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Abstract
We are rethinking the decades-old design of the CAN bus
by incorporating reactive defense capabilities in it. While its
reliability and cost effectiveness turned CAN into the most
widely used in-vehicle communication interface, its topology,
physical layer and arbitration mechanism make it impossible
to prevent certain types of adversarial activities on the bus. For
example, DoS attacks cannot be stopped as the physical layer
gives equal rights to all the connected ECUs and an adversary
may exploit this by flooding the network with high priority
frames or cause transmission errors which may move honest
ECUs into the bus-off state. In response to this, we propose a
reactive mechanism based on relays placed along the bus that
will change the network topology in case of an attack, i.e., a
moving target defense mechanism, allowing a bus guardian to
filter and redirect legitimate traffic. We take care of physical
properties of the bus and keep the 120 Ω load constant at the
end of the lines whenever relays are triggered to modify the
topology of the bus. We build a proof-of-concept implemen-
tation and test it in a laboratory setup with automotive-grade
controllers that demonstrates its functionality over collected
real-world in-vehicle traffic. Our experiments show that de-
spite short term disturbances when the relays are triggered,
the frame loss is effectively zero.

1 Introduction and motivation

The Controller Area Network (CAN) is a bus standard de-
signed by BOSCH in the 80s which became the most widely
used networking layer inside cars in the decades that fol-
lowed. While famed for its design simplicity, reliability and
cost effectiveness, the recent years have unfortunately and
unsurprisingly proved that the lack of security on CAN opens
road for numerous exploits of modern vehicles.

The security limitations of the CAN bus are twofold. On
one hand CAN has no intrinsic security - this is now widely
known and accepted. Adding cryptography (for authentica-
tion and encryption) may solve the problem in this respect and

the industry is heading in this direction [2]. But on the other
hand and equally important, even if cryptography is in place,
the design of the CAN bus, its topology, physical layer and
arbitration mechanism, set room for Denial-of-Service (DoS)
attacks as frames with high priority (lower value identifiers)
always win the bus and there are no guarantees for the arrival
time of low priority frames in case of a flooded bus. Moreover,
adversaries may cause transmission errors by simply flipping
bits in legitimate frames and such transmission errors may
eventually trigger the Bus-off state on honest nodes that com-
ply with the error control mechanism of CAN. In this way,
the transmission capabilities of legitimate nodes are cutoff,
i.e., another type of DoS. The practical impact of a DoS is
obvious as control will be lost on all vehicle subsystems once
the bus becomes unavailable to legitimate electronic control
units (ECUs).

The adversarial actions, reported by numerous papers, e.g.,
[5, 20], require a malicious device to be connected to the bus
via an exposed port or corrupting (possibly from remote) a
legitimate node that is already connected to the bus. The on-
board diagnostics (OBD) port is a good candidate to gain
access to the bus [29], though in some in-vehicle network
deployments this port may be isolated from the rest of the
ECUs by a firewall. Besides these exposed interfaces, CAN
bus wires are accessible in various places, e.g., under the hood
or behind car infotainment units, and an adversary may use
any random location on the wires as a penetration point pro-
vided that he has physical access to the car. While corrupted
ECUs may appear as a more distant possibility as most vehi-
cle components come from trusted providers, recent research
works have proved that legitimate devices, e.g., car headunits
or telematic units, can be compromised from remote. Supply
chain attacks may also lead to compromised devices being
obliviously mounted in the car by honest manufacturers or
repair shops. These three attack vectors, i.e., an adversary
at the OBD port, one which taps the bus at some random
location and a corrupted ECU, e.g., from the remote or by
a supply-chain attack, are graphically depicted in Figure 1.
To prevent such attacks, adding relays that allow for discon-



Figure 1: Addressed setting: an adversary taping to the bus,
corrupting an ECU or connecting via the OBD port.

necting certain parts of the bus is a natural choice. An easy
to imagine solution is the use of a relay on the OBD port
which will disconnect it once an attack is detected (this is
already suggested in Figure 1). Such a solution will be cost-
effective but it would be too trivial to be able to hinder a well
determined adversary that may use other entry points as well.

Challenges and contributions. The security of the CAN
bus has been repeatedly studied in the past decade and the
answer has always been the same: the CAN bus is insecure
and adopting security mechanism uneasy due to various con-
straints while it remains nearly impossible to prevent certain
types of attacks, e.g., DoS. Clearly, these attacks may have
devastating effects on cars, passengers or even bystanders. In
this context, devising a solution for physical separation of the
ECUs on the bus and dynamic network reconfiguration seems
to be promising. However, to facilitate practical adoption by
the industry, the solution must be down-to-earth, cheap, easy
to understand and implement. Nonetheless, the solution has to
comply with the physical requirements of the CAN standard
and of course it has to preserve message arrival time on bus,
i.e., strict timings are mandatory for safety-critical tasks. In
brief, simplicity and real-time demands must be met.

To the best of our knowledge, our work is the first to pro-
vides an effective solution for physical isolation of intruder
nodes on the CAN bus and thus the first approach that can pro-
tect the CAN bus against DoS attacks. While we specifically
target DoS attacks on the CAN bus, the proposed solution
is by no means limited to this type of attack and we further
demonstrate capabilities against other adversarial behaviors
as well. We imagine a framework with moving target defense
capabilities where relays are placed next to each ECU and
by triggering the relays we can physically separate the left
and right sides of the bus. Of course, other placements for
the relays can be imagined, in all other existing vehicle sub-
networks. For simplicity, we focus on the more conventional
case of a single CAN bus. A specialized micro-controller,
called Bus Guardian, is in control of the logic for intrusion
detection, intruder isolation by relay switching and traffic
filtering/redirection. Naturally, we try to prevent the loss of
legitimate frames on bus disconnections and we filter and
replay traffic in parts of the bus to which the adversary has no

access. While a small percent of frames may be unavoidably
lost, this seems clearly preferable when compared to a bus
that is fully blocked by an adversary. In particular, in our ex-
periments, we demonstrate that none of the legitimate frames
are lost when exercising the new intruder isolation capabil-
ities. One important aspect is that we take care of specific
details of the physical layer, e.g., keeping a constant 120Ω

termination at the end of the lines (according to the standard
to avoid reflections) while the bus topology changes.

