
1

CANTO - Covert AutheNtication with Timing
channels over Optimized traffic flows for CAN

Bogdan Groza, Lucian Popa and Pal-Stefan Murvay

Abstract—Previous research works have endorsed the use of
delays and clock skews for detecting intrusions or fingerprinting
controllers that communicate on the CAN bus. Recently, timing
characteristics of CAN frames have been also used for establish-
ing a covert channel for cryptographic authentication, in this way
cleverly removing the need for cryptographic material inside the
short payload of data frames. However, the main drawback of this
approach is the limited security level that can be achieved over
existing CAN bus traffic. In this work we significantly improve
on this by relying on optimization algorithms for scheduling
CAN frames and deploy the covert channel on optimized CAN
traffic. Under practical bus allocations, we are able to extract
3-5 bits of authentication data from each frame which leads to
an efficient intrusion detection and authentication mechanism.
By accumulating covert channel data over several consecutive
frames, we can achieve higher security levels that are in line
with current real-world demands. To prove the correctness
of our approach, we present experiments on automotive-grade
controllers, i.e., Infineon Aurix, and bus measurements with the
use of industry standard tools, i.e., CANoe.

Index Terms—Authentication, CAN bus, Covert channel

I. INTRODUCTION AND MOTIVATION

Following small demonstrations of attacks on vehicle buses
inside simulation environments, which can be traced as early
as the work in [1], the feasibility of attacking real-world
vehicles has been decisively proved by recent works such as
[2], [3], [4], etc. Most of the security problems of in-vehicle
networks stem from the fact that the Controller Area Network
(CAN) has no intrinsic security mechanisms. The CAN bus
is able to transmit up to 8 bytes of data in a single frame
at a maximum bit rate of 1Mbit/s. The structure of the CAN
frame is depicted in Figure 1. To avoid collisions, arbitration
is performed based on the ID field which uses the first 11
bits of the frame (or 29 bits if extended identifiers are used),
while a 15 bit CRC (Cyclic Redundancy Check) aids in the
identification of transmission errors. CAN also uses bit stuffing
to avoid synchronization loss in long sequences with bits
of the same value, i.e., after five consecutive identical bits,
an additional bit of opposite value is introduced to force a
transition.

The research community has answered with dozens of
proposals for securing the CAN bus. As expected, most of
these rely on the use of cryptographic Message Authentication
Codes (MACs) (e.g., [5], [6], [7], [8], or more recently [9] and
many others). But due to the limited size of the CAN frame,

Bogdan Groza, Lucian Popa and Pal-Stefan Murvay are with the Fac-
ulty of Automatics and Computers, Politehnica University of Timisoara,
Romania, Email: bogdan.groza@aut.upt.ro, lucian.popa.lp@gmail.com, pal-
stefan.murvay@aut.upt.ro

Fig. 1. Format of CAN data frames

i.e., 64 bits, two options have been commonly discussed in
the literature: truncating the MACs so that they fit inside the
frame along with legitimate data or sending the MACs as a
distinct packet. The last option creates additional problems
since sending a new authentication frame for each regular
frame increases the bus-load and does not cope with real-time
demands as we later discuss in our analysis. The first proce-
dure, MAC truncation, is supported by the more recent security
specifications introduced in the AUTOSAR [10] architecture
which require 24 bits of security for a CAN frame. However,
reserving 24 bits out of the 64 bit CAN frame payload for
security may not be convenient as this represents 37% of
the payload. Additionally, the standard specifies 8 bits for a
freshness parameter, leading to 32 bits reserved for security
purposes and thus 50% of the frame becomes unusable for
regular data. In general, it seems that including cryptographic
material in CAN frames remains somewhat problematic as
the small packet size of CAN is hardly able to cope with
the required level of security. A third option is to hide the
authentication bits by using alternative physical layers such as
CAN+ [11] which is an extension of CAN. Such an approach
was proposed in [12]. However, CAN+ transceivers do not
exist inside vehicles and due to the migration to CAN-FD it
seems unlikely for CAN+ to be adopted by the automotive
industry.

Context and motivation. In a recent work, we exploited the
fine-grained control of timer-counter circuits in a constructive
manner by designing a covert timing channel for cryptographic
authentication [13]. This proposal has the merit of allowing
authentication data to be carried outside the limited 64 bit
payload of the CAN frame. However, the problem with the
work in [13] is that performance degrades significantly when
the covert channel is placed over existing CAN-bus traffic. A
similar approach for creating a covert authentication channel
based on frame arrival time can be found in [14], but the
achieved security level is very limited at 1 covert bit for each
CAN frame. Moreover, the authentication in [14] is dedicated
to the transmitter alone, not to the content of the frame.
By optimizing CAN traffic, our approach can obtain much
higher data-rates on the covert channel. Of course, in case

2

CAN-H

CAN-L

μC1

idi||data

id||data

OBD
AUT

{Δ1,Δ2,Δ3, ,Δn}

{ϵ1,ϵ2,ϵ3, ,ϵn}

CAN Interface

(VN1640A)

k
+

id||data
kΔi+ϵi+ξ

μC2

idi||data AUT

{Δ1,Δ2,Δ3, ,Δn}

{ϵ1,ϵ2,ϵ3, ,ϵn}

k
+

Fig. 2. Basic depiction of the addressed scenario: ECUs sending/receiving
packets on the CAN bus, authentication data is encoded in delays

of multiple senders, this would require time synchronization
between senders. Traditional implementations of CAN assume
an asynchronous behavior of nodes and the absence of a
common time base. However, recent approaches from the
industry provide support for time-synchronization on all three
major in-vehicle buses Ethernet, CAN and FlexRay, according
to AUTOSAR standard specifications from [15]. The recent
AUTOSAR specifications for time synchronization on CAN,
give a caveat on the worst-case accuracy for time masters,
gateways and even for slave nodes, by placing it at 10µs, i.e.,
section 4.1 in [16]. This shows that the requirements of our
approach are realistic and in-line with current trends from the
industry. Time synchronization is also a requirement in case
of time-triggered communication on TT-CAN (Time-triggered
CAN) and thus present in real-world applications.

Design intentions. We create a covert authentication chan-
nel, which leaves the bits of the CAN frames unchanged, and
increases the data rate of the channel by relying on efficient
frame scheduling. The addressed scenario is briefly outlined
in Figure 2. To avoid overloading the figure, only two ECUs
(Electronic Control Units) and one external device (poten-
tially a CANcase) are depicted, but there are no restrictions
regarding the number of ECUs or external devices in our
scenario. The ECUs communicate messages in the usual way
at predefined periods ∆i, i = 1..n for each of the IDs defined
on the bus (we assume n such IDs), to which a small drift
εi and a small authentication delay ξ are added (more details
in the forthcoming sections). The main advantages of a covert
authentication channel on the CAN bus are the following:

• it does not consume bits from the frame data-field which
is limited at 64 bits,

• it covertly embeds authentication data in the frame that
carries the data, without requiring an additional authen-
tication frame,

• it does not increase the bus-load since authentication data
is hidden in delays.

The covert channel that we create for message authentica-
tion on CAN has to be perceived as complementing rather than
competing with regular MAC-based solutions. It is obvious
that the use of regular MACs is more efficient, but it is
also undeniable that the limited size of the data-field (64
bits) makes the inclusion of such MACs difficult and MAC
truncation is the only option which in turn significantly cuts
on the security level (adding additional authentication frames

is likely impractical as we later discuss). In contrast, the
covert authentication channel can bring an additional layer of
protection on existing traffic without penalties. In fact, the
optimized traffic allocations that we discuss directly improve
on the worst case arrival time for genuine frames since there
are fewer or hopefully no frame collisions on the bus. A
comparison between the capacity of the covert-channel and
that of the regular, intended communication channel, would
be biased since the former builds on minuscule physical
fluctuations of the later (not surprisingly, covert channels do
have a smaller data rate).

The main concept behind how frame authentication works
in our proposal, i.e., encoding authentication data in delays
and adding optimizations for frame timings, is detailed in
Figure 3. CAN frames, depicted by the identifier field ID,
arrive on the bus in a cyclic manner (to avoid overloading
the figure, we omit the data-field, but this is used in the
message authentication code along with the ID). While on-
event frames may also exist on the CAN bus, the majority
of the CAN traffic is cyclic in nature and we focus our
work on authenticating such traffic. We depict identifiers for
3 distinct delays ∆ = 10, 20, 50ms. A drift ξ is added to each
delay which carries authentication data in a covert manner.
In principle ξ is the last byte of a cryptographic message
authentication code (MAC). This MAC is computed over the
content of the entire frame and will be distinct for every frame
assuming proper use of freshness parameters, e.g., timestamps
or counters. To avoid overloading the figure we omit such
details in the graphical outline. Due to improper allocation of
CAN traffic, several packets may need to be transmitted at the
same time (this is suggested by packets highlighted in gray).
Such overlaps may not be a problem from a transmission point
of view, however, they affect the expected arrival time and thus
the data-rate of the covert channel. To avoid such situations,
we use an additional delay εi, i = 1..3 in order to allocate
traffic in an optimal manner and keep frame inter-distance at
a maximum. Figure 4 gives a crisper image on why poorly
optimized traffic is problematic for a covert timing channel.
The left side of the figure shows the inter-transmission times
between frames as recorded in a real-world vehicle. While the
entire traffic is cyclic, the inter-transmission time is noisy and
deviations from the expected arrival are common. To improve
performance we further rely on optimization algorithms. The
right side of Figure 4 shows inter-transmission times after
the traffic is optimized. The same bus-load and the same
number of IDs is used, but the inter-transmission time now
follows a clearer pattern. As expected and later proved by the
experiments, the covert channel will have a superior bitrate
over the optimized traffic.

A. Related work

Covert timing channels have been well explored in computer
networks, e.g., [17], [18], [19], but, except for the aforemen-
tioned recent papers [13] and [14], we are unaware of the use
of such channels for securing in-vehicle communication.

