
CarINA - Car sharing with IdeNtity based Access
control re-enforced by TPM

Bogdan Groza1, Lucian Popa1, and Pal-Stefan Murvay1

Faculty of Automatics and Computers,
Politehnica University of Timisoara, Romania,

{bogdan.groza, lucian.popa, pal-stefan.murvay}@aut.upt.ro

Abstract. Car sharing and car access control from mobile devices is an increas-
ingly relevant topic. While numerous proposals started to appear, practical de-
ployments ask for simple solutions, that are easy to implement and yet secure.
In this work we explore the use of TPM 2.0 functionalities along with identity-
based signatures in order to derive a flexible solution for gaining access to a ve-
hicle. While TPM 2.0 specifications do not have support for identity-based prim-
itives we can easily bootstrap identity-based private keys for Shamir’s signature
scheme from regular RSA functionalities of TPM 2.0. In this way, key distribu-
tion becomes more secure as it is re-enforced by hardware and the rest of the
functionalities can be carried from software implementations on mobile phones
and in-vehicle controllers. We test the feasibility of the approach on modern An-
droid devices and in-vehicle controllers as well as with a recent TPM circuit from
Infineon.

1 Introduction and Motivation

Despite their simplicity and well established foundational concepts, i.e., authentication
protocol, traditional car keys tell a long shameful story about insecurity, e.g., [8], [18],
[20], [22]. The use of smartphones as car keys has been proposed in numerous works.
For example [3] proposes a complex platform for car access and rights delegation and
uses a secure microSD smart-card to further increase the security level. Identity-based
cryptography for car sharing has been also proposed in [21]. Some works go even fur-
ther by proposing secure multiparty protocols [17] but these may be too computational
intensive for the current infrastructure.

Our goal in this work is to deploy a simple solution that takes advantage of identity-
based primitives and also of the increased security provided by the use of TPM (Trusted
Platform Module) devices. Naturally, we require for the solution to be deployed on
modern smartphones and in-vehicle units. The use of modern smartphones comes with
many advantages since numerous functionalities can be implemented, e.g., car sharing
and car localization, etc., while the flexibility of Java support opens road for numerous
cryptographic primitives. In particular, identity-based cryptography has the advantage
that it does not require storing public-key certificates. Handling certificates in particu-
lar may be uneasy on in-vehicle components. In contrast, using principal identities is
more easy to handle and nonetheless it offers better anonymity since users can choose
pseudonyms that leave no traces inside the car. Of course, due to legal purposes, users

Fig. 1. CARINA: concept and scenarios

should still need to provide proper credentials and prove their right to drive the car at a
sharing center. But the privacy of the user should not be exposed inside the vehicle that
is rented.

Scenarios. Figure 1 shows a graphical depiction of the scenario that we address.
As stated, we opt for identity-based cryptography since it is more intuitive, it protects
user’s privacy by relying on pseudonyms and avoids storing and sending digital certifi-
cates which may be a problem both because it requires bandwidth and due to storage
memory constraints. In the depicted scenario, users receive their identity-based pri-
vate keys from a sharing point via NFC connectivity. The sharing-point is implemented
around Raspberry Pi and the TPM circuit to ensure security. The sharing-point may
be in an unsupervised place and may be subject to physical access by the adversary,
a reason for which the hardware security offered by TPM 2.0 is a significant advan-
tage. NFC is suggested due to its short range which makes it harder to compromise but
other interfaces may be used, even very long range such as LTE, provided that they
are sufficiently secure. To make credentials spoofing unfeasible, the credentials may be

encrypted and the user transaction key may be sent via an additional channel, e.g., SMS
or e-mail. Whenever requesting access to the car a challenge-response protocol is run.
The car stores the users identities in a table similar to Unix credential files, e.g., the
passwd files, along with the expiry time and the access rights, e.g., open the car or start
the engine. Not all users will be granted full rights on the car. For example, a passenger
may be allowed to open the car but may not start the engine assuming that he has no
driving license. Subsequently, users may further share their rights to other users over
Bluetooth, again in a challenge-response fashion. All these actions will be discussed in
details in a forthcoming section dedicated to our protocol.