The main contributions of the proposed defense mecha-
nism, i.e., CAN with Active RelaYs (CANARY), can be sum-
marized as follows:

1. we propose a simple yet highly effective modification of
the CAN bus that complies with CAN physical specifi-
cations, e.g., 120Ω end-of-line resistors, and allows for
dynamic reconfiguration of the bus topology that will iso-
late nodes in certain parts of the bus,

2. we provide algorithms for detecting intrusion, node isola-
tion and, more importantly, traffic redirection by which,
once the intruder is located, incoming traffic is filtered and
redirected to other parts of the network,

3. to prove the correctness of our approach, we provide real-
istic experiments with automotive-grade controllers and
collected real-world in-vehicle traffic,

4. we show that frame loss due to relay action is essentially
zero and the arrival time of legitimate frames is largely
preserved, only a small number of frames being affected
by the adversarial interventions and relay triggering.

Needless to say, the proposed solution does not exclude
regular cryptographic authentication and intrusion detection,
but complements them with a reactive defense mechanism.

Advantages of the proposed defense mechanism. A key
aspect of the proposed defense mechanism is that it can be
used to retrofit existing cars. For many decades, after-market
solutions have successfully retrofitted cars with RF controls,
intelligent alarm systems, remote start systems, GPS-related
functionalities, multimedia units, etc. Similarly, relays may
retrofit existing and forthcoming cars with an effective mech-
anism against attacks and entry points which the manufac-
turer did not consider. While active star topologies for CAN
buses may solve most of the problems we address here, such
topologies are very rare inside cars. Moreover, when present,
star topologies are frequently implemented as hybrid star-
bus architectures, where several buses are connected together
through a gateway and cannot hinder a DoS on any of the
connected sub-networks. This architectural choice affects cars
which are in production today and which will be on road for
the decades that follow. Changing the bus to a star topology
after production will be extremely hard, if not impossible,
mostly due to difficulties in fully rewiring the car. In contrast,
relays can be more conveniently mounted in existing cars



at key locations by specialized workshops without changing
the network architecture and much of the wiring. Modern
transceivers, e.g., NXP TJA115X chips, incorporate DoS pro-
tection mechanisms but they are only effective against their
own host controller when it attempts to flood and cannot stop
other nodes from doing so. A knowledgeable adversary would
not be so naive to use the self-limiting NXP transceiver when
performing an attack. Nonetheless, it will be hard (or im-
possible) to retrofit existing cars with TJA115X transceivers.

Paper organization. The rest of our work is structured as
follows. Section 2 provides a short background on CAN and
Section 3 briefly surveys the related work. Section 4 holds
the theoretical description of the proposed framework. In
Section 5 we present our experimental setup and our proof-
of-concept implementation. Section 6 holds the experimen-
tal evaluation of the proposed framework. Finally, Section 7
holds the conclusion of our work.

2 Brief background on CAN

The CAN bus was designed for the specific requirements of
the automotive domain. It provides bit rates of up to 1Mbit/s
and mechanisms for message prioritization as well as for
efficient error detection and confinement. At the physical
layer, CAN is implemented as a two wire differential line
which must be properly terminated at each network end by a
120Ω resistor. While the use of CAN is not limited to a bus
topology, e.g., star topologies can also be found in practice,
bus topologies are the most often employed network designs
with CAN due to their design simplicity.

The CAN frame may transport a payload of at most 8 bytes.
Other frame fields are dedicated to the main mechanisms im-
plemented at the data-link layer. The arbitration field, i.e., the
identifier field (ID), the remote transmission request bit (RTR)
plus the the identifier extension bit (IDE), are employed to
determine transmission priority (i.e. frames with lower-valued
IDs win the arbitration) when multiple nodes simultaneously
start frame transmission. Frame IDs, i.e., 11 bits in standard
CAN frames and 29 bits in extended frames, are defined at
network design time to establish frame priorities. The 15 bit
CRC field is used as part of the error detection mechanism. A
network node that detects a transmission error immediately
begins transmitting an error frame to signal this finding to all
other nodes and stop the undergoing frame transmission.

CAN also implements an error confinement mechanism
to prevent disturbances from faulty nodes. This mechanism
uses two error counters, TEC and REC, for transmitted and
received frames, which are incremented each time an error is
reported and decremented after each successful message trans-
mission or reception. All nodes start in the Error Active state
in which they can interrupt frame transmissions with error
frames. Once the error counters exceed the defined threshold,
i.e., REC or TEC greater than 127, the ECUs transition in the

Error Passive state, in which they cannot interrupt frame trans-
missions with error frames. They can return from this state
when both TEC and REC are smaller than 128. The ECUs
eventually reach the Bus-off state, in which the node will
stop transmitting and acknowledging frames, if TEC becomes
greater than 255. Notably, this error confinement mechanism
has been exploited both to send legitimate ECUs into the Bus-
off state [6] as well as against adversaries [26] (though, there
are little chances that an adversary will comply with this since
the Bus-off state can be bypassed from the software layer).

3 Related work

It can be easily seen from the above description that CAN
provides no security mechanisms and that security was not
considered as a goal during its design time more than three
decades ago. As a consequence, CAN is vulnerable to spoof-
ing and replay attacks as reported in [5,20] and to DoS attacks
in particular [21, 24].

Attack prevention and detection is subject to many recent
lines of work on in-vehicle network security. The use of ad-
ditional hardware is common in addressing CAN bus secu-
rity [16]. Matsumoto et al. [19] are the first to propose the
idea of an intrusion prevention mechanism that destroys in-
truder frames by generating error frames. Several different
lines of work [11, 16] adapt and implement this approach in a
centralized form while a software-based implementation alle-
viating the need for specialized CAN controllers is proposed
in [9]. Another approach proposed for attack prevention is
ID-hopping which involves constantly modifying CAN frame
identifiers through a secured procedure only available to le-
git nodes. Such an approach was first proposed by Humayed
and Luo [15] which are using a software-based implementa-
tion that requires the involvement of a gateway node in the
ID-hopping procedure. An improved approach based on a
dedicated CAN controller which reduces computational and
communication overheads while providing increased ID en-
tropy is proposed in [31].