Table I attempts for a comparative summary between the
two existing proposals [13], [14] for covert timing channels

3

Fig. 3. Overview of the mechanism: frame arrival on the bus at delays ∆ = 10, 20, 50ms with adjustment εi, i = 1..3 and covert authentication delay ξ
resulting from a cryptographic MAC

on CAN bus and this work. We try to extract comparative
results in a unitary manner from TACAN [14] and INCANTA
[13]. Both these works experiment with a channel created by
altering the arrival time of a single ID which is used as a
carrier. In particular, TACAN [14] uses a carrier ID broadcast
at 10ms and encodes 1-bit of information in the arrival time
while INCANTA [13] uses a carrier ID broadcast at 100ms
and encodes 5-bits of information. To increase the data-rate,
TACAN [14] also uses a least-significant bit channel by which
the last bit of the data-field is modified, but this is not a
timing covert channel and thus we do not include it in this
analysis focusing only on the Inter-Arrival Time (IAT) version
of TACAN. The bit-error rate (BER) is less than 1% for [14]
with the mention that this value for the BER is obtained by
approximating over 4 frames (otherwise the BER could top
significantly higher at around 40%). For [13] the value of the
BER is 1.75% and holds for a high-priority ID that easily
wins arbitration. In terms of throughput, 22.5 bps are reported
by [14] and we can compute a data-rate of 57 bps for [13]
which despite the slower periodicity of the ID, i.e., 100ms in
[13] vs. 10ms [14], uses a higher drift for the ID, i.e., 220ns
with a tolerance of 20.000ns which leads to around 5 bits
extracted from each message. Neither [14] nor [13] experiment
with covert data carried by multiple IDs and it is unlikely
that the performance extends linearly with the number of IDs
due to increased unpredictability of the arrival time in case of
lower-priority IDs. In contrast, in CANTO we use all the IDs
from the bus for the timing covert channel. The optimal traffic
allocation from CANTO allows us to achieve identical results
for all IDs and thus a data-rate of around 5047 bps and a BER
of 0.95% as we later show in the experimental section.

While there are not many related works on covert channels
for CAN, there are several related works that are in close
relation to our approach. Optimal traffic allocation with respect
to the security payload has been targeted by a small amount
of works dedicated to CAN security such as [20], [21], [22]
and [23]. These works do not target the creation of a covert
timing authentication channel, but they focus on optimization
problems for CAN traffic.

Nonetheless, many recent research works have been fo-
cusing on using frame arrival time, i.e., the delays that we

TABLE I
COMPARATIVE PERFORMANCE RESULTS FOR COVERT TIMING CHANNELS

ON THE CAN BUS

Protocol Throughput Throughput BER Security Level

(single ID) (all IDs)

TACAN-IAT [14] 22.5 bps N/A <1% 1 bit/frame

INCANTA [13] 57 bps N/A 1.75% <5 bits/frame

CANTO (this work) 36-366 bps 5047 bps 0.95% 3-5 bits/frame

use to create a covert channel, in order to detect intrusions,
e.g., [24] and [25]. By using Bloom filters [26], frame arrival
time has been also combined with frame content to filter
malicious activity in [27]. More recently, frame periodicity
has been exploited to extract clock skews which is used to
create a unique fingerprint for each device due to physical
imperfections in oscillators in [28]. This sets room for physical
fingerprinting of CAN nodes. The use of clock skews has
been explored for fingerprinting computers for more than
a decade by the work in [29] and not surprisingly it was
also applied to smart-phones [30]. Unfortunately, identification
mechanisms based on clock-skews are rendered ineffective
by the fine grained control of time-triggered interrupts on
embedded devices which allow them to potentially fake their
clock-skews as demonstrated by [31]. All these works are
exploiting the precision of the clock circuitry in the controller,
which also stays at the core of our proposal here.

To save bits from the data-field, other works have suggested
the use of the identifier field, i.e., [32], [33], [34] and [35], but
this requires special care as the identifier field is critical for
arbitration and also used for filtering purposes. An alternative
to identify senders without compromising bits of the CAN
frame is to use physical signal characteristics, e.g., [36],
[37], [38], but these approaches may be vulnerable to small
variations in bus impedance.

II. BACKGROUND AND EXPERIMENTAL SETUP

This section gives a brief overview on delays and clock
skews on the CAN network. Nonetheless we discuss limita-

4

Fig. 4. Delays between frames: real-world car (left) vs. optimized traffic on
our setup (right) at similar busload 30− 40%

t0δ1

ECU1

ECU2

ECU3

2δ1 3δ1

δ2 2δ2 3δ2

δ3 2δ3 3δ3

T1(δ3)-δ1

T1(2δ3)-2δ1

T1(3δ3)-3δ1

T1(δ2)-δ1

T1(2δ2)-2δ1

T1(3δ2)-3δ1

δ1 2δ1 3δ1

t

Fig. 5. Accumulation of clock skews for ECUs broadcasting at interval δ

tions in previous works on covert timing channels for the CAN
bus. Then we describe the components of our setup.

A. Clock skews and limitations in previous work

In Figure 5 we show how clock skews accumulate when
three ECUs are broadcasting at fix time intervals δ. While the
delay δ is fixed, due to clock imprecision, the time measured
at each ECU is in fact δ1, δ2 and δ3 respectively. If the first
ECU measures the arrival time for frames received from the
second and third ECUs, the delays accumulate. The result is a
slope which represents the skew of the clock. Figure 6 shows
a graphical depiction for the delays measured on one Infineon
board vs. CANoe in case of frames broadcast periodically
by another Infineon board. The depiction is according to our
previous work in [13]. Delays are forced at ±100,±250,±500
clock ticks (1 tick is 10ns) and thus several slopes are visible
in the picture.

The main limitation of our previous work on creating covert
channels on the CAN bus was that existing traffic (poorly
allocated) impedes the data-rate of the covert channel. Figure
7 shows the variation of delays recorded on four Infineon
TriCore boards without (left) and with (right) existing network
traffic according to [13] (delays are expressed as a fraction
between the expected arrival time and recorded arrival time).
In case of existing traffic, some of the frames arrive with
significant delays making them indistinguishable for frames
that are sent with random delays. These delays contribute to
the false-positives of an intrusion detection mechanism. As we
discuss and show in this work, traffic optimization is the only
solution to this problem.

B. Worst-case arrival times

The worst-case arrival time of CAN messages is critical for
assessing the viability of a particular allocation for message
periods in a CAN network. Note that due to its ID-oriented
arbitration, the arrival of low-priority IDs can be significantly
delayed by IDs of higher priority. To serve us as a tool in

Fig. 6. Skews for a frame sent from an Infineon TC277 as recorded by an
Infineon board (left) or from CANoe/VN CAN adapter (right) in [13]

Fig. 7. Forced delays as recorded in [13] for a free bus (left) vs. a bus with
regular network traffic (right)

proving the feasibility of our approach as well as for outlining
the bandwidth constraints of the bus we now set a brief
background on CAN schedulability.

For this, we will use the theoretical framework proposed in
[39]. In particular we use the busy period t and worst-case
queueing delay w of message m as defined in [39]:

tn+1
m = Bm +

∑
k∈hp(m)∪m

⌈ tnm + Jk
Tk

⌉
Ck (1)

wn+1
m (q) = Bm + qCm +

∑
k∈hp(m)

⌈wn
m + Jk + τbit

Tk

⌉
Ck (2)

We keep the original notations from [39] and m is to be
interpreted as the ID of the message which defines its priority.
In the previous relations, Bm is the blocking delay caused by
a lower priority message being transmitted, Jk is the queueing
jitter of message k, Tk the period of message k, Ck the
message transmission time, q the instance of message m and
τbit the time to transmit a single bit on the bus. By hp(m)
we denote messages that have higher priority than m, i.e.,
messages with lower IDs. Both t and w are to be solved by
recurrence over n (for more details we refer the reader to
[39]) until the values of t and w converge, i.e., tn+1

m = tnm
and wn+1

m (q) = wn
m(q).

Fig. 8. Busy period and worst-case queueing delay as computed for the 40
IDs in our setup (blue) and impact of doubling the number of IDs (red)

We now show the results that we obtain by applying the
previous methodology on our specific allocation with 40 IDs.

5

We selected the IDs and their periodicity to obtain a 40%
bus-load that is characteristic to a real-world vehicle. The IDs
have cycles of 10, 20, 50 and 100 ms (more evaluations of
this allocation are given in the forthcoming section). We fix
the following parameters that are characteristic for our setup:
τbit = 2µs for the 500kbps CAN that we use, Ck = 270µs
which is the duration of the longest message on the bus
(according to [39] this is computed as (55 + 10B)τbit where
B is the number of bytes in the message) and Bm = 270µs
except for the ID with the lowest priority where Bm = 0.
Figure 8 shows the busy period on the left and the worst-
case queueing delay on the right for each of the 40 IDs (blue
circles). The values for some of the IDs are depicted as labels
but these are of little concern, the values are simply allocated
such that faster IDs have higher priority and are consecutively
numbered for the same periodicity so that that we could
visually trace them easier. Then we depict with red circles
the evolution of these when the number of IDs is doubled,
e.g., the case in which we need to send additional frames with
authentication data. In the original instantiation with 40 IDs,
the busy period of the bus will be between 0.2–1.2ms for the
IDs broadcast at 10ms and 5.4–8ms for the IDs at 100ms.
The queueing period stays in the range of 0.52 – 11.96ms.
A drift of 11.96ms may be somewhat high even for frames
that have a period of 100ms. However, when doubling the
number of IDs, the busy period and worst-case queueing delay
increase in the range of 0.52–34.06ms, that is by a factor of
3 in the worst case. By doubling the bus-load, the worst case
arrival times increases higher than the expected twofold which
suggests that adding additional frames is hardly an alternative.
Optimizing traffic allocation will also help in this respect.

C. Setup components

We implement and evaluate optimizations on traffic allo-
cation using an AURIX TC224 TFT Application Kit. The
development board features a TC224 32-bit TriCore CPU that
runs at frequencies up to 133 MHz and provides 1MB of
FLASH memory and 96kB of RAM memory. The CAN frames
transmitted by our TriCore-based implementation are recorded
using CANoe, a software tool used for analyzing and testing
of automotive networks. To achieve this, the CANoe running
PC is interfaced with the development board through an VN
CAN to PC adapter as depicted in Figure 9. The recorded
traces were analyzed offline using Mathematica.