1.1 Related Work

One of the first mentions of using trusted platform modules in the context of automotive
systems comes as early as 2004 [2]. In parallel with the development of generic TPM
specifications, researchers in the automotive area have proposed the use of a Hardware
Security Module (HSM) with TPM-like functionalities to suit the specific requirements
of the vehicular environment. Wolf et al. propose the use of a HSM for implementing an
automotive digital rights management system [24]. The work in [23] describes the de-
sign, implementation and evaluation of an HSM for vehicular environments. The com-
parison of the three proposed HSM variants with specifications of an industry-proposed
vehicular secure hardware, smart cards and TPM 1.2 devices illustrates superior fea-
tures in all but the light HSM implementation.

The use of TPM functionalities were proposed for various automotive applications
especially those in which the vehicle communicates with the outside environment,
where existing automotive grade platforms cannot provide adequate performance for
software implementations of security solutions. The usage of TPMs for implementing
security in Vehicular Ad-Hoc Networks (VANETs) was proposed in [11]. The authors
of [9] use a TPM as root of trust for their implementation of car-to-car communication
system. Proposals for over-the-air automotive firmware updates involve public key op-
erations which could be efficiently implemented in the vehicle with the use of a TPM
or HSM. One such approach which uses an off-the-shelf TPM chip connected to the
wireless vehicle unit is proposed in [16].

Another use case is the communication between the vehicle and smart devices. An
example is the use of smartphones to delegate usage rights over cars in a car shar-
ing/renting application. Symeonidis et al. [17] propose such a system in which the on-
board unit responsible with the verification of usage rights is equipped with a HSM
providing secure key storage and support for cryptographic operations.

2 Components

Table 1 provides a summary of the platforms that we used in our work. We discuss more
details on the TPM and TriCore controllers next. Figure 2 depicts the setup of our work:
an Infineon Optiga TPM connected to a Raspberry Pi.

Fig. 2. Experimental setup: the Infineon Optiga TPM connected to a Raspberry Pi

Table 1. Platforms used in our work

Platform Core Flash RAM Clock Manufacturer
Optiga TPM 16-bit CPU 6962B not specified not specified Infineon

TriCore TC297
TriCore 1.6P, 32-bit
CPU

8MB 728KB 300MHz Infineon

Raspberry Pi 3B+
Cortex-A53,
Quad-Core, 64-bit CPU

32 GB 1GB 1.4GHz
Raspberry Pi
Foundation

Samsung Note 8
Exynos 8895,
Octa-Core, 2.3GHz
Quad + 1.7GHz Quad

128GB 6GB 2.3GHz Samsung

The trusted platform module (TPM) is a security standard which was defined by
the Trusted Computing Group (TCG) 1 and standardized as ISO/IEC 11889:2009 for
TPM 1.2 and ISO/IEC 11889:2015 for TPM 2.0. There are various properties of the
TPM which makes it an ideal solution for hardware-based security operations such as
secure storage of security data (e.g. cryptographic keys), keeping track of the running
platform software trust state using platform configuration registers (based on integrity
measurements recorded before each software application is executed), generation of
symmetric keys or asymmetric key-pairs based on a unique, externally inaccessible,
endorsement key and generation of random numbers using a TRNG.

For our experiments, we chose to use the OPTIGA SLB 9670XQ2.0 TPM from
Infineon which is compliant to the specifications of TPM 2.0. We used the OPTIGA
TPM evaluation board mounted on a Raspberry Pi 3B+ for implementing the protocol
building blocks. The OPTIGA TPM datasheet, its parametrics and other technical doc-

1 https://trustedcomputinggroup.org

uments are given by Infineon as public information [14]. Based on the OPTIGA TPM
parametrics, we determined that it can execute, by requests over the SPI interface, the
following commands: i) generate randomness, ii) asymmetric encryption/decryption on
a given input using a loaded key (i.e., RSA-2048 encryption), iii) asymmetric sign-
ing/verification given the input and using a loaded key (i.e., ECDSA-256 signature), iv)
symmetric signing/verification of a given input and using a loaded key (i.e., HMAC -
Hash-based Message Authentication Code), v) computing a hash function (i.e., SHA-
256) on a given input. Also, according to the TCG requirements for TPM 2.0 and the
OPTIGA TPM datasheet we determined that the chip has the following storage charac-
teristics: i) 6962 bytes of non-volatile memory, ii) 1420 bytes I/O buffer, iii) 1024 bytes
for command/response parameters, iv) 768 bytes for non-volatile read/write operations,
v) can handle up to 7 objects loaded in the non-volatile memory area, vi) can handle up
to 3 objects loaded in the volatile memory area.