The prevention mechanisms explored so far in related re-
search works are effective against replay and spoofing attacks.
However, preventing DoS attacks is more difficult. The most
simple form of DoS attack, mentioned for the first time in [30],
exploits the CAN arbitration mechanism which establishes
transmission priority based on message identifiers, i.e., the
lower the ID value, the higher the priority. Thus, continuously
sending frames with the highest priority would prohibit any
legit transmissions. Another attack approach reported in [24]
and [21] is to manipulate CAN transmissions directly at the
physical layer to prevent correct generation and interpretation
of CAN symbols. This type of attack can be used to com-
pletely block CAN communication or can be even targeting
specific messages or nodes [21]. Several lines of work have
proposed solutions for some types of DoS attacks. The work
in [6] introduces a mechanism used to detect and prevent a



DoS attack by resetting the targeted ECU and preventing it to
reach the Bus-Off state. ID-hopping is efficient in preventing
DoS attacks targeted to specific messages. However, none
of these related works can help against a generalized DoS
attacks that prevents all CAN transmissions by flooding the
bus with a high-priority ID.

Countermeasures such as disconnecting adversarial seg-
ments of the bus are to the best of our knowledge yet un-
explored. Interestingly however, the idea of using relays to
disconnect sections of the CAN bus was previously employed
by several works for fault detection and recovery on CAN [25].
More recently, similar topologies with relays were studied in
the context of fault diagnosis by [32] and [33]. Note however
that these works are using basic relays to simulate broken
wires. The pairwise 2-pole-relay-resistor structure from our
setup (detailed later in Figure 3) is unique to CANARY and
to the best of our knowledge has not been proposed elsewhere.
Another approach proposed for fault isolation is the use of an
active star topology where all nodes are connected to a central
node. This node acts as a router which isolates traffic from
nodes found to be faulty or ones transmitting other IDs than
they are supposed to according to a routing table [23].

There is also a large body of works that addresses intru-
sion detection systems (IDS) on CAN. Our work does not
rely on a specific IDS, we use Bloom filters [3] because of
their compact representation. The use of Bloom filters in
the context of CAN buses has been also explored in [12].
There are of course many other solutions and any of them can
be integrated in the IDS from the current proposal. Several
works have focused on basic aspects of CAN traffic to detect
intrusions such as the frequency of frame arrival time [28],
the Hamming distance between frames [10] the entropy of
CAN frames [22], [18] or timing characteristics of a remote
frame [17]. Other works have focused on physical characteris-
tics such as clock skews [7] or voltage levels [8]. Some recent
overviews on existing proposals for securing the CAN bus
can be found in [1] and [4].

4 Proposed framework: modified CAN topol-
ogy and the defense mechanism

This section provides the description of the modified topology
that stays at the core of our experimental setting and provides
an overview of the proposed solution.

4.1 Modified CAN-bus topology
We begin with providing an overview of the new network
architecture in Figure 2. The network topology shows relays
placed next to each node and the Bus Guardian recording traf-
fic to the left and right sides of the network. Upon detecting
an intrusion, the Bus Guardian will trigger the relays to locate
the intruder, isolate it to the left or to the right side of the
network, and then it will filter and redirect traffic from one

Figure 2: Brief schematic of the network topology, relay place-
ment, Bus Guardian and an adversary near ECU2.

side of the network to the other. We also suggest potential ad-
versarial presence near ECU2. By triggering the relays to the
left or right of the ECU, the adversary can be isolated to the
left or to the right of the network, and incoming traffic filtered
and redirected to the side which is free of the adversary. The
adversary can be also cut-off from the network by triggering
both the left and right relays that surround him but by doing
this, one may also remove a legitimate ECU, such as ECU2,
which is undesired. Consequently, isolating the intruder suc-
cessively to the left and right sides of the network, filtering
incoming traffic and redirecting it is the preferred solution.

Figure 3 shows the relay placement around a single node,
i.e.,ECUi. There is one relay on the CAN-Low line, i.e.,Rlow,i,
and one on the CAN-High wire, i.e., Rhigh,i. The relays will
be triggered at the same time such that the impedance at the
end of the line remains 120Ω when the relays simultaneously
switch from position (1) to position (2) effectively closing the
bus after ECUi. The effects of relay switching on normal bus
operation are discussed later in the experimental section. In
brief, the time to switch the relays from our setup is around
5ms which may result in a brief disturbance of the bus. Since
the time that a frame spends on the bus is around 200µs for
a 500Kbps bus (a commonly employed speed), and applica-
tions usually work at a 50% bus-load, an average of a dozen
frames may be occurring on the bus during this 5ms interval.
Since each sender will get a transmission error in such circum-
stances (due to the existing error control mechanisms on the
CAN bus) and will automatically attempt to re-send the frame,
the number of lost frames is actually zero. This is later proved
in our experiments. Nonetheless, the 5ms switching time was
achieved with some off-the-shelf JQC-3F-5VDC relays that
required no special adaptations for our setup. If needed, for
more demanding applications, much faster relays are available
that can operate well beyond the 1ms range and which can
ensure that bus disturbances will last for at most the period
of a single CAN frame, i.e., ≈ 200µs for the 500Kbps CAN.
Figure 3 extends this graphical depiction by showing the re-
lay placement in case of the five nodes from our setup. By
switching any pair of relays Ri =< Rlow,i,Rhigh,i >, i = 1..n
the bus is cut after ECUi, effectively splitting the bus into two
distinct sub-networks, while the Bus Guardian can still route
traffic from one side to the other.
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Figure 3: Relay placement near a single node (i) and detailed schematic with relays near five nodes and a Bus Guardian (ii)

4.2 Adversary types and countermeasures
Based on the exact intruder location, we envision three types
of adversaries against CANARY’s defense mechanism:

• Type (I) adversaries are the easiest to address. They are
adversaries that tap the bus, or compromise a unit, at a loca-
tion which can be completely isolated. Traffic redirection
from the left and right sides of the bus may be needed, if
the adversary is between two relays in the middle of the
bus. This can be done at 0% frame loss as shown later in
the experiments. A Type (I) adversary is shown in Figure 4
(i) which depicts a compromised ECU5 that is isolated by
R5. If the compromised unit is non-essential, e.g., an OBD
diagnosis tool or an Android head unit, this case does not
require traffic redirection.