Since, according to the described mechanism, CAN frames
have to be transmitted in specific time slots, nodes need
to implement a time keeping functionality. We implemented
this on the TC224 using the Capture/Compare Unit 6 Timer
(CCU6) module which was configured to trigger an interrupt
every 1 µs as a base tick for our local clock. In several
experiments, we used the last 7 bits of a computed MAC value
to represent the authentication delay. This delay is added to the
message cycle time plus ε, and when enough CCU6 Timer’s
ticks have passed, the message is sent on the bus.

All of the message data bytes, configured message cycle
times and the selected ε values for each message were con-
figured in the MultiCAN+ module. The MultiCAN+ module

Fig. 9. Experimental setup used for generating and recording CAN traffic
according to the proposed mechanisms

is also responsible for transmitting the frame data to the CAN
transceiver with the specified baudrate of 500 kbps.

After performing the initial hardware setup, the initial MAC
values are calculated for each message. During runtime, based
on the counter value incremented in CCU6’s timer, the cycle
times for all frames and the ε values, each frame is sent, but
with a small delay as already described. The frame delivery
will take place after ξ ticks of the CCU6 Timer have expired.
After each frame delivery, the message counter is incremented
and a new MAC value is calculated based on the message data
and the message counter.

III. OPTIMIZING TRAFFIC ALLOCATION

This section addresses the optimization algorithms that we
use. Traffic allocation is essential for achieving a satisfactory
data-rate on the covert channel. We design and discuss four
algorithms for traffic allocation and prove their effectiveness
by both theoretical models/simulation and experimental data.
We use two of these algorithms in the next section and
implement the covert channel over optimized CAN-bus traffic.

A. Problem statement

We consider a set of n pairs {(id1,∆1), (id2,∆2),...,
(idn,∆n)}, each pair being formed by a CAN identifier and
the cycle time (periodicity) corresponding to the identifier.
If on-event frames exist, a distinct mechanism should be
used, this situation however is out of scope for our work.
Further, let {(idi, T i

1), (idi, T
i
2), ..., (idi, T

i
l)} be the set of

identifier-timestamp pairs where timestamp T i
j ,∀j = 1..l

is the time at which idi was received on the bus. Ideally,
T i
j+1−T i

j = ∆i,∀i = 1..n, j = 1..l, which means that frames
having the same identifier ID are received at periodicity ∆i. In
practice however, there are many reasons that impede a perfect
arrival time. Besides clock drifts, i.e., the clock of sender and
receiver nodes is not identical, delays may occur due to frames
with overlapped sending time. Since CAN arbitration is non-
destructive, there is no problem if two nodes try to send a
frame at the same time. But the frame with the higher ID

6

Fig. 10. Frame arrival time for a 64 bit data frame (left) and for a variable
frame 0–64 bits (right) with data rates from 64kbps to 500kbps

loses arbitration and will be sent after the smaller ID which
makes the arrival time drift from the expected ∆i.

Frame arrival time. The time required for a frame to be
transmitted on the bus depends on the size of the frame and
data rate of the bus. Data rate can be up to 1Mbps in standard
CAN, though lower data rates of 125-500kbps are commonly
employed. The size of the frame varies due to the number of
stuffing bits, i.e., one bit of reverse polarity is added after 5
consecutive identical bits (for a frame with 64 bits of data
plus the header, a maximum of 24 stuffing bits can be added).
The left side of Figure 10 shows the variation of frame arrival
time in case of a 64 bits data frame which expands to 111
bits (without stuffing bits) and which may take as little as
100µs on 1Mbps or up to 900µs on a low-speed 125kbps bus
(stuff bits not included). For a broader image, the right side
of Figure 10 expands this calculation for variable size frames
(0–64 bits) size and bus rates (64kbps–1Mbps).

Frame arrival time in real-world traces. In Figure 11 we
depict the arrival time for frames scheduled at 10, 40 and
150ms. The left side of the figure shows the delay between
frames carrying the same ID and the right side the histogram
distribution of the same delay. Even for the higher priority
frame arriving at 10ms, deviations of 400µs are common.
For the 40ms frame deviations of 2− 4ms are common and
the situation is similar for the 150ms frame. In case of the
500ms frame, deviations of 10ms become common as well.

Such deviations from the expected arrival time exist and
they clearly lower the bitrate of a covert timing channel.
The deviations from the expected arrival time are directly
influenced by local clocks and the priority of the message ID,
but these can be circumvented by clever allocation of frame
timings as we discuss next.

B. Optimizing frame scheduling

In the previously defined framework, if each frame is sent
at multiples of ∆i, i = 1..n, the collisions on the bus between
frame i, j, ∀i, j = 1..n will occur at multiples of lcm(∆i,∆j)
(here lcm stands for the least common multiple of the two inte-
gers). This can be extended to any number of frames. In theory,
all frames will collide on the bus at lcm(∆1,∆2, ...,∆n).
Again, such collisions are non-destructive but they impede the
covert timing channel since they cause additional delays that
lead to deviations from the expected arrival time, prohibiting
the extraction of covert bits from timing information. To
avoid such collisions, we extend the frame scheduling set
to {(id1,∆1, ε1), (id2,∆2, ε2), ..., (idn,∆n, εn)} where εi, i =

(i)

(ii)

(iii)

Fig. 11. Frame arrival time and histogram distribution of frame arrival time,
for frames arriving at (i) 10ms, (ii) 40ms and (iii) 150ms delays

1..n is a small drift added to the frame sending time. By our
allocation, frames will be sent at intervals k∆i+εi (rather than
k∆i). Our optimization problem consists in finding the values
for εi, i = 1..n such that for a given set of delays ∆i, i = 1..n
no collisions will occur on the bus and moreover, the space
between frames is maximized.

We use the following theoretical model to compute optimal
frame allocation. Let the following n sets of traces correspond-
ing to the n IDs broadcast over the CAN network:

T1 = {(id1, ε1), (id1,∆1 + ε1), ..., (id1, (l − 1)∆1 + ε1)}
T2 = {(id2, ε2), (id2,∆2 + ε2), ..., (id2, (l − 1)∆2 + ε2)}

.........

Tn = {(idn, εn), (idn,∆n + εn), ..., (idn, (l − 1)∆n + εn)}
(3)

Having the previous equations, we say that the frame
scheduling is complete if |T1 ∪ T2 ∪ ... ∪ Tn| = |T1|+ |T2|+
...+ |Tn| where |Ti|, i = 1..n denotes the cardinality of the set
Ti. By this condition on the equality of the sets, we request
that timings are distinct for all of the n frames.

Let T ∗ = {t1, t2, ..., tn} be the set containing all time
stamps for all messages, we assume this set to be sorted in
ascending order, i.e., the natural way in which frames are
expected to arrive on the bus. To maximize the inter-frame
space (IFS), we define a quality factor q under which we
try to optimize the scheduling of the frames. We follow the
natural intuition that the larger the IFS, the smaller the values
1/(ti − ti−1) will be and thus their sum will be also smaller.
We say that the frame scheduling is optimal if the following

value is minimal:

q =
1

n

n∑
i=2

1

ti − ti−1
(4)

7

Given that the IFS, i.e., ti − ti−1∀i = 2..n, is measured in
units of time, i.e., seconds, the q factor should be interpreted in
units of frequency, i.e., s−1. In what follows we discuss four
variants of allocation algorithms that target the optimization
of the quality factor q.

A practical instantiation. The subsequent optimization ex-
amples address the following frame periodicity vector which
is based on existing CAN traffic from a real-world vehicle:

∆ = {10, 10, ..., 10︸ ︷︷ ︸
×6

, 20, 20, ..., 20︸ ︷︷ ︸
×8

,

50, 50, ..., 50︸ ︷︷ ︸
×12

, 100, 100, ..., 100︸ ︷︷ ︸
×14

}
(5)

The vector ∆ corresponds to 6 IDs that have a cycle time
of 10ms, 8 IDs with a cycle of 20ms, 12 IDs with 50ms
and finally 14 IDs with a cycle time of 100ms. The values in
the vector represent the intended period for frames with the
same ID, their arrival time will be only slightly affected by
the delay on the covert channel which is of up to two hundred
micro-seconds. In what follows we eliminate frame collisions
on the bus by modifying the sending time with a small value
εi, i = 1, n that does not affect the cycle time but only slightly
shifts it as can be seen from relation (3).

Binary symmetric allocation. This is the simplest of the
allocation algorithms that we use, it is very easy to imple-
ment and gives good results (we improve however on the
inter-frame space with the next algorithms). In the binary
symmetric allocation, we start with a bin size equal to the
window size w which is the minimum of the delays w =
min (∆1,∆2, ...,∆n) and allocate all the values εi, i = 1..n
to fit symmetrically in the interval [0..w]. For this we start with
a bin of size w then we create new values εi by dividing each
existing bin. That is, ε1 is first placed at w/2, then for ε2 and
ε3 two new bins are created at w/4 and 3w/4, etc. Algorithm
1 shows the steps of the binary symmetric allocation. We
assume the delays appear in rdelays in ascending order (∆1

is missing from the list since it is already allocated to a
default value ε1 = 0). Variable blist is instantiated with
the first delay ∆1 (for which we allocate a default value
ε0 = 0) and a second delay ∞ which is merely a placeholder
for delimiting the bin which has size ∆1. In step 4 we
loop until an εi is generated for each value ∆i. For this
purpose, we create a new list blist ′ in step 5 and loop in
step 6 over all existing values in blist to create a new value
(blist [i−1, 1]−blist [i, 1])/2 that is added between blist [i−1]
and blist [i] in the newly created list blist ′. In step 15 blist
is replaced with blist ′ at each iteration. At the end of the
procedure blist will contain all pairs {(ε1,∆1), ..., (εn,∆n)}.
A graphical depiction of the theoretical frame timings is in
Figure 12. In Figure 13 we present the experimental results as
measured from CANoe in when an Infineon node broadcasts
frames with the corresponding timings. The theoretical results
and experimental measurements are reasonably close. Differ-
ences exists as several frames are broadcast later resulting
in a 2.5ms inter-frame delay. The reason for this is that the
minimum inter-frame space is at 150µs which is also around
the time needed to place a frame on the bus at 500 kbps. Due

Fig. 12. Theoretical displacement of delays in case of binary symmetric
allocation: detail for delays lower than 300µs and overall view up to 1.2ms
for the first 2000 frames

Fig. 13. Experimental measurements from CANoe of an Infineon node
broadcasting after binary symmetric allocation: delays (left) and histogram
distribution of delays (right)

Algorithm 1 Binary symmetric allocation
1: procedure BINARY ALLOCATION
2: rdelays ← {∆2, ...,∆n}
3: blist ← {(0,∆1), (∆1,∞)}
4: while size(rdelays) > 0 do
5: blist ′ ← {blist [1]}
6: for i = 2, i ≤ size(blist) do
7: if size(rdelays) > 0 then
8: blist ′ ← append(blist ′, (blist [i− 1, 1]

−blist [i, 1])/2, rdelays[1]))
9: blist ′ ← append(blist ′, blist [i])

10: rdelays ← delete(rdelays, 1)
11: else
12: blist ′ ← append(blist ′, blist [i])
13: end if
14: end for
15: blist ← blist ′

16: end while
17: end procedure

to computational delays on the controller, if the time-slot is
missed, the frame will be sent at some later point missing the
expected allocation on the bus. We conclude that 150µs for
inter-frame space is somewhat too short.