Given the open nature of the TPM 2.0 library specification there exist open-source
libraries containing the implementation of TPM functions (e.g., https://github.
com/Infineon/eltt2, https://github.com/tpm2-software). These li-
braries can be built and executed on embedded devices in order to send any of the pre-
sented commands and receive the requested data from a TPM device. Additionally to
the communication with the real trusted platform module there is also the possibility to
use a tpm2-simulator https://sourceforge.net/projects/ibmswtpm2/
on a Linux machine with the mentioned open-source libraries in order to send/receive
commands. This simulator can be used for testing and development as it emulates a
hardware TPM.

3 Protocol

In this section we first discuss the building blocks behind our protocol proposal, then
we give precise details on the protocol.

3.1 Cryptographic Building Blocks

We rely on standardized cryptographic primitives for encrypting, i.e., AES, and mes-
sage authentication codes, i.e., HMAC. In addition to these, we use Shamir’s identity-
based signature [15] which can be easily described in what follows:

1. Setup(k) is the key setup algorithm that generates the master secret key msk and
the public key pk. The Setup algorithms, generates two random primes p, q, each
having k bits in length, computes n = pq, φ(n) = (p − 1)(q − 1), selects random
integer e ∈ Zφ(n) s.t. gcd(e, φ(n)) = 1 and computes d = e−1 mod φ(n). The
master secret key is msk = {n, d} and the public key is pk = {n, e, h}. Here
h is a hash function that maps the name of a user to an element of Zφ(n), i.e.,
h : {0, 1}∗ → Zφ(n).

2. KeyDer(msk, I) is the key derivation algorithm that uses the master secret key msk
and the identity of the user I to generate his private key by computing Id mod n.
The user secret key is sk = {Id mod n, n} (the public key to verify the signatures
of this user is the identity of the user I along with system parameters pk).

3. Sign(sk,m) is the signature algorithm that takes as input the user’s secret key sk
and a message m the returns the signature σ. For this, the signing algorithm selects
a random r ∈ Zn, computes t = re mod n, the hash of t concatenated with
message m denoted as h = hash(t||m), then s = Idrh mod n. The signature is
σ = {s, t}.

4. Ver(pk, I,m, σ) is the verification algorithm which takes as input the system pa-
rameters pk, the identity of the user I , the message m and the signature σ and
returns true if the signature is correct otherwise it returns ⊥. To verify that the
signature is correct the algorithm computes seand checks if this is equal to Ith

mod n and returns true if so or ⊥ otherwise.

Identity-based primitives are not supported by the current TPM 2.0 specifications.
Though, current standards such as the ISO/IEC 14888-2:2008 support identity-based
signatures based on the Guillou-Quisquater scheme [12] for use in embedded devices
such as smart-cards [13]. By using regular RSA support from TPM 2.0 we can however
easily bootstrap identity-based keys for Shamir’s scheme as we discuss in the experi-
mental section. The reasons for choosing Shamir’s scheme [15] in favour of Guillou-
Quisquater scheme [12] was its simplicity and straight-forward way to derive secret
keys from our TPM circuit.

3.2 Protocol Description

The proposed protocol consists of three stages: rights procurement from the car sharing
center, the car access and the rights delegation sub-protocols. For brevity we do not
include a rights revocation procedure. User rights have an expiry time, if rights need
to be revoked sooner than that, then the car sharing entity should be able to maintain a
revocation list inside each car which takes priority over the credential of the user. This
should be easy to deploy if the cars have Internet connectivity but is out of scope for
this work. Protocol procedures are summarized in Figure 3 and we discuss each step in
detail next.

The rights procurement stage occurs over a secure channel. We assume that this
happens at a registration desk or, in case it is an unsupervised selling point, we assume
a secure short-range interface such as NFC. If this is unavailable, then the credentials
can be encrypted and the encryption key sent by a secondary channel such as SMS or e-
mail. We do not insist on this additional procedure. The user registered by IDUsr requests
rights on car IDCar from sharing center IDShr. The rights are encoded in the string func∗

and may consist in full rights over the car or maybe just some restricted functions, e.g.,
opening the trunk in case the user forgets some belongings from a previous sharing.
The rights start at current time encoded in time and have a fixed lifetime ltime . The
sharing center will check that current time time does not drift significantly from a real-
time clock (drifts in the order of seconds should be acceptable). To grant credentials,
the sharing center returns a secret identity-based key sk(ID1) and signs the rights of the
user as sShr = Sig(sk(Shr),mUsr).