• Type (II) adversaries will tap the bus in the vicinity of
a controller located at the end of the bus. In this case the
relays will disconnect the adversary from the bus along with
the legitimate node, e.g., R1 in Figure 4 (ii). Traffic will be
redirected from both sides (and filtered when coming from
the adversary side). The worst damage that the adversary
could inflict is to cause a DoS with no recoverable traffic
from its bus segment, but the rest of the network remains
unaffected. A practical example may be a compromised
peripheral, e.g., a controller of some vehicle body element
(mirrors, windows, etc.) that may be isolated at the cost of
losing the functionalities nearby but without affecting the
rest of the vehicle functionalities (doors, ignition, etc.).

• Type (III) adversaries are the most dangerous. They tap the
bus near an ECU in the center of the bus making it impos-
sible to isolate the adversary between two relays without
the legitimate ECU (which in this case we assume to carry
some essential functionalities). Traffic has to be redirected
from both sides (and filtered) but the adversary may cause a

full DoS on the side where it was isolated. Since we cannot
afford to drop the functionalities on either sides (to the left
or right of the adversary) nor on the legitimate ECU nearby,
traffic has to be load-balanced between the left and right
sides, e.g., this is done by alternatively triggering relays
R2 and R3 in Figure 4 (iii). Worst case, the adversary can
cause a full DoS on the side where it is isolated, but due to
the load-balancing, the DoS will be halved on both sides of
the network and only the nearby ECU will be continuously
affected. A practical example could be a compromised le-
gitimate ECU located at a key position on the bus.

(i) complete intruder isolation

(ii) intruder isolated with some legitimate ECUs

(iii) intruder load-balanced to the left/right of the network

Figure 4: The three types of intruder locations along relays
and the corresponding defense mechanisms in CANARY



Briefly: Type (I) adversaries can be fully isolated at no cost
for legitimate nodes, Type (II) adversaries can be isolated
while possibly losing communication with some (hopefully
non-essential) ECUs and Type (III) adversaries cannot be
fully isolated but have to be load-balanced to the left and right
sides of the network. Other variations can be imagined. For
example, depending on specific implementation details, if the
functionalities of ECU3 from Figure 4 are non-essential (iii),
the Type (III) adversary in the middle of the bus may be also
cut along with ECU3 while traffic is redirected between the
left and right sides. Ultimately, in case of a complete DoS it
may be even preferable to isolate the adversary along with
ECU3 by cutting their bus segment. Such a decision however,
depends on the specific functionalities that the ECU is imple-
menting, for the exposition in this work we cannot delve into
such details. For a crisper image, Figure 4 mostly depicts ex-
ternal adversaries, but as stated in the text, the adversary may
be a compromised unit as well. As expected, since Type (III)
adversaries are the hardest to address we focus most of our
work on this type of adversary and the load-balanced defense
mechanism. Type (I) and (II) adversaries can be addressed by
immediate simplifications.

4.3 Overview of Bus Guardian activities

We provide a short overview of the actions of the Bus
Guardian in the flowchart from Figure 5. The actions of the
Bus Guardian begin by recording and filtering traffic to de-
tect intrusions. Once the intrusion is detected, the intruder
is located by Algorithm 1 and then it is isolated, traffic fil-
tered/redirected according to Algorithm 2.

To detect intrusions, in the traffic filtering block from Fig-
ure 5, we suggest three types of simple and efficient mech-
anisms that can be used: (1) Bloom filters to detect frames
with IDs that are unknown to the bus, i.e., fuzzing attacks,
(2) a possible extension with counting Bloom filters, i.e., to
spot replay attacks, and (3) monitoring for the arrival rate of
frames on the bus λ which is a good indicator for DoS attacks.
CAN deployments inside cars usually work at a 50% effec-
tive busload which corresponds to an arrival rate of λ≈ 2000
frames per second. If the busload peaks well over 50% for
extended periods of time, e.g., several milliseconds or beyond,
it may be a good indicator that a DoS attack is taking place.
Since the filtering mechanism that we further use requires
specific computations on each packet, in order to save com-
putational it may be preferable to use the arrival rate of the
packets for activating the filters. Determining the current rate
λ requires only to count packets in a specific window, e.g.,
100ms, and a deeper inspection of the packets can be triggered
only when needed. On the high-end controller that we used,
the computations required by the filters were easily handled
and consequently in all the experiments that follow we detect
intrusions based on any single packet that is not part of the
trace (regardless of the current bus rate λ which we suggest as

an option for implementation on low-end controllers). In our
application we use a regular Bloom filter to detect unknown
IDs and a secondary Bloom filter to detect multiple occur-
rences of the same same frame during small time intervals,
i.e., replay attacks. Finally, any existing IDS can be incor-
porated inside CANARY’s Bus Guardian. The main focus
of this work and our primary contribution are the intruder
isolation and load balancing mechanisms which have never
been addressed before and which are the only mechanisms
proposed so far that can alleviate DoS attacks.

Figure 5: Flowchart of the Bus Guardian actions

The Bloom filter [3] is an array of m bits that is modified
by the output of k hash functions. For each message that the
filter learns, each of the k hash functions selects an index 1..m
in the filter and the corresponding bit is set to 1. This happens
during the training phase. Later, to check that a message is
recognized by the filter, the k indexes are verified and the
message is recognized if and only if all their corresponding
bits in the filter are set to 1. This structure can be naturally ex-
tended to count for multiple occurrences of the same object by
replacing the bits inside the filter with counters, i.e., counting
Bloom filters. A survey on various types of Bloom filters is
available in [27]. We calibrated a set of regular Bloom filters
and tested their efficiency on a CAN trace collected from a
real-world vehicle (more details on this data can be found in
the experimental section). Half of the messages were turned
into adversarial injections with randomized IDs that are not
present in the legitimate trace. None of the genuine frames are
misclassified, this is the expected behavior for Bloom filters
which have a zero false negative rate. From our implementa-
tion we determined that a filter size of 512-1024 bits provides
excellent classification results with a false positive rate well
below 0.1%. Storing 100 IDs would require at least 1100 bits
(considering 11-bit IDs) and almost three times as much if
29-bit IDs are used, thus the 512-1024 bits provide a more
compact representation (the size of the Bloom filter does not
increase with the size of the IDs). We choose to rely on the



non-cryptographic hash function MurMur1 which is very fast,
i.e., it requires 0.572µs for one computation on our controller.
This kind of functions are recommended for hash tables that
do not require cryptographic security, making them ideal for
Bloom filtering. To filter one message, the computational time
peaked at 2.86µs when k = 7 and 3.89µs when k = 10.