Randomized search allocation. The randomized search first
creates a list of εi, i = 1..n that are equally spaced. A distance
set to e where e = min (∆1,∆2, ...,∆n)/n is a natural choice
since at worst all frames will appear during the periodicity of
the fastest frame from the bus. However, other values may be
fixed for e. Then the εi, i = 1..n values are allocated randomly
to each delay ∆i, i = 1..n. After ` iterations (each consisting
in a randomized allocation) the best allocation is kept. The
result improves with a higher number of iterations. Algorithm
2 shows the steps of the randomized search allocation. First,
the value of e is computed in line 2, then values of the
target epsilons are generated in line 3 and stored in reps .
The current optimum q is set to ∞ in line 6 and the best
allocation reps ′′ is set to void in line 7. Then we loop in line
8 for maxiterations . During each loop, the new values reps ′

are set to a random permutation from reps in line 9. Lines
10–16 compute the quality factor q for the new allocation.

8

Algorithm 2 Randomized allocation
1: procedure RANDOMIZED ALLOCATION
2: e← min(∆1,∆2, ...,∆n)/n
3: reps ← {0, e, 2e, ..., (n− 1)e}
4: delays ← {∆1,∆2, ...,∆n}
5: i = 1
6: q ←∞
7: reps ′′ ←⊥
8: while i ≤ maxiterations do
9: reps ′ = randomize(reps)

10: T ∗ ← {}
11: for j = 1, i ≤ n, j = j + 1 do
12: Tj ← {k∆j + reps ′[j]; k = 1..bT/∆jc}
13: T ∗ ← append(T ∗, Tj)
14: end for
15: T ∗ ← sort(T ∗)

16: q′ = 1
n

∑|T∗|
i=2

1
ti−ti−1

17: if q′ < q then
18: reps ′′ = reps ′

19: q = q′

20: end if
21: i = i+ 1
22: end while
23: end procedure

For this, the set of timestamps Tj , j = 1..n is generated for
each delay, according to the corresponding εj of the current
permutation. The timestamps are computed for a timeframe T
(in our practical tests we set this to 1-10 seconds). Then the
set of timestamps T ∗ is sorted and q is computed accordingly.
If the result is better than for the previous optimum, i.e., line
17, the new result is stored in reps ′′, otherwise it is dropped.
The randomized search gave somewhat better results than the
binary symmetric allocation, but again the 250µs seems to be
problematic for some frames (we improve on this with the
next two algorithms).

Greedy allocation. In the Greedy allocation, for n delays,
we first create bins that are equally spaced at distance e =
min(∆1,∆2, ...,∆n)/n (this is identical to the case of the
previous algorithm). Then we allocate the delays in ascending
order in such way that q is minimized. In Algorithm 3 we
show the steps of the Greedy allocation. The algorithm starts
by building the set of values εi, i = 1..n in a similar way to
the randomized allocation described previously. Then it loops
for each delay in line 7 and for each of the remaining values
ε loops again in line 10 in order to find the optimum value for
the current delay. Each of the selected values is tested against
the optimization criteria in a similar manner to the randomized
allocation. The index of the optimal value is stored in ind and
this is removed from the ε values stored in reps in line 21 such
that only the remaining values could be allocated for the next
delay ∆i.

Greedy Multi-Layer. To circumvent the 250µs inter-frame
space issues we modify the Greedy allocation to a Multi-Layer
Greedy allocation in which frames at delay ∆i, i = 1..n are
allowed to be placed at any multiple of e that is smaller than
∆i. This allows for a better expansion of the frames since
frames at a larger ∆i can benefit from a larger εi. We skip
formalism for this algorithm to avoid overloading the paper.
The theoretical and experimental results are in Figures 14 and

Fig. 14. Theoretical displacement of delays in case of Multi-Layer Greedy
allocation: detail for delays lower than 300µs and overall view up to 1.2ms
for the first 2000 frames

Fig. 15. Experimental measurements from CANoe of an Infineon node
broadcasting after Multi-Layer Greedy allocation: delays (left) and histogram
distribution of delays (right)

15. This time the results are almost identical and the inter-
frame space is expanded to up to 500µs.

GCD based allocation. We also try a Greatest Common
Divisor (GCD) based allocation in which the frames are spaced
by a delay, e.g., fixed at 500µs + δi where δi, i = 1..n,
which is a multiple of gcd(∆1,∆2, ...,∆n) subject to the
condition that 500µs + δi is smaller than ∆i. The steps of
the GCD based allocation are depicted in Algorithm 4. It
starts from building a matrix M of max(delays)/G rows
and min(delays)/ε columns, where G is the greatest common
divisor of the delays and ε is the minimum allowable IFS. The
matrix is initially filled by 1s. Then in step 7 the algorithm
loops for all the delays searching for each of them an empty

Algorithm 3 Greedy allocation
1: procedure GREEDY ALLOCATION
2: e← min(∆1,∆2, ...,∆n)/n
3: reps ← {0, e, 2e, ..., (n− 1)e}
4: reps ′ ← {}
5: delays ← {∆1,∆2, ...,∆n}
6: T ∗ ← {}
7: for i = 1, i ≤ size(delays), i = i+ 1 do
8: opt =∞
9: ind = 1

10: for j = 1, j ≤ size(reps), j = j + 1 do
11: T ∗aux ← T ∗

12: Tj ← {k∆j + reps ′[j]; k = 1..bT/∆jc}
13: T ∗aux ← append(T ∗aux , Tj)
14: T ∗aux ← sort(T ∗aux)

15: opt ′ = 1
n

∑T∗
aux

i=2
1

ti−ti−1

16: if opt ′ < opt then
17: ind = j
18: opt = opt ′

19: end if
20: end for
21: reps ← remove(reps, ind)
22: reps ′ ← append(reps ′, ind)
23: Ti ← {k∆i + reps ′[i]; k = 1..bT/∆ic}
24: T ∗ ← append(T ∗, Ti)
25: end for
26: end procedure

9

Algorithm 4 GCD-based allocation
1: procedure GCD-BASED ALLOCATION
2: delays ← {∆1,∆2, ...,∆n}
3: G← gcd(delays)
4: ε← 0.5
5: reps ←⊥
6: M ← 1[1..max(delays)/G][1..min(delays)/ε]

7: for i = 1, i ≤ size(delays), i = i+ 1 do
8: d← delays[i]
9: j = 1

10: s = false
11: while s = false&j ≤ |M | do
12: k = 1
13: aux = M [j]
14: while k ≤ |aux |&aux [k] = 0 do
15: k = k + 1
16: end while
17: if k ≤ |aux | then
18: l = d/G
19: a = k
20: s = true
21: while a ≤ |aux | do
22: if aux [a] 6= 0 then
23: aux [a] = 0
24: a = a+ l
25: else
26: s = false
27: end if
28: end while
29: if s = true then
30: M [j] = aux
31: reps = append(reps, (j − 1)ε)
32: end if
33: end if
34: j = j + 1
35: end while
36: end for
37: end procedure

row in the matrix M . The search is done in the loop from
step 11 starting from row j = 1 (initialized in step 9) and
continuously increases j in step 35 until a row without 0s is
found. To test that the current row has non-zero values, the
loop in step 14 goes until the end of the current line aux. If
the resulting k is smaller than the length of the line |aux|, then
starting from step 17, the line is filled with zeros at l = d/G
steps (where d is the current delay). The result for the current
delay is placed in reps in line 31. For a crisper view, the
resulting drifts εi (expressed in milliseconds) for the delays in
relation (5), that correspond to the 40 IDs in our experimental
setup, are as following:

εi:1,40 = {0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 13.0, 3.5, 13.5, 4.0, 14.0,

4.5, 14.5, 5.0, 15.0, 25.0, 35.0, 45.0, 5.5, 15.5, 25.5, 35.5,

45.5, 6.0, 16.0, 26.0, 36.0, 46.0, 76.0, 86.0, 96.0, 6.5, 16.5,

26.5, 36.5, 46.5, 56.5, 66.5, 76.5}
(6)

The allocation provides results similar to the case of the
Multi-Layer Greedy allocation. The theoretical and experimen-
tal measurements are in Figures 16 and 17 for a minimum
inter-frame of 0.6ms and a 2.2ms maximum. When the
minimum inter-frame space was lowered to 0.5ms, similar to
the case of the Greedy ML, the maximum increases to 4ms.