The car access stage occurs over an insecure channel, e.g., Bluetooth or WiFi, be-
tween the smartphone of the user and some in-vehicle controller (e.g., an embedded

I) Rights procurement (secure channel)

1. Usr → Shr: mUsr = {ID1, IDCar, IDShr, func
∗, time, ltime}

2. Shr → Usr: sk(ID1), sShr = Sig(sk(Shr),mUsr)

3. Usr sets <authChain>Usr = {mUsr, sShr}

II) Car access (insecure channel)

1. Usr → Car: m′Usr = {IDUsr, IDCar, func
∗, rand128Usr }, <authChain>Usr

2. Car → Usr: m′Car = {rand128Car }, s′Car = Sig(sk(Car),m′Car||m′Usr)

3. Usr → Car: s′Usr = Sig(sk(Usr),m′Usr||m′Car)

4. Car → Usr: s′′Car = Sig(sk(Car), s′Usr)

III) Rights sharing (insecure channel)

1. Usr1 → Usr2: m′Usr1 = {IDUsr1 , IDCar, IDUsr2 , func
∗, time, ltime},

s′Usr1 = Sig(sk(Usr1),m
′
Usr1)

2. Usr2 → Usr1: m′Usr2 = {IDUsr2 , IDCar, IDUsr1 , func
∗, rand128Usr2 , time, ltime},

<authChain>Usr1 , s′Usr2 = Sig(sk(Usr2),m
′
Usr2)

3. Usr1 sets <authChain>Usr1 = {<mUsr, sShr> ||<authChain>Usr1}

Fig. 3. Protocol procedures: rights procurement, car access and rights sharing

unit or an infotainment device). The user IDUsr requests to car IDCar a specific func-
tionality func∗. The message contains some random value to ensure freshness rand128Usr

and in case this is the first time the user connects to the car it also contains the au-
thorization chain <authChain>Usr. The authorization chain consists in the message
containing the rights of the user and the signature of an authorized party. For users
that have freshly received rights from the sharing center, the authorization chain is just
mUsr, sShr = Sig(sk(Shr),mUsr). Other users may have acquired rights from a regu-
lar user as discussed next and will present the authorization chain resulting from the
next protocol component. The car checks that the authorization chain is correct and the
time intervals specified in it match the current time. The car replies by sending a ran-
dom value rand128Car , authenticates and links this value to the previous values by signing,
i.e., s′Car = Sig(sk(Car),m′Car||m′Usr). The user confirms his identity by signing the
received challenge, i.e., Sig(sk(Usr),m′Usr||m′Car). If the signature is correct the car ex-
ecutes the corresponding functionality and confirms this to the user by a new signature,
i.e., Sig(sk(Car), s′Usr).

The rights delegation stage occurs over an insecure channel, e.g., Bluetooth or WiFi,
between two smartphones. First, user Usr1 requests particular functionalities from Usr2,
this is done in identical manner as when asking functionalities from the sharing center.
Then user Usr2, if he agrees to share his rights, will reply with a message contain-
ing a signature over the rights as well as his authorization chain <authChain>Usr1

step trans4(X, Y, SID, ACT, PkUsr, PkCar, NC, NU):=
state_car(1, X, Y, ACT, PkUsr, PkCar, NC, NU).
iknows(crypt(inv(PkUsr), pair(X, pair(Y, pair(ACT, pair(NU,NC))))))
=>
iknows(crypt(inv(PkCar),

crypt(inv(PkUsr), pair(X, pair(Y, pair(ACT, pair(NU,NC))))))).
state_car(2, X, Y, ACT, PkUsr, PkCar, NC, NU)

Fig. 4. Code snippet for the last transition of the car access protocol in the AVISPA [1] IF format

which proves that he indeed has access to the corresponding functionalities. Subse-
quently Usr1 sets his authorization chain as <authChain>Usr1 = {<mUsr, sShr >
||<authChain>Usr1}.