4.4 Intruder localization agorithms
Having a mechanism for filtering frames in place, we can
proceed to the intruder localization algorithm once the mali-
cious frames are reported. As expected, the intruder localiza-
tion algorithm performs a binary search on the network by
disconnecting parts of it and analyzing incoming traffic on
the left and right sides of the network. While an algorithm
that successively disconnects each segment of the network is
straight-forward to implement, its disadvantage is that it will
fully disconnect segments of the bus, causing losses among
legitimate frames, until the intruder is located. Also, if the
adversary taps the bus near an honest node, then the algorithm
will isolate the adversary along with the legitimate node which
is undesired. An adversary may even exploit this algorithm
by sending intrusion frames to mislead it and cut legitimate
segments of the bus.

To circumvent these issues, Algorithm 1 uses only the re-
lays from one side of each node. This way, it preserves all
the network traffic to the left and to the right of the bus, the
traffic can be filtered and redirected. The algorithm starts by
setting the left index l = 1, the right index r = n and loops
until the left l and right r indexes are next to each other. At
each step it disconnects only the relays in the middle, i.e., the
relays at index index = b(l + r)/2c. Then it repeatedly filters
traffic for time T , i.e., until (t′cur − tcur) > T . If needed, in
case of intermittent adversaries, the relays may be switched
on-event whenever an intruder frame is detected. Note that
a single intruder frame is sufficient to detect the intrusion
and on-event triggering will make the relays converge to the
location of the adversary while all the existing traffic is per-
fectly redirected to the left and right sides of the network.
For each receive event on the left side of the network, i.e.,
RxLeft, or on the right side of the network, i.e., RxRight, the
algorithm filters the frame and sets the intrusion flag, i.e., ileft
or iright, then redirects the frame to the left or right accord-
ingly. When time T elapses, the relays at position index are
reconnected and the algorithm first checks if intrusions were
detected on both sides of the network. If this is the case, then
the algorithm returns −1 since the intruder cannot be isolated
to the left or to the right of the network. Otherwise if the
intruder is on the left, i.e., ileft = true, then the right index is
modified, i.e., r = b(l + r)/2c, else if the intruder is on the
right, i.e., iright = true, then the left index is modified, i.e.,
l = b(l + r)/2c. When the loop ends, the algorithm returns
the index index of the relay next to the intruder.

1https://github.com/aappleby/smhasher/blob/master/src/MurmurHash2.cpp

Algorithm 1 Binary localization algorithm (single relay)
1: procedure DETECT NODE
2: l = 1, r = n
3: while (r− l) 6= 1 do
4: index = b(l + r)/2c
5: Disconnect(index)
6: ileft← false
7: iright← false
8: tcur ← GetTime()
9: repeat

10: if RxLeft then
11: frame← Receive(LChannel)
12: frame′← Filter(frame)
13: if frame′ 6= frame then ileft← true
14: elseBufferedSend(frame′,RChannel)
15: if RxRight then
16: frame← Receive(RChannel)
17: frame′← Filter(frame)
18: if frame′ 6= frame then iright← true
19: elseBufferedSend(frame′,LChannel)
20: t′cur ← GetTime()
21: until (t′cur− tcur)> T
22: Reconnect(index)
23: if ileft = true∧ iright = true then return -1
24: if ileft = true then r = b(l + r)/2c
25: if iright = true then l = b(l + r)/2c
26: end while
27: return index
28: end procedure

4.5 Traffic redirection: bridged and load-
balanced retransmission

An easy to address situation is that when the adversary is lo-
cated alone on a segment of the network. If this is the case, the
segment can be cut-off from the network and traffic bridged
from one side to the other. But if this is not the case, and
the adversary cannot be fully isolated, then a load-balanced
retransmission that alternatively switches the adversary from
the left to the right is needed - we discuss this mechanism in
what follows.

Algorithm 2 Single relay, load balancing
1: procedure LOAD-BALANCED RETRANSMISSION
2: while true do
3: SwitchRelays()
4: FilterRedirectTraffic()
5: end while
6: end procedure

Algorithm 3 Switch Relays
1: procedure SWITCH RELAYS
2: if (t/Trelay)mod2 6= (tlast/Trelay)mod2 then
3: tlast ← t
4: if (t/Trelay)mod2 = 1 then
5: ileft← true
6: iright← false
7: Disconnect(index)
8: Reconnect(index+1)
9: else

10: iright← true
11: ileft← false
12: Reconnect(index)
13: Disconnect(index+1)
14: end procedure



Algorithm 4 Filter and redirect traffic (buffered)
1: procedure FILTER TRAFFIC
2: if RxLeft then
3: frame← Receive(LChannel)
4: if ileft then frame← Filter(frame)
5: BufferedSend(frame,RChannel)
6: if RxRight then
7: frame← Receive(RChannel)
8: if iright then frame← Filter(frame)
9: BufferedSend(frame,LChannel)