In Table II we summarize a comparison between the four
optimization algorithms. The main drawback with the first

Fig. 16. Theoretical displacement of delays in case of GCD at 0.6ms
allocation: detail for delays lower than 300µs and overal view up to 1.2ms
for the first 2000 frames

Fig. 17. Experimental measurements from CANoe of an Infineon node
broadcasting after GCD allocation at 0.6ms inter-frame space: delays (left)
and histogram distribution of delays (right)

TABLE II
COMPARISON OF ALLOCATION ALGORITHMS

Completeness q-Factor Min IFS Max IFS
(s−1) (ms) (ms)

Binary Sym. Search X 2.37 0.15 2.5
Randomized Search X 2.51 0.25 3.75

Greedy Search X 2.39 0.25 2.5
Greedy ML Search X 1.50 0.5 1.25

Circular GCD X 1.86 0.5 4

three algorithms is that they leave a minimum inter-frame
space of only 150µs - 250µs which is problematic since it
may be smaller than the transmission window for a single
frame (this may cause delays that pile-up and compromise the
data-rate of the covert channel). The multi-layer Greedy and
circular GCD returned the best results with a minimum IFS of
500µs which is sufficient even to accommodate the transmis-
sion of an additional frame. The value of the maximum IFS
is not an optimization criterion in our algorithms and does
not affect the covert channel (which exploits delays less than
the minimum IFS). However, if the minimum IFS is closer
to the maximum IFS, the busload will be more uniform and
this may be preferable for other constraints, e.g., real-time
response. Since implementation and computational costs are
low for both the Greedy ML and circular GCD algorithms, we
consider that any of them is suitable for a practical scenario.
The results from Greedy ML offered a more uniform busload
nonetheless.

IV. PROTOCOL AND RESULTS

In this section we give an outline of the protocol, then
we discuss practical results on the covert timing channel that
carries authentication tags.

A. Main protocol

In the current work we are focused on bus optimization for
achieving a maximum capacity for the covert channel. The

10

protocol for sending and receiving frames is not distinct from
our previous proposal [13] named INCANTA since we use
the same kind of covert channel based on the drift of the
frame from the expected arrival time. A minor difference is
that to each delay ∆i, i = 1..n we add the corresponding value
εi, i = 1..n resulting from the optimization algorithm. For
consistency, we keep the same name and description for our
protocol INCANTA (INtrusion detection in Controller Area
Networks with Time-covert cryptographic Authentication). IN-
CANTA consists in the following set of actions that are to be
followed by each node:

1) SendCyclic(idi,m) is the procedure triggered at some
fixed delays k∆i + εi for a frame with identifier field
idi and message content m at which the responsible
sender ECU computes the authentication tag tag =
MAC sk(k, idi,m) by using a cryptographic MAC. Here
k is a counter that is incremented for each new message
that is sent with the same identifier. The sender then sets
T = btagc` and performs a wait operation wait(T) then
broadcasts message (id,m),

2) RecCyclic(idi,m) at which the kth instance of a message
with identifier idi is received. Let time tk be the time
at which the message is received, the receiver computes
tag = MAC sk(k, id,m) and Tk = btagc` then checks if
|tk − tk−1| − (∆i + Tk − Tk−1)| ≤ ρ and if this fails
it drops the frame and reports an intrusion otherwise it
considers the frame as genuine.

We consider that a shared secret key sk exists on each
ECU from the CAN bus. We do not discuss how this
key is shared since this is addressed by several other
works. Moreover, we consider that the frame-scheduling set
{(id1,∆1, ε1), (id2,∆2, ε2), ..., (idn,∆n, εn)} is available to
all genuine ECUs on the network. The delay is computed
as the difference between two consecutive timestamps for the
same ID in order to remove potential clock-skews. Indeed, by
experimental measurements we did determine that clock skews
may impede correct identification of delays. Concrete values
for practical instances of the scheme are discussed next.

As already stated in the introduction, the covert channel that
we propose should be viewed as a complementary measure for
increasing security. To avoid replay attacks, mounted by an
intruder based on the analysis of previously recorded delays,
the use of freshness parameters must be re-enforced outside the
covert channel. Current AUTOSAR specifications [10] require
the use of a freshness parameter, of unspecified length in
Profile 1 and 64 bits in Profile 3, that is further truncated
to 8 bits in SecOC Profile 1 and 4 bits in SecOC Profile 3. In
particular, in our implementation we used a counter for each
ID that is further embedded in the frame and consequently
used in the computation of the MAC which changes the forced
delay on the covert channel. The size of the counter inside the
frame can be kept in the recommended 4-8 bits range, and
to avoid replays over a longer runtime, larger counters should
be used. For example, 24 bits will be sufficient for 12 hours
of runtime in case of an ID sent at 10ms and this counter
will be truncated inside each frame. Thus we assume that
only the 4-8 least significant bits are sent inside the frame for

synchronization purposes, while each node maintains a larger,
e.g., 24 bit counter for each ID.

A fast instantiation of the MAC is provided by the CMAC-
AES which costs only 16-55µs on the Infineon controllers
from our setup. The computation of the MAC should be done
as soon as the data is ready for transmission and the time
required to compute the MAC must not impede the delays
established for the covert channel. The easiest way to achieve
this is to include only the ID and the counter in the MAC
since these are known in advance and thus the MAC can be
computed at any time and stored in a buffer (note however
that this does not hold as a security guarantee for the rest of
the data-field).

B. Adversary model

We consider the regular type of Dolev-Yao adversary that
has full control over the communication channel. Also, we
consider that legitimate nodes from the bus which are in
possession of the correct frame scheduling and MAC keys
can be trusted and the adversary is an external node. This
is realistic for automotive scenarios where component manu-
facturers can be trusted and most of the attacks reported so
far were caused by outside interventions. We also consider
attacks that remove a genuine node from the bus to be harder
to achieve in an automotive-based scenarios since this requires
either physical intervention or placing the node in the bus-off
state. The later possibility has been recently demonstrated in
[40] by exploiting the CAN error management system but it
requires active error flags (which are visible on the bus) and
the genuine node will remain in the bus-off state only for a
fixed period of time. Moreover, removing a node will likely
result in losing many functionalities from the car and many IDs
from the bus, a behaviour which will likely be immediately
recognized by the remaining ECUs. If the adversary cannot
remove the genuine node from the bus it is very likely that
the only effect of the adversary’s intervention will be a DoS
(Denial-of-Service) since the injected adversarial frames will
likely cause delays on the genuine frames. Due to the design
of the CAN bus, a DoS attack is always easy to mount on
the bus. This has been already proved by works such as
[40], [41], [42] which exploit either the physical properties
of the bus, e.g., the fact that dominant bits overwrite recessive
bits and thus legitimate frames can be impaired, or the error-
handling mechanism of CAN which may place nodes in the
bus-off state. Since our solution is dependent on an accurate
frame arrival time, such an attack may be somewhat easier
to mount but traffic abnormalities will be easy to detect from
bad timing information on the covert channel. Assuming that
the adversary can by some mean target a genuine node or a
specific ID and remove it from the bus, the adversary further
has to guess the exact delay at which the genuine frame needs
to be sent. The success rate of an adversary can be estimated
synthetically as:

γadv =
ρ

2`
(7)

This equation models the expected scenario where an ad-
versary can at best insert a frame at some random point that

11

(i)

(ii)

Fig. 18. Interframe delays (broadcast from Infineon TriCore node) in case of
circular GCD optimization ε = 0.5 without a covert channel (i) and with the
covert channel in place (ii)

hopefully will match the expected delay. Here ρ is the delay
tolerance for accepting a frame and ` is the security level (this
are part of the protocol description that follows). The value
of ρ has to be fixed based on experimental data, in the next
section we show that a suitable value is ρ = 5µs or even
less. Given the worst case clock synchronization precision
suggested in current standards [16] setting ρ = 10µs may
be also considered for a worst-case scenario.

C. Results with optimized traffic and a single sender

The experimental results that follow are based on optimized
traffic with either the Greedy Multi-Layer or the GCD-based
allocation. Since both algorithms yield a minimum IFS of
500µs the experimental results were similar with both al-
locations. Moreover, the 500µs IFS allows a free space of
230µs to implement the covert channel (considering a worst
case time of 270µs to send a frame on the bus). This would
allow for a truncated MAC of 7-8 bits to be encoded in the
delay. In the experiments we determined that ` = 8, which
leads to a maximum delay of 255µs, may still cause some
frame overlaps. Indeed, the 255µs added to the maximum
frame duration of 270µs may at time exceed the 500µs IFS.
However, ` = 7 results in a delay of at most 127µs and
was perfectly safe at this IFS with no overlaps. Thus we
can encode at most 7 covert bits in each frame, but not all
will be recovered due to measurement imprecisions (we later
determine the exact capacity of the covert channel). In Figure
18 we give an overview on the inter-frame delays on the bus
with (ii) and without (i) the covert channel in place. Note that
when the covert channel is in place, the delays vary randomly
with the last 7 bits of a MAC, i.e., at most 127µs. That is,
the deviations around the expected value (i) have a randomized
distribution (ii). Consequently, by observing past values of the
delays the adversary cannot predict future ones, i.e., replay
attacks are not possible. This becomes more evident in the
details from the right side of the picture for the case of frames
separated by only 500µs

The experiments that we carried proved to be consistent for
all the IDs, regardless of the delays at which they are sent, i.e.,

(i)

(ii)

(iii)

(iv)

Fig. 19. Experimental measurements for covert authenticated frames from an
Infineon TriCore node: deviation from the expected delays (left) and histogram
distribution (right) for an ID sent at 10ms (i), 20ms (ii), 50ms (iii) and
100ms (iv)

10, 20, 50 or 100ms. The variation of the estimated delay was
in the order of ±10µs which is consistent with the time of 5
CAN bits (at 500kbps the duration of one bit on the CAN bus
≈ 2µs). This variation may be due to the variation in frame
length due to the number of stuffing bits which differs (we
improve on this next).

Figure 19 shows the delays and their histogram distribution
for frames broadcast at at 10ms (i), 20ms (ii), 50ms (iii)
and 100ms (iv). Note that there are fewer samples as the
delay increases. The deviation from the expected arrival time
remains in the aforementioned range of ±10µs for all frames
and IDs. This is a good result considering the busload which is
identical to real-world operation of the CAN bus. To go even
further, we have also taken the frame length into account and
achieve a better match as depicted in Figure 20. The minimum
error for all messages was at −4.62µs and the maximum
at 4.87µs which means that at a 5µs tolerance all genuine
messages will get the intended delay.