Security analysis. Our protocol is designed for the general case of a Dolev-Yao [7]
adversary that has full control of the communication channel. Since we build upon reg-
ular cryptographic blocks (which are considered to be secure) a formal verification of
the protocol should be sufficient in assessing its security. For this, we use the AVISPA
platform [1] and model the protocol in the IF language. As model-checker we choose
CLAtse [19] which is one of the AVISPA [1] back-ends. For brevity, we modeled only
the car access sub-protocol II. Figure 4 contains the code snippet in IF for the last tran-
sition of the car access sub-protocol. Signatures are modeled in AVISPA as encryption
with the inverse of the public-key, i.e., crypt(inv(PkUsr),message). Messages can be
formed under the pair operator and the entire communication is mediated by the in-
truder knowledge by the persistent fact iknows (this responds to the Dolev-Yao model
since the intruder is the channel). Verifying the protocol consists in defining one action
for the honest user, e.g., open car, and another for the adversary, e.g., start engine, and
determine whether the car will execute the intruder action. The model-checker reported
the protocol to be safe. Verifying the entire protocol suite may be subject of an extended
version of our work.

4 Experiments

In this section we clarify experiments on the platforms of our setup: Raspberry Pi with
Optiga TPM, Android devices and in-vehicle controllers.

4.1 Deployment on Infineon TriCore

While medium to high-end car models will benefit from the performance of infotain-
ment unit processors which is comparable to that provided by smartphones, this is not
the case for low-end models. To cover the low-cost vehicle sector we employ the Infi-
neon AURIX TC297, an embedded platform dedicated to specific automotive function-
alities such as powertrain, chassis and body.

The TC297 is equipped with three 32 bit cores optimized for signal processing each
of which can operate at a top frequency of 300MHz. A total of 729 KBytes of RAM

and 8 MBytes of Flash are available on chip. Members of the AURIX family of micro-
controllers can be equipped with a hardware security module (HSM) which provides
a secure key storage and execution environment along with HW implemented True
Random Number Generator (TRNG) and 128-bit AES. Since the chip provides no HW
support for implementing RSA we based our implementation on Miracl (Multiprecision
Integer and Rational Arithmetic Cryptographic Library) https://github.com/
miracl/MIRACL.

We tested the computational performance of the TC297 in executing basic steps of
the proposed protocol on a single core. An RSA signature is performed in 26 ms, while
the verification is executed in 462 ms. The implementation requires 74 and 73 ms for
executing the sign and verify steps respectively using Shamir’s ID-based signature with
a 2048 bit key.

4.2 TPM Simulator and the Optiga TPM on Raspberry Pi

As a first step to test the functionalities of TPM 2.0 we have installed tpm2-simulator
[10], tpm2-tss [4], tpm2-abrmd [6] and tpm2-tools [5] on a 32-bit Ubuntu Linux running
on a virtual machine.

To obtain a crisper image on TPM 2.0 functionalities, we first managed to send
commands to the tpm2-simulator using tpm2-tools for the following operations: i) gen-
erate random numbers up to 48 bytes (limited by max hash size), ii) create a primary
key by selecting the key type, hash method and hierarchy under which the key-pair is
created, iii) create a local object under the primary key consisting of public and sensi-
tive part of a new key-pair, iv) import the created object as transient in the TPM, v) link
an OpenSSL generated key-pair to a primary key in the TPM, vi) import an OpenSSL
key-pair in the TPM, vii) encrypt local files using the imported object, viii) decrypt the
local files using the imported object, ix) make the transient object persistent in the TPM,
x) generate the hash digest of local files.

Once all these operations were tested, we ensured that all the TPM functionalities
required by our experiments are available on the Raspberry Pi 3B+ connected to an
Infineon OPTIGA TPM2.0 evaluation board. For the hardware experiments with the
Raspberry Pi we have used Raspbian Stretch Lite April 2019 with Kernel version 4.14.
In order to be able to identify the Optiga TPM on the Raspberry Pi we had to patch
and build the Raspbian Kernel of the Raspberry Pi following the application note from
[14] by adding the TPM support and also the Infineon TPM board in the device tree
overlay. Afterwards we updated the kernel on the microSD card of the Raspberry Pi
and managed to communicate with the TPM board after installing tpm2-tss[4], tpm2-
abrmd[6] and tpm2-tools[5].

Considering the commands sent to the simulated TPM in Linux, we have bench-
marked the duration of each public-key operation performed by the Raspberry Pi and
the OPTIGA TPM (neglecting the transmission time to and from the TPM). The mea-
surement results are shown in Table 2.

