 2017 and MsC. degree in 2019,
both from UPT. She has a 7-year background in
the automotive industry as a Function Software
Developer with main focus on torque structure and
vehicle motion functions, through all phases of the
V-model. Between 2015-2018 she has been working
as a software developer in the automotive industry
for Continental Corporation in Timisoara. Currently,
she continues as a function developer in the auto-

motive industry for Vitesco Technologies focusing on vehicle power-train
applications. She was also a research student in the PRESENCE project (2019-
2020) focusing on environment-based device association inside cars.

Adrian Musuroi is pursuing a Ph.D. at Politehnica
University of Timisoara (UPT) focusing on the se-
curity of automotive networks. He graduated his
B.Sc. in 2018 and his M.Sc. studies in 2020 at the
same university. In 2019 Adrian joined the automo-
tive industry as an embedded software developer at
HELLA Romania. Since 2021 he is a cybersecurity
engineer at ZF Group.

Bogdan Groza is Professor at Politehnica Univer-
sity of Timisoara (UPT). He received his Dipl.Ing.
and Ph.D. degree from UPT in 2004 and 2008
respectively. In 2016 he successfully defended his
habilitation thesis having as core subject the design
of cryptographic security for automotive embedded
devices and networks. He has been actively involved
inside UPT with the development of laboratories
by Continental Automotive and Vector Informatik.
Besides regular participation in national and inter-
national research projects in information security, he

lead the CSEAMAN (2015-2017) and PRESENCE (2018-2020) projects, two
research programs dedicated to the security of vehicular ecosystems funded
by the Romanian National Authority for Scientific Research and Innovation.

	Introduction and motivation
	Related works
	Background
	CAN bus description
	SAE J1939 features
	CANoe-Simulink integration

	Control Systems and Adversary Model
	J1939 simulation and Simulink models
	Vehicle speed prediction
	Trip distance prediction
	Acceleration estimation
	Engine speed prediction
	Torque prediction

	Adversary model

	Experimental results
	Specific attacks on J1939 signals
	Metrics for evaluating detection efficiency
	Results on detecting intrusions
	Runtime performance

	Conclusion
	References
	Biographies
	Camil Jichici
	Adriana Berdich
	Adrian Musuroi
	Bogdan Groza