In Table III we give the average rate for the true negatives
given the 2, 3 or 4µs tolerance bound. We depict both the suc-
cess rate for the genuine frames, i.e., γecu , and the adversary
advantage γadv in percents to facilitate interpretation of the
data. The value of γecu is extracted from the experimental
data, i.e., a trace which covers around 1.2 million frames.
The value is computed as the mean value of the acceptance

12

(i)

(ii)

(iii)

(iv)

Fig. 20. Experimental measurements for covert authenticated frames from an
Infineon TriCore node: deviation from the expected delays (left) and histogram
distribution (right) for an ID sent at 10ms (i), 20ms (ii), 50ms (iii) and
100ms (iv)

rate taken over all messages corresponding to the 40 IDs.
Concretely, depending on the ID, the 2µs error covered
between 91.4% − 95.2% of the legitimate frames, while the
3µs and 4µs covered 99.21%− 99.93% and 99.96%− 100%
respectively. The adversary advantage γadv is synthetically
computed based on relation (6) at ρ = 10 and ` = 7. We
also extend these results for the case of multiple frames, i.e.,
over k consecutive frames. The acceptance rate of k legitimate
frames is:

γ�(k) = γk�,� ∈ {adv , ecu} (8)

Here k stands for the number of frames. Based on the data
from Table III, in case when ρ = 5µs all the genuine frames
are accepted, while the chance of an adversary to inject a
frame is less than 1 in a million.

D. The multi-sender case and noisy channels

For a more practical evaluation of the proposed mechanisms,
we now extend our analysis for the case of multiple senders
and noisy channels. We show that with proper parameter
setup, both these scenarios can be addressed. The first scenario
raises problems regarding synchronization and clock skew
removal between senders. However, we obtain results similar
to the single sender case after proper synchronization and
skew removal. The second scenario is more problematic since

TABLE III
SUCCESS RATES (%) WITH TOLERANCE ρ ∈ {2, 3, 4, 5}µs AT ` = 7

ρ k = 1 k = 2 k = 3 k = 4 k = 6

2µs
γecu 93.34 87.14 81.34 75.93 66.10
γadv 3.1 0.09 0.003 0.00009 9.3× 10−8

3µs
γecu 99.56 99.12 98.68 98.25 97.38
γadv 4.7 0.22 0.01 0.0004 1.1× 10−6

4µs
γecu 99.99 99.98 99.97 99.96 99.94
γadv 6.2 0.39 0.02 0.001 5.9× 10−6

5µs
γecu 100 100 100 100 100
γadv 7.8 0.62 0.04 0.003 0.00002

optimal traffic allocation on the sender node meets existing
in-vehicle traffic that is not-optimized, nor synchronized with
the sender. While the performance is clearly lower, we show
that even in this scenario we can attain a reasonable security
level.

For the multi-sender scenario, we consider the case of two
distinct senders and distribute half of the IDs to each of them.
While more than two sender ECUs are generally present on
an in-vehicle network, the synchronization results that we
achieve for two senders should be extensible to any number of
senders. In fact, the AUTOSAR specifications in [16], make
it clear that the required 10µs synchronization error is for
all time masters, gateways and even for slave nodes. For
our testbed, we used one Infineon TC224 and one Infineon
TC237 as the senders plus one VN1640A device to record
traffic on the bus. The case of multiple senders on the bus
can be efficiently addressed by proper synchronization and,
as we later show, clock de-skewing techniques. As stated in
the introductory section, clock synchronization is enforced by
recent AUTOSAR standards not only for time-triggered buses
but also for CAN [16]. In our testbed, it was sufficient to use a
start-frame to announce the start of the broadcast for all nodes.
We determined that, as expected, due to clock skews the two
nodes lose synchronization after a few seconds of runtime.
Figure 21 shows the effect of synchronization loss for a frame
ID with a 10ms cycle time. As the clocks of the two sender
nodes diverge, overlaps between frames start to appear making
the frame shift with up to ≈ 200µs which is the duration of a
frame on the bus (this is visible in part (i) of Figure 21). Note
that this is in fact the blocking delay Bm from our previous
worst-case analysis. A detailed view of the [−10µs, 10µs]
range, illustrated in part (ii) of the same figure, shows that most
of the frames still arrive in time. We also depict the histogram
distribution of the deviations in the [−10µs, 10µs] range and
in the [−200µs,−10µs]∪[10µs, 200µs] range in parts (iii) and
(iv) of Figure 21. We suspected that these abnormalities are
caused by the skew of the clocks and the definitive proof came
after performing a skew adjustment. That is, we determined
that the clock of the Infineon TC237 needs to be adjusted by a
factor of 0.999965645 to match the clock of TC224. The slope
of the clock, i.e., the skew, was determined programmatically,
techniques for skew adjustment are well known in the litera-
ture, see [43]. To avoid precision loss due to float-to-integer
conversions or causing too much computational overheads, we
used the following correction in our code ctime = ctime
- 3.4355*(ctime/100000) triggered at each 100ms.

13

(i) (ii)

(iii) (iv)

Fig. 21. Gaps due to synchronization loss in the expected arrival time of an
ID (i), detailed view in the [−10µs, 10µs] range (ii), histogram distribution
of deviations in the [−10µs, 10µs] range (iii) and histogram distribution of
deviations in the [−200µs,−10µs] ∪ [10µs, 200µs] range (iv)

(i) (ii)

Fig. 22. The same ID after de-skewing: deviations from the arrival time (i)
and their histogram distribution (ii)

Note that this line of code adjusts the clock by 3.4355µs
at each 100ms. The adjustment value comes from the skew
coefficient 0.999965645 which would require an adjustment of
1− 0.999965645 = 0.000034355s each second, i.e, 34.355µs
for each second or equivalently 3.4355µs at each 100ms. The
result after de-skewing is shown in Figure 22. By adjusting
at 100ms intervals, the synchronization was almost perfect.
Only a slight biasing of the distribution to the left side can
be noticed in the histogram (note the −4 deviation to the left
compared to the +2 to the right). Even with this deviation,
almost all of the arrival times are kept in the expected range
with a ±5µs tolerance, similar to the case of a single sender.
The synchronization error of 10µs is taken into account by
the intrusion detection algorithm with the help of the tolerance
parameter ρ. The traffic optimization algorithms in Section III,
do not have to account for the 10µs error since they already
space frames by 150-500µs, which is much larger than the
synchronization error.

Table IV summarizes the results in distinct scenarios that
we tested. The first row presents the single sender case and
is identical to the results from Table III. Note that we do not
include the values regarding the adversary success rate since
these are identical to the ones in Table III as we use the same
security parameter ` = 7 and tolerances ρ ∈ {2, 3, 4, 5}µs.
Then we proceed in rows two and three of the table to the
case of two senders with optimized traffic allocation and
no synchronization, then with proper synchronization and no
skew correction. The results are somewhat similar: the absence
of the skew correction has in the long run almost the same
effects as the loss of synchronization, i.e., only 70–80% of the

frames arrive in the ±5µs tolerance. Finally, the fourth row
of the table shows the results with optimized traffic allocation,
proper synchronization and skew correction. This time the
results are very close to the single sender case which proves
that proper synchronization and skew correction solves the
case of multiple senders.

The last two rows of Table IV show the results for a
single sender over traffic recorded in a real-world vehicle
that occupies 18% and then 36% of the bus. This scenario
corresponds to the case when one retrofits an existing CAN bus
with a sender capable of covert communication. Our sender
node is responsible for an additional 18% busload, thus in
the first case half of the traffic from the bus is optimized
and the rest is not while in the later only one third of the
traffic is optimized. In case of ρ = 5µs the acceptance rate
drops from 100% to 65% and then to 38%. This should not be
surprising since the unoptimized traffic mixes at random with
our allocation.

While the results with traffic overlaps do not look so well,
the success rate of legitimate nodes is still much higher than
that of the adversary. This suggests that by proper amendments
of the scheme we can still separate between legitimate traffic
and adversarial interventions. One straight-forward approach
is to account for successful arrival of at least k-out-of-n frames
(rather than account for every single frame) which follows the
binomial distribution and leads to the following success rates
for legitimate nodes and adversaries:

γ�(k, n) =

n∑
l=k

(
n

l

)
γl�(1− γ�)n−l,� ∈ {adv , ecu} (9)

By properly setting parameters k and n we can obtain
very good separation rates. Table V shows the results by
setting n = 24 and k = 6..14 in case of the results from
the scenario with overlaps over 18% vehicle bus traffic. The
±5µs tolerance brings more than 99.99% acceptance rate
for legitimate frames and the chance for an intrusion not
being detected is 0.8%. Thus, under normal circumstances
at least k = 6 out of n = 24 frames would arrive on
time while in case of an adversarial intervention k will be
significantly lower and the attack detected. Frames should be
continuously monitored and all of them accepted as long as
k does not drop below 6 too often, e.g., more than 0.01%
of the cases, otherwise an intrusion should be signaled and
frames that do not arrive on time discarded (if the discarded
frames will unavoidably include legitimate frames that cannot
be separated, the adversary will at best cause a DoS). In
case of the overlap with existing 36% vehicle bus traffic, we
need to set n = 48 and k = 8 to get a 99.97% acceptance
rate of legitimate frames and a 3.13% rate of undetected
intruder activity. We believe that these are still good detection
accuracies considering that our covert channel is overlapped
with some arbitrary, existing in-vehicle traffic which adds
significant noise to the channel.