Table 2. Operation time for TPM commands

Command Output Output size [bytes] Duration [ms]
Create a RSA-2048 primary key primary.ctx 1036 20736

Create an RSA-2048 encryption key key.pub, key.priv 280, 192 237
Load an RSA-2048 encryption key object.ctx 1032 227

Perform RSA encryption file.encrypted 256 164
Perform RSA decryption file.decrypted 256 326

Table 3. Execution time for operations of the Shamir signature on the evaluated platforms

Operation Platform
TPM Raspberry Pi 3 B+ Samsung Note 8 Infineon TC297

Shamir IBS Gen 342 ms n/a n/a n/a
Shamir IBS Sign n/a 284 ms 5.3 ms 74ms
Shamir IBS Ver n/a 50 ms 3.5 ms 73ms

4.3 Android Implementation

The Android implementation uses secret keys for the Shamir identity-based signature
provided by the Optiga TPM module. The signing and verification functionalities are
implemented using the Java BigInteger class. Currently the implementation is software
based. An improvement on this (in terms of security) is to use the TPM as cryptographic
co-processor. That is, while support for identity-based schemes does not exist on TPM,
we can still perform modular exponentiations as regular RSA encryptions. However,
the TPM implementation that we had does not allow loading large public exponents
(the default is 65537). Thus, only the computations of re mod n and se mod n could
be performed which are fast anyway (since e is small). We did not succeed in loading a
arbitrary exponent h (which is the hash of the message) to compute rh mod n and th

mod n so the client/car-side implementation was entirely software based.
Tables 3 and 4 give an overview of the computational results on each of the plat-

forms. Shamir’s identity-based signature is contrasted with regular RSA signatures. The
computational results are graphically summarized in Figure 5.

5 Conclusion

A full scale implementation of our protocol may be subject to future work. The aim
of this shorter communication was to establish whether the associated building blocks,
e.g., identity-based crypto, and technologies, e.g., TPM, are within reach for an auto-
motive scenario. Clearly, high-end in-vehicle controllers such as the Infineon TriCore
are ready for public-key primitives and identity-based cryptography in particular. Mo-
bile phones and single-board computers have even greater computational power and
memory resources. As proved by our easy-to-use car sharing scenario, there are clear
advantages in terms of flexibility when using these cryptographic primitives. The future

Table 4. Execution time for operations of the RSA signature on the evaluated platforms

Operation Platform
TPM Raspberry Pi 3 B+ Samsung Note 8 Infineon TC297

RSA Gen
220 ms (gen) +

220ms (load)
5.1 s 190 ms n/a

RSA Sign 342 ms 121 ms 3.7 ms 462 ms
RSA Ver 198 ms 5.2 ms 0.3 ms 26 ms

Fig. 5. Graphic summary of computational results for Shamir’s signature (left) and regular RSA
signature (right)

may bring single-board computers similar to Raspberry Pi inside cars if not delivered
by the manufacturers then as a result of home projects. Aftermarket equipments are
common in the automotive sector and DIY projects are also routine. Since CAN bus
support exists for Raspberry Pi, turning this device into an in-vehicle body controller
may not be a distant dream.

Acknowledgement. We thank the reviewers for helpful comments on our work.
This work was supported by a grant of the Romanian National Authority for Sci-
entific Research and Innovation, CNCS-UEFISCDI, project number PN-III-P1-1.1.-
TE-2016-1317 (2018-2020) http://www.aut.upt.ro/˜bgroza/projects/
presence/.

References

1. Armando, A., Basin, D., Boichut, Y., Chevalier, Y., Compagna, L., Cuéllar, J., Drielsma,
P.H., Héam, P.C., Kouchnarenko, O., Mantovani, J., et al.: The avispa tool for the automated
validation of internet security protocols and applications. In: International conference on
computer aided verification. pp. 281–285. Springer (2005)

2. Brandl, H.: Trusted Computing: The TCG Trusted Platform Module Specification. In:
Embedded Systems. New Munich Trade Fair Centre (2004), http://opensgug.
net/utilisec/embedded/Shared%20Documents/Device%20Security/