10: end procedure

Load-balanced retransmission. Algorithm 2 provides the
main loop of the traffic filtering algorithm with load-balancing
capabilities. The intruder is isolated either to the left or to
the right side of the network. This is done in step 3 of the
algorithm which switches the relays to the left or to the right
of the adversary location. The recorded traffic is then filtered
and replayed on the other part of the network in step 4. By
switching the adversary from one side of the network to an-
other, we assure a load-balanced network and the effects of
a DoS attack will be halved on each side since the adversary
has access only to half of the bus each time. The procedure for
switching relays is depicted in Algorithm 3. This algorithm
simply switches from the left to the right side of the node
index at time intervals Trelay. The steps for filtering and re-
transmission are given in Algorithm 4. The algorithm simply
checks the left (line 2) and right (line 6) sides if there is a
new incoming frame. If this is the case, the frame is recorded
(lines 3 and 7), filtered if the intruder is isolated in the corre-
sponding side (lines 4 and 8) and then replayed on the other
side of the bus (lines 5 and 9). The transmission is buffered
since the bus may be busy on the side where retransmission is
attempted. More discussions on the size of the buffer follow
in the experimental section. In case when the adversary per-
forms a more aggressive DoS attack, there will be few or no
legitimate frames at all on the side of the adversary since the
bus is flooded by illegitimate frames. Moreover, legitimate
frames from the other side cannot be redirected since there is
no room left on the bus. For this case, buffered retransmission
also helps since frames are kept in the buffer and sent when
the adversary is isolated to the other side of the network.

We also provide a graphic depiction of the load-balancing
retransmission in Figure 6. The depiction is provided for three
consecutive steps with the right-side network (RSN) and left-
side network (LSN) successively off and isolated from the
adversary (the duration of a step is of 100ms similar to the
experiments that follow). Incoming traffic from the side af-
fected by the adversary is filtered. The filtering box is shaded
when incoming traffic is free of adversarial interventions, i.e.,
the adversary is isolated on the other side of the network and
thus the filter is inactive. We also depict the arrival rate of
frames from the right and left side, i.e., λleft and λright, as well
as the arrival rate for adversarial frames, i.e., λAdv, as well as
the arrival rate after filtering, i.e., λ

ϕ

left and λ
ϕ

right.

Figure 6: Schematic for three consecutive steps of the load-
balanced retransmission

5 Setup and implementation

We now discuss implementation details regarding the Bus
Guardian and give details on the recorded in-vehicle traffic
that we used for building a realistic testbed.

5.1 Implementation of the Bus Guardian

Figure 7 shows the experimental setup of our work. The Bus
Guardian with the role of intrusion detection, localization and
prevention consists of an Infineon AURIX TC297 develop-
ment board. In order to monitor the bus traffic we used two
CAN transceivers connected to the microcontroller’s pins,
one which was already available on the board and an external
MCP2551 transceiver. Both transceivers are provided with
a 120Ω bus termination. For implementing a CAN network
with multiple nodes we added 3 MCP2551 CAN transceivers
controlled by an Infineon AURIX TC277 development board
representing nodes 2 to 4 from the setup presented in Figure 3.
Nodes 1 and 5 from the same figure are connected to a Vector
Breakout Box D62Y9 which is controlled from the Vector
CANoe 8.5 environment running on a PC. This environment
was used to provide the legitimate bus traffic from our experi-
ments (which was collected from a real-world vehicle), and
each node was set to output half of the original vehicle trace
to the left and half to the right.

The relays used in our experiments are JQC-3F-5VDC re-
lays which require a supply voltage of 5V, have three different
contacts and can connect one of two different contacts at a
time to the third contact based on their enabling pin status.
In our setup there are two PCBs with 4 relays and each one
of the 8 relays are controlled by an individual pin of the Bus
Guardian connected to its enabling pin through a jumper wire.
In order to provide the required voltage to both of the relay
boards and the external CAN transceivers we used a power
supply connected to the breadboard with an input voltage of
12V and an output voltage of 5V. In addition to the supply
and ground lines from the power supply, the breadboard con-
tains all the connections done with jumper wires between the



Figure 7: The bus guardian implemented on the Infineon
TC297 and the relay blocks from our experimental model

CAN nodes and the relays required to disconnect the CAN
lines linking any neighboring nodes and to add 120Ω between
newly connected CAN-High and CAN-Low lines using the
relay switches.

5.2 Collected in-vehicle traffic for the experi-
ments

To create a realistic test-bed, we use real-world CAN bus
traffic recorded in a high-end vehicle. The traffic is replayed
on the bus in our experiments with the help of the CANoe
environment via a CANCase device which assures accurate
reproduction of the in-vehicle network traffic. The log file
that we use accounts for 90 identifiers with cycles from 10ms
up to 2s and a busload of around 40% on the 500Kbps CAN.
Most of the identifiers however, have a periodicity between
10ms and 500ms. Figure 8 shows the arrival time for two IDs,
one with a 20ms cycle (left) and the other with 40ms (right).
The arrival time is stable, with very small variations (generally
under 500µs) for each of the IDs. We also consider to look at
the delays between consecutive frames, i.e., the inter-frame
space (IFS). The IFS in the trace is critical since the Bus
Guardian should parse frames by running the Bloom filter
and distinguish between genuine and adversarial frames then
retransmits frames to the other side of the bus.

For a 500Kbps baud rate the time for sending a frame on
the bus varies roughly between 90µs to 270µs depending on
the size of the data-field and the number of stuffing bits. The
Bus Guardian must cope with these delays when classifying
frames. For the existing bus traffic, the situation is more op-
timistic: by analyzing the trace only 0.5% of the IDs arrive
with an inter-frame space lower than 200µs. This is expected
at a bus load smaller than 50% (the bus is free at least half
of the time). Figure 9 shows the inter-frame time for the first
2000 frames (left), only a few frames arrive with an inter-
frame space lower than 200µs. On the right side of Figure 9

Figure 8: Collected in-vehicle traffic: variations in the arrival
time for an ID at 20ms (left) and one at 40ms (right)

Figure 9: Collected in-vehicle traffic: IFS for the first 2000
frames (left) and same frames in the 0-200µs interval (right)

we depict the inter-arrival time for the first 2000 frames with
an inter-frame space lower than 200µs, while this happens
only rarely, and even if this is the case most of the frames
leave a space of 100µs. The filters that we use do cope with
these delays in the order of hundred micro-seconds. Nonethe-
less, traffic redirection must also work under these constraints
which are not easy to meet and we are later forced to use a
buffered retransmission to avoid losing frames.