E. Channel data-rate, security level and influence on worst-
case arrival times

14

TABLE IV
SUCCESS RATES (%) FOR LEGITIMATE FRAMES IN DIFFERENT SCENARIOS

(ρ ∈ {2, 3, 4, 5}µs AND ` = 7)

Scenario ρ
2µs 3µs 4µs 5µs

Single Sender 93.34 99.56 99.99 100
Dual Sender (opt.) 59.19 71.29 77.76 80.25
Dual Sender (opt./sync.) 69.38 76.40 77.56 77.89
Dual Sender (opt./sync./de-skew) 85.07 95.52 98.68 99.68
Single Sender (on 18% car traffic) 34.30 50.81 61.70 65.81
Single Sender (on 36% car traffic) 17.75 28.02 35.70 38.70

TABLE V
SUCCESS RATES FOR K-OUT-OF-N SCHEME WITH TOLERANCE
ρ ∈ {2, 3, 4, 5}µs, ` = 7, n = 24 OVER 18% CAR TRAFFIC

ρ k = 6 k = 8 k = 10 k = 12 k = 14

2µs
γecu 88.2321 61.5313 28.7884 8.23784 1.35971
γadv 0.00770 0.00004 1.2×10−7 1.6×10−10 1.2×10−13

3µs
γecu 99.7402 97.3359 86.4570 61.1860 29.7967
γadv 0.06864 0.00087 5.4×10−6 1.8×10−8 3.1×10−11

4µs
γecu 99.9946 99.8746 98.5952 91.6052 71.2112
γadv 0.30101 0.00689 0.00007 4.7×10−7 1.5×10−9

5µs
γecu 99.9992 99.9727 99.5740 96.5006 83.8611
γadv 0.89451 0.03255 0.00059 5.7×10−6 2.9×10−8

We now consider to evaluate the maximum capacity of
the covert channel. The data-rate of noisy channels can be
computed with the Arimoto-Blahut algorithm [44], [45]. For
this purpose, we extracted the channel matrix which gathers
the probability that a sender delay ∆′ ∈ [0, 255]µs decodes
into a measured delay ∆′′ ∈ [0, 255]µs (this corresponds to
the case of ` = 8). Once the channel matrix was extracted
from the measurements, we used a freely available Matlab
implementation of the algorithm1 and determined that channel
capacity is ≈ 4.9 bits. Again, this suggests that the 24-bit
security level can be achieved in six CAN frames. This data-
rate can be also estimated from the results in Table III since by
setting a tolerance to 10µs we get a noiseless channel. But now
the 256 symbols are reduced to 25 and thus a data-rate of≈ 4.6
bits (this is a bit lower than the channel capacity computed
with Arimoto-Blahut algorithms which gives an upper-bound).
To avoid overlaps during the IFS, we used a 7-bit micro-second
delay and given the 10µs resolution at the receiver, we have
a rate of log2(127/10) = 3.66 bits for each frame.

Since the frame rate in our experiment was about 1379
frames-per-second we can estimate the maximum data-rate
at 1379 × 4.9 = 6757bps. Based on our more simple 7-bit
encoding and extraction, this turns into 1379×3.66 = 5047bps
(this is the effective data-rate of our protocol). Depending on
the cycle time of the ID, i.e., from 100ms down to 10ms,
from each ID we can extract 36–366bps with an expected
maximum of 49–490bps (based on the computed maximum
data-rate of the channel). The data-rate can be further increased
when more frames are on the bus. For example, in theory,
by using the bus at 54% capacity with frames equidistantly
spaced at 500µs, given the 270µs duration of a frame on the

1https://www.mathworks.com/matlabcentral/fileexchange/32757-channel-
capacity-using-arimoto-blahut-algorithm

(i) (ii)

Fig. 23. Adversary success rate for multiple frames, i.e., γadv (k), and k-out-
of-n frames, i.e., γadv (k, n), for: (i) k ∈ [1, 14] vs. a 2−15 security level
and (ii) k ∈ [1, 16] vs. a 2−24 security level (ρ = 5µs)

bus, there are still 230µs for a covert timing channel which
at 10µs synchronization error could give a maximum data
rate of 9800 kbps (considering the noise on the channel that
results from our measurements). As for the noisy channels
that result from overlaps with existing in-vehicle traffic, the
results from Table IV point to a reduction in the acceptance
rate from 100% in case of the single sender to 65.81% and
38.70% when overlapping with bus traffic at 18% and 36%
busload respectively. This would lead to a corresponding data-
rate of 3321bps and 1953bps for the two noisy channels in our
experiments. To sum up, data-rates of several kilo-bits seem
to be achievable for a covert timing channel on the CAN bus.

Security level. In Figure 23 we depict an estimation for
the adversary success rate compared to a 15-bit security level
(left) and 24-bit security level (right). The 15-bit security level
was chosen for comparison since it is the size of the CRC for
CAN frames (the CRC is not resilient in front of adversaries
but it worths as comparison), while the 24-bit security level is
demanded by AUTOSAR [10]. We depict both the adversary
success rate for multiple consecutive frames, i.e., γadv (k),
and for the k-out-of-n frames scenario, i.e., γadv (k, n) for
n = 24. The required security level of AUTOSAR can be
reached in 6–7 frames in case of the first scenario. In 3
consecutive frames the security level is around 12 bits while
for 6 consecutive frames it approaches the desired 24 bits for
in-vehicle security. The authentication delay tops at 1.3ms
for 3 frames and 6ms for 6 consecutive frames as depicted
in Figure 24. This is just a worst case scenario since often
the space between frames is 500µs and thus around 1.5ms
or 3ms are to be expected. This is a very small delay for the
24 bit authentication level considering that no cryptographic
operation is needed except for the regular MAC and the bus-
load is not increased. For the second scenario, i.e., the k-out-
of-n frame separation needed in case of the noisy channel (over
18% car traffic), we need around 12 correctly received frames
out of 24 frames - which places the adversary advantage at
5.7×10−6 and that of legitimates frames at 96.50% providing
good separation between the two (according to Table V). This
roughly requires a period of 24ms to detect the intrusion which
should be acceptable.

Impact on worst-case arrival time. We now consider to
depict the influence of adding authentication delays on the
busy period and worst-case arrival time of the frame. We
underline that these effects will be visible only in case when
the optimal traffic allocation cannot be preserved, otherwise
the frames would arrive as scheduled. This may happen in case

15

Fig. 24. Delay between 3 (left) or 6 (right) consecutive frames

Fig. 25. Busy period and worst-case queueing delay as computed for the 40
IDs in our setup (blue) and impact of adding the authentication delay (red)

when synchronization is lost or if an adversary interferes with
regular bus behaviour, i.e., by causing a DoS on the bus. The
authentication delay that we add is essentially contributing to
the queueing jitter of the message, i.e., Jk. In the experimental
results, we use a delay of at most 127µs that is added to the
legitimate sending time of the frame. This further results in a
queueing jitter that is 127µs larger. Figure 25 shows the impact
on the busy period (left) and the impact on the worst-case
arrival time (right). Both remain largely unaffected which is
to be expected since the added jitter is very small, i.e., 127µs.

V. CONCLUSIONS

Our proof-of-concept implementation demonstrates that a
covert channel which carries 3-5 bits per CAN frame can
be implemented in a multi-sender scenario and high-end
electronic control units are capable of maintaining the strict
synchronization demands. Consequently, the 24-bit security
level demanded by recent standards may be reached in about
6 frames in a covert manner. This does not imply that the
solution would be easy to port in practice, our attempt here
is to get closer to a practical upper bound and we hope
that real world deployments could achieve more than the
limited data-rate from previous research in [13] and [14] and
comparable or even better results than the 5kbps reported here
in CANTO. Our experimental analysis suggests that deviations
from the expected arrival time of frames are mostly caused
by unoptimized traffic rather than by the accuracy of the
controller’s clock. The four algorithms that we introduce for
optimizing traffic allocation show clear advantages in this
respect. The Greedy and Circular GCD optimizations give
better results, with a minimum inter-frame distance of 500 µs
which can further accommodate covert authentication. Over
the optimized traffic, the expected arrival time drifts only
in the ±5µs range which roughly corresponds to the the
time of 5 CAN bits at 500kbps. Further investigations may
be needed to test the feasibility of the proposed procedures
inside a real-world vehicle, but we do provide results from
overlapping our covert channel on existing in-vehicle traffic
as a start. Since modern time-triggered protocols and industry
standards already demand synchronization in the order of 10µs

in the worst case, we believe that covert channels may be
implemented at the rigorous timing demands from our work.
At the very least, we report a new experimental upper bound
for such covert channels under optimized traffic flows, i.e., 3-5
bits per frame totaling 5kbps over the entire bus traffic.

Acknowledgement. This work was supported by a grant
of Ministry of Research and Innovation, CNCS-UEFISCDI,
project number PN-III-P1-1.1-TE-2016-1317, within PNCDI
III (2018-2020).

REFERENCES

[1] T. Hoppe and J. Dittman, “Sniffing/replay attacks on can buses: A
simulated attack on the electric window lift classified using an adapted
cert taxonomy,” in Proceedings of the 2nd workshop on embedded
systems security (WESS), 2007, pp. 1–6.

[2] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham et al., “Experimental
security analysis of a modern automobile,” in Security and Privacy (SP),
2010 IEEE Symposium on. IEEE, 2010, pp. 447–462.

[3] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham,
S. Savage, K. Koscher, A. Czeskis, F. Roesner, T. Kohno et al.,
“Comprehensive experimental analyses of automotive attack surfaces.”
in USENIX Security Symposium. San Francisco, 2011.

[4] C. Miller and C. Valasek, “Adventures in automotive networks and
control units,” DEF CON, vol. 21, pp. 260–264, 2013.

[5] O. Hartkopp, C. Reuber, and R. Schilling, “MaCAN-message authenti-
cated CAN,” in 10th Int. Conf. on Embedded Security in Cars (ESCAR),
2012.

[6] Q. Wang and S. Sawhney, “Vecure: A practical security framework
to protect the can bus of vehicles,” in Internet of Things (IOT), 2014
International Conference on the. IEEE, 2014, pp. 13–18.

[7] R. Kurachi, Y. Matsubara, H. Takada, N. Adachi, Y. Miyashita, and
S. Horihata, “CaCAN - centralized authentication system in CAN
(controller area network),” in 14th Int. Conf. on Embedded Security in
Cars (ESCAR), 2014.

[8] S. Woo, H. J. Jo, I. S. Kim, and D. H. Lee, “A Practical Security
Architecture for In-Vehicle CAN-FD,” IEEE Trans. Intell. Transp. Syst.,
vol. 17, no. 8, pp. 2248–2261, Aug 2016.

[9] G. Bella, P. Biondi, G. Costantino, and I. Matteucci, “Toucan: A protocol
to secure controller area network,” in Proceedings of the ACM Workshop
on Automotive Cybersecurity. ACM, 2019, pp. 3–8.

[10] Specification of Secure Onboard Communication, 4th ed., AUTOSAR,
2017.