VariousInputs/ShrinathInputs/Basic_Knowledge_EC2004.pdf, Ac-
cessed: 2019-05-03

3. Busold, C., Taha, A., Wachsmann, C., Dmitrienko, A., Seudié, H., Sobhani, M., Sadeghi,
A.R.: Smart keys for cyber-cars: secure smartphone-based nfc-enabled car immobilizer. In:
Proceedings of the third ACM conference on Data and application security and privacy. pp.
233–242. ACM (2013)

4. community, D.: TCG TPM2 Software Stack. https://github.com/
tpm2-software/tpm2-tss, accessed: 2019-04-15

5. community, D.: The source repository for the TPM (Trusted Platform Module) 2 tools.
https://github.com/tpm2-software/tpm2-tools, accessed: 2019-04-15

6. community, D.: TPM2 Access Broker and Resource Management Daemon. https://
github.com/tpm2-software/tpm2-abrmd, accessed: 2019-04-15

7. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Transactions on informa-
tion theory 29(2), 198–208 (1983)

8. Francillon, A., Danev, B., Capkun, S.: Relay attacks on passive keyless entry and start sys-
tems in modern cars. In: NDSS (2011)

9. Glas, B., Sander, O., Stuckert, V., Muller-Glaser, K.D., Becker, J.: Car-to-car communication
security on reconfigurable hardware. In: VTC Spring 2009-IEEE 69th Vehicular Technology
Conference. pp. 1–5. IEEE (2009)

10. Goldman, K.: IBM’s Software TPM 2.0. https://sourceforge.net/projects/
ibmswtpm2/, accessed: 2019-04-15

11. Guette, G., Bryce, C.: Using tpms to secure vehicular ad-hoc networks (vanets). In: IFIP In-
ternational Workshop on Information Security Theory and Practices. pp. 106–116. Springer
(2008)

12. Guillou, L.C., Quisquater, J.J.: A “paradoxical” identity-based signature scheme resulting
from zero-knowledge. In: Proceedings on Advances in cryptology. pp. 216–231. Springer-
Verlag (1990)

13. Guillou, L.C., Ugon, M., Quisquater, J.J.: Cryptographic authentication protocols for smart
cards. Computer Networks 36(4), 437–451 (2001)

14. Infineon: Optiga TPM SLB 9670XQ2.0. https://www.infineon.
com/cms/en/product/security-smart-card-solutions/
optiga-embedded-security-solutions/optiga-tpm/slb-9670xq2.0/,
accessed: 2019-04-22

15. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Workshop on the theory
and application of cryptographic techniques. pp. 47–53. Springer (1984)

16. Steger, M., Boano, C.A., Niedermayr, T., Karner, M., Hillebrand, J., Roemer, K., Rom, W.:
An efficient and secure automotive wireless software update framework. IEEE Transactions
on Industrial Informatics 14(5), 2181–2193 (2018)

17. Symeonidis, I., Aly, A., Mustafa, M.A., Mennink, B., Dhooghe, S., Preneel, B.: Sepcar: A
secure and privacy-enhancing protocol for car access provision. In: European Symposium on
Research in Computer Security. pp. 475–493. Springer (2017)

18. Tillich, S., Wójcik, M.: Security analysis of an open car immobilizer protocol stack. In:
Trusted Systems, pp. 83–94. Springer (2012)

19. Turuani, M.: The cl-atse protocol analyser. In: Intl. Conf. on Rewriting Techniques and Ap-
plications. pp. 277–286. Springer (2006)

20. Verdult, R., Garcia, F.D., Balasch, J.: Gone in 360 seconds: Hijacking with hitag2. In: Pro-
ceedings of the 21st USENIX conference on Security symposium. pp. 37–37. USENIX As-
sociation (2012)

21. Wei, Z., Yanjiang, Y., Wu, Y., Weng, J., Deng, R.H.: Hibs-ksharing: Hierarchical identity-
based signature key sharing for automotive. IEEE Access 5, 16314–16323 (2017)

22. Wetzels, J.: Broken keys to the kingdom: Security and privacy aspects of rfid-based car keys.
arXiv preprint arXiv:1405.7424 (2014)

23. Wolf, M., Gendrullis, T.: Design, implementation, and evaluation of a vehicular hardware
security module. In: International Conference on Information Security and Cryptology. pp.
302–318. Springer (2011)

24. Wolf, M., Weimerskirch, A., Paar, C.: Automotive digital rights management systems. In:
Embedded Security in Cars, pp. 221–232. Springer (2006)