6 Framework evaluation

In this section we follow two research directions. One of them
is to determine how traffic filtering and redirection performs
under specific attacks, such as fuzzing and DoS, the other
is to determine how frame arrival time is affected by the
defense mechanism. Notably, there are little side-effects and
no frame loss due to the relay action. We also provide a more
comprehensive analysis of the proposed framework.

6.1 Testbed overview

We provide an overview of our evaluation setup in Figure 10.
Traffic collected from a high-end vehicle is replayed to the
left and right sides of the network, i.e., half of the collected
in-vehicle trace to each side by using the two channels of
a Vector Breakout Box D62Y9 device connected as ECU1
and ECU5. We emphasize that the Vector Breakout Box is
an industry-standard tool that perfectly mimics the behavior
of the real-world vehicle bus and it is commonly used by
the industry for system design and testing. Of course, due to
potential damage and costs, it would have been uneasy for
us to cut wires and mount relays inside the real car while the
observed behavior on the in-vehicle network traffic would
have been likely identical.



Figure 10: Schematic depiction of our experimental testbed

The second ECU from the left is designed to carry ad-
versarial tasks, e.g., perform DoS or fuzzing attacks. The
relays that surround him, encircled with dotted blue line, will
alternatively open to the left and to the right, effectively dis-
connecting the adversary from the left-side network (LSN)
or the right-side network (RSN). Traffic is filtered then redi-
rected to the other side of the network by the Bus Guardian.
We have additional relays in our setup toward the mounting
point of ECU3 and ECU4 but these were not needed in our
experiments, we kept them for potential future extensions.

6.2 Single-side traffic redirection in case of
fuzzing attacks

Some basic tests of the relay impact on the adversary free bus
can be found in Appendix A. We now add adversarial activity
to the bus. Our framework is specifically designed to address
DoS attacks. However, before evaluating DoS resilience, we
also test the filters and relay behaviour in front of fuzzing
attacks which is a common adversarial behavior that puts
more stress on the filters (as the distribution of the IDs is
randomized). In this type of attacks, the adversary injects
random CAN frames that have random IDs and data fields.
This kind of adversarial intervention is important because it
can be employed in order to cause abnormal behaviour or
learn how the system reacts to IDs that are not expected by
the controllers.

Figure 11 (i) shows the testing strategy in case of single-
side retransmission with the adversary in the middle of the
network. Each 100ms, or alternatively 1s in some experiments,
the relays from the left or right sides are opened alternatively
- the adversary is isolated either to the left or to the right side
of the network. The traffic from the adversary side is filtered
by the Bus Guardian and redirected to the other side. Under
this second testing strategy with fuzzing attacks we consider
traffic redirection only from the side which is affected by the
intruder i.e., fuzzed by the adversary.

In this case the adversarial ECU is programmed to inject

(i)
(ii)

Figure 11: The two states of single-side traffic retransmission
(i) and load-balanced retransmission (ii)

frames with random identifiers that are not part of the legiti-
mate trace. For simplicity, we randomly replace frames from
the legitimate trace with an attack frame that has a random ID
that is not part of the legitimate ID set. The intrusions form
roughly 50% of the trace. Since part of the genuine frames are
now altered, they are not going to be transmitted to the left or
right side since they are classified by our filters as intrusions.

Table 1 provides a summary in terms of: left transmitted
count (LTC), left failed count (LFC), right transmission count
(RTC) and right failed count (RFC). In case of the fuzzing
attack the frame loss drops to half but this is expected since
half of the frames on the bus are now adversarial frames and
the LTC and RTC are also halved. By a careful analysis we
observed that frame loss is not due to the relay actions but
because of frame buffering. We determined that a 1 frame
buffer reduces the frame loss to under 1% and a buffer of at
most 32 frames reduces it to 0%.

6.3 Load-balanced retransmission in case of
flooding and DoS attacks

Figure 11 (ii) shows the testing strategy for the load-balanced
retransmission with adversarial activity in the middle of the
bus. We specifically designed this experiment to respond to
DoS attacks. Each 100ms, the relays from the left or right
sides are opened alternatively, isolating the adversary to the
left or to the right side of the network. The traffic from the
adversary side is filtered by the Bus Guardian and redirected
to the other side, while traffic from the adversary-free side is
directly transmitted to the other side (without filtering).

To begin with, we conducted four experiments in which
the adversary injects an ID with high priority with a cycle
time of 10,1,0.5 and 0.3ms respectively. The time of the
longest frame on the bus at 500Kbps is roughly 0.26ms, so
getting the cycle time closer to this value will result in a
complete DoS of the bus. The larger 10,1 cycles where chosen
for allowing us to test that retransmission works. When the
attack gets closer to the 0.3− 0.5ms range there are very



Table 1: Frame loss at various relay trigger rates with adversarial activity (fuzzing attacks) and single-side traffic redirection
Buffering Retransmission Filter size Adversary Relay Rate (s) LTC RTC LFC RFC LF% RF%

None Single side 512 Fuzzing 1 57918 54444 1607 2031 2.7% 3.7%
Single side 1024 Fuzzing 1 58111 54589 1527 1957 2.6% 3.5%

1 frame Single side 512 Fuzzing 0.1 60258 57265 25 13 0.04% 0.02%
Single side 1024 Fuzzing 0.1 60270 57271 16 30 0.03% 0.05%

32 frames Single side 512 Fuzzing 0.1 60237 57234 0 0 0.0% 0.0%
Single side 1024 Fuzzing 0.1 60261 57284 0 0 0.0% 0.0%

few legitimate frame to retransmit from the attacked side
(more details concerning a full DoS are in the next paragraph).
Figure 12 shows the inter-frame space on the left and right
channel for Trelay = 100ms during a flood with 1ms cycle
time. Legitimate frames are printed in blue and adversarial
frames are in printed in orange. Note that the left and right
channels are asynchronous. In Figure 13 we also separate
between left (green) and right (blue) side frames to show
that legitimate frames occur on both sides. In Table 2 we
summarize results for the 1ms flood (a partial DoS) which
is more revealing for retransmissions since all frames can
be successfully retransmitted. We determined that a buffer
of one frame will make the failed retransmission to drop to
less than 1%. To get retransmission errors down to 0% we
need a buffer of 8 frames to the side that is free of adversarial
interventions and a 32 frame buffer for the side where the
adversary is present. The reason is that on the side where
the adversary is present it is harder to find space on the bus
for frame retransmission due to the higher busload. Thus the
buffer must be capable to accommodate more frames. This
happens for adversarial attacks at a rate of 1ms, if the rate goes
to 300µs frame retransmission becomes almost impossible on
the adversary side regardless of the buffer size.