[11] T. Ziermann, S. Wildermann, and J. Teich, “CAN+: A new backward-
compatible Controller Area Network (CAN) protocol with up to 16x
higher data rates,” in Design, Automation and Test in Europe, DATE
2009, Nice, France, April 20-24, 2009, 2009, pp. 1088–1093.

[12] A. Van Herrewege, D. Singelee, and I. Verbauwhede, “CANAuth-a
simple, backward compatible broadcast authentication protocol for can
bus,” in ECRYPT Workshop on Lightweight Cryptography, 2011.

[13] B. Groza, L. Popa, and S. Murvay, “INCANTA - intrusion detection in
controller area networks with time-covert cryptographic authentication,”
in International Workshop on Cyber Security for Intelligent Transporta-
tion Systems (ESORICS’18 Workshops), 2018.

[14] X. Ying, G. Bernieri, M. Conti, and R. Poovendran, “Tacan: Transmitter
authentication through covert channels in controller area networks,” in
Proceedings of the 10th ACM/IEEE International Conference on Cyber-
Physical Systems. ACM, 2019, pp. 23–34.

[15] Requirements on Time Synchronization, R19-11 ed., AUTOSAR, 2019.
[16] Specification of Time Synchronization over CAN, 4th ed., AUTOSAR,

2017.
[17] V. Berk, A. Giani, G. Cybenko, and N. Hanover, “Detection of covert

channel encoding in network packet delays,” Rapport technique TR536,
de lUniversité de Dartmouth, vol. 19, 2005.

[18] Y. Liu, D. Ghosal, F. Armknecht, A.-R. Sadeghi, S. Schulz, and
S. Katzenbeisser, “Hide and seek in time—robust covert timing chan-
nels,” in European Symposium on Research in Computer Security.
Springer, 2009, pp. 120–135.

[19] S. Cabuk, C. E. Brodley, and C. Shields, “Ip covert timing channels:
design and detection,” in Proceedings of the 11th ACM conference on
Computer and communications security. ACM, 2004, pp. 178–187.

16

[20] C.-W. Lin, Q. Zhu, and A. Sangiovanni-Vincentelli, “Security-aware
mapping for tdma-based real-time distributed systems,” in Computer-
Aided Design (ICCAD), 2014 IEEE/ACM International Conference on.
IEEE, 2014, pp. 24–31.

[21] ——, “Security-aware modeling and efficient mapping for CAN-based
real-time distributed automotive systems,” IEEE Embedded Systems
Letters, vol. 7, no. 1, pp. 11–14, 2015.

[22] C.-W. Lin, B. Zheng, Q. Zhu, and A. Sangiovanni-Vincentelli, “Security-
aware design methodology and optimization for automotive systems,”
ACM Trans. Des. Autom. Electron. Syst., vol. 21, no. 1, 2015.

[23] Y. Xie, G. Zeng, R. Kurachi, H. Takada, and G. Xie, “Security/timing-
aware design space exploration of can fd for automotive cyber-physical
systems,” IEEE Transactions on Industrial Informatics, vol. 15, no. 2,
pp. 1094–1104, 2018.

[24] M. R. Moore, R. A. Bridges, F. L. Combs, M. S. Starr, and S. J. Prowell,
“Modeling inter-signal arrival times for accurate detection of can bus
signal injection attacks: a data-driven approach to in-vehicle intrusion
detection,” in Proceedings of the 12th Annual Conference on Cyber and
Information Security Research. ACM, 2017, p. 11.

[25] H. M. Song, H. R. Kim, and H. K. Kim, “Intrusion detection system
based on the analysis of time intervals of can messages for in-vehicle
network,” in Information Networking (ICOIN), 2016 International Con-
ference on. IEEE, 2016, pp. 63–68.

[26] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.
[Online]. Available: http://doi.acm.org/10.1145/362686.362692

[27] B. Groza and P. Murvay, “Efficient intrusion detection with Bloom
filtering in controller area networks,” IEEE Transactions on Information
Forensics and Security, vol. 14, no. 4, pp. 1037–1051, April 2019.

[28] K.-T. Cho and K. G. Shin, “Fingerprinting electronic control units for
vehicle intrusion detection,” in 25th USENIX Security Symposium, 2016.

[29] T. Kohno, A. Broido, and K. C. Claffy, “Remote physical device fin-
gerprinting,” IEEE Transactions on Dependable and Secure Computing,
vol. 2, no. 2, pp. 93–108, 2005.

[30] M. Cristea and B. Groza, “Fingerprinting smartphones remotely via icmp
timestamps,” IEEE Communications Letters, vol. 17, no. 6, pp. 1081–
1083, 2013.

[31] S. U. Sagong, X. Ying, A. Clark, L. Bushnell, and R. Poovendran,
“Cloaking the clock: emulating clock skew in controller area networks,”
in Proceedings of the 9th ACM/IEEE International Conference on
Cyber-Physical Systems. IEEE Press, 2018, pp. 32–42.

[32] K. Han, A. Weimerskirch, and K. G. Shin, “A practical solution to
achieve real-time performance in the automotive network by random-
izing frame identifier,” in Proc. Eur. Embedded Secur. Cars (ESCAR),
2015, pp. 13–29.

[33] A. Humayed and B. Luo, “Using id-hopping to defend against targeted
dos on can,” in Proc. of the 1st International Workshop on Safe Control
of Connected and Autonomous Vehicles. ACM, 2017, pp. 19–26.

[34] W. Wu, R. Kurachi, G. Zeng, Y. Matsubara, H. Takada, R. Li, and K. Li,
“Idh-can: A hardware-based id hopping can mechanism with enhanced
security for automotive real-time applications,” IEEE Access, vol. 6, pp.
54 607–54 623, 2018.

[35] S. Woo, D. Moon, T.-Y. Youn, Y. Lee, and Y. Kim, “Can id shuffling
technique (cist): Moving target defense strategy for protecting in-vehicle
can,” IEEE Access, vol. 7, pp. 15 521–15 536, 2019.

[36] K.-T. Cho and K. G. Shin, “Viden: Attacker identification on in-vehicle
networks,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2017, pp. 1109–1123.

[37] W. Choi, K. Joo, H. J. Jo, M. C. Park, and D. H. Lee, “Voltageids: Low-
level communication characteristics for automotive intrusion detection
system,” IEEE Transactions on Information Forensics and Security,
2018.

[38] M. Kneib and C. Huth, “Scission: Signal characteristic-based sender
identification and intrusion detection in automotive networks,” in Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2018, pp. 787–800.

[39] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien, “Controller area
network (can) schedulability analysis: Refuted, revisited and revised,”
Real-Time Systems, vol. 35, no. 3, pp. 239–272, 2007.

[40] K.-T. Cho and K. G. Shin, “Error handling of in-vehicle networks makes
them vulnerable,” in Proceedings of the 2016 ACM SIGSAC Conf. on
Computer and Communications Security. ACM, 2016, pp. 1044–1055.

[41] P.-S. Murvay and B. Groza, “Dos attacks on controller area networks
by fault injections from the software layer,” in Proc. of the 12th Intl.
Conf. on Availability, Reliability and Security, 2017, pp. 1–10.

[42] A. Palanca, E. Evenchick, F. Maggi, and S. Zanero, “A stealth, selective,
link-layer denial-of-service attack against automotive networks,” in

International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer, 2017, pp. 185–206.

[43] S. B. Moon, P. Skelly, and D. Towsley, “Estimation and removal
of clock skew from network delay measurements,” in INFOCOM’99,
Proceedings of 18-th Annual Joint Conference of the IEEE Computer
and Communications Soc., vol. 1. IEEE, 1999, pp. 227–234.

[44] S. Arimoto, “An algorithm for computing the capacity of arbitrary dis-
crete memoryless channels,” IEEE Transactions on Information Theory,
vol. 18, no. 1, pp. 14–20, 1972.

[45] R. Blahut, “Computation of channel capacity and rate-distortion func-
tions,” IEEE transactions on Information Theory, vol. 18, no. 4, pp.
460–473, 1972.

Bogdan Groza is Professor at Politehnica Univer-
sity of Timisoara (UPT). He received his Dipl.Ing.
and Ph.D. degree from UPT in 2004 and 2008
respectively. In 2016 he successfully defended his
habilitation thesis having as core subject the design
of cryptographic security for automotive embedded
devices and networks. He has been actively involved
inside UPT with the development of laboratories
by Continental Automotive and Vector Informatik.
Besides regular participation in national and inter-
national research projects in information security, he

lead the CSEAMAN project (2015-2017) and currently leads the PRESENCE
project (2018-2020), two research programs dedicated to automotive security
funded by the Romanian Authority for Scientific Research and Innovation.

Lucian Popa started his PhD studies in 2018 at
Politehnica University of Timisoara (UPT). He grad-
uated his B.Sc in 2015 and his M.Sc studies in 2017
at the same university. He has a background of 4
years as a software developer and later system engi-
neer in the automotive industry as former employee
of Autoliv (2014 - 2018) and current employee of
Veoneer (2018 - present). His research interests are
in automotive security with focus on the security of
in-vehicle buses.

Pal-Stefan Murvay is Lecturer at Politehnica Uni-
versity of Timisoara (UPT). He graduated his B.Sc
and M.Sc studies in 2008 and 2010 respectively and
received his Ph.D. degree in 2014, all from UPT. He
has a 10-year background as a software developer in
the automotive industry. He worked as a postdoctoral
researcher in the CSEAMAN project and is currently
a senior researcher in the PRESENCE project. He
also leads the SEVEN project related to automotive
and industrial systems security. His current research
interests are in the area of automotive security.

http://doi.acm.org/10.1145/362686.362692

	Introduction and motivation
	Related work

	Background and experimental setup
	Clock skews and limitations in previous work
	Worst-case arrival times
	Setup components

	Optimizing traffic allocation
	Problem statement
	Optimizing frame scheduling

	Protocol and results
	Main protocol
	Adversary model
	Results with optimized traffic and a single sender
	The multi-sender case and noisy channels
	Channel data-rate, security level and influence on worst-case arrival times

	Conclusions
	References
	Biographies
	Bogdan Groza
	Lucian Popa
	Pal-Stefan Murvay