We now discuss the impact of a full DoS. Figure 14 pro-
vides plots for the case of an adversary that is programmed
to loop and send high priority frames whenever there is room
on the bus at Trelay = 25ms. This figure depicts the results in
terms of busload and IFS on the left and right channels, con-
trasting legitimate (blue) frames with attack (orange) frames.
The busload tops at the maximum of 500Kbps, i.e., 100%
busload, and almost no legitimate (blue) frame manages to
enter the attacked side, i.e., a full DoS. Legitimate frames
(blue) may occasionally enter the channel when the relays are
triggered due to brief disturbances in the adversary transmis-
sion. While the full DoS is more severe, the experimental
outcome is in fact more simple to illustrate: the side where
the adversary is isolated has no legitimate traffic (only orange
frames) and once the adversary is shifted to the other side the
recorded (buffered) traffic from the adversary-free side will be
re-sent. We also note that, as CAN frames carry information
from various sensors and actuators, it may not be necessary to
replay all the recorded traffic but only the recent-most value
for each ID. This allowed us to further simplify the buffer-
ing in our implementation since we only need to store and
retransmit the last recorded value for each ID.

(i) left channel (ii) right channel

Figure 12: Interframe space for the left (i) and right channel
(ii) for genuine (blue) and adversarial frames (orange) during
5 seconds of runtime (Trelay = 100ms)

(i) left channel (ii) right channel

Figure 13: Interframe space for the left (i) and right channel
(ii) for legitimate frames from the left channel (green), legit-
imate frames from the right channel (blue) and adversarial
frames (orange) during 5 seconds of runtime (Trelay = 100ms)

(i) datarate during full DoS

(ii) IFS during full DoS

Figure 14: Data rate (i) and inter-frame space (ii) during
a full DoS on the left and right channels at Trelay = 100ms
(legitimate traffic in blue, adversary traffic in orange)

Figure 15 illustrates the inter-arrival time, denoted as dt,
for an ID with 20ms cycle time during a full DoS with
Trelay = 25ms. The left side where the ID originates is only



(i) left channel

(ii) right channel

Figure 15: Arrival time for an ID with a 20ms cycle time on
the left (i) and right channel (ii) at Trelay = 25ms during a full
DoS (ID belongs to the left side)

slightly impaired by the DoS and the mean arrival time re-
mains the same. Delays of 25ms or more do occur, but the
cycle time clearly remains centered around 20ms. On the right
side we simply retransmit the recentmost value of the ID once
the adversary is moved to the left side. This results in an
inter-arrival time of 2×Trelay, i.e., 50ms which can be easily
explained as follows. When the right side is under a DoS
(25ms), it is not possible to retransmit the ID from the left
side (the bus is busy). When the adversary is moved to the left
side, the recent-most value of the ID can be sent by the Bus
Guardian to the right side - but this will be the only known
value for another 25ms until the adversary is released from
the left side. The same phenomenon was observed for all IDs
which allows us to make a generalized statement: in case of a
full DoS, the fastest cycle time that can be achieved with load-
balancing on the side where the ID has to be retransmitted
by the Bus Guardian is 2×Trelay. As car diagnosis systems
commonly report a time-out for a component after delays of
several hundred milliseconds, we believe that the 50ms cycle
time from our implementation (worst case under a full DoS
that would otherwise lock the bus completely) should be suffi-
cient for most messages to keep a vehicle functional. Finally,
since the fastest messages on the CAN bus have a cycle time
of 10ms, a Trelay = 5ms should cope with any subsystem and
is achievable with high performance solid-state relays.

As further insights on the impact of a full DoS on cars
we present more results from a CANoe car simulation in
Appendix B.

6.4 Relay influence on message arrival time

Since in-vehicle networks handle safety-critical messages for
which the arrival time is critical, we also evaluate the effects
of filtering and retransmission on the cycle time of legitimate
IDs that come from the left or right side of the network. By

(i) original trace from vehicle

(ii) left channel (source) (iii) right channel (retransmission,
delayed frames as orange circles)

(iv) left channel (source) (v) right channel (retransmission)

Figure 16: Message cycle time for a frame that originates on
the left-hand side of the network, i.e., ID 0x2F, on the: original
trace (i), left channel (ii), right channel (iii) and histogram
distribution on the left (iv) and right (v) channels

careful analysis of the recorded trace with CANARY’s Bus
Guardian active, we determined that the mean arrival time
deviates by less than 1ms which should be acceptable for
real-time demands.

Figure 16 shows the effect on ID 0x2F coming from the left-
hand side of the network. This ID has a cycle time of 10ms,
the recorded delays between two consecutive occurrences of
the ID is denoted as dt in the figures. The effects are minor
on the left side of the network, a limited number of frames
may be delayed or possibly lost when relays are triggered.
But the cycle time remains steadily around 10ms. The plot
for the right hand side of the network (where the ID is re-
sent by the bus guardian) shows that the inter-arrival time
may drift from the original 10ms to up to 20ms. These drifts
occur on the right-hand side in case when frames are first
lost due to relay triggering and then re-sent from the buffer.
By computing the mean arrival time on the right side, we
get 10.805ms compared to 9.99986ms on the left side and
9.99987ms on the right side in the original trace. This means
that there are not many frames that drift from the expected
cycle time of 10ms and is consistent with our estimation that



Table 2: Frame loss at various relay trigger rates with adversarial activity (DoS attack) and load-balancing
Buffering Retransmission Filter size Adversary Relay Rate (s) LTC RTC LFC RFC LF% RF%
None Load balanced 512 DoS 1ms 0.1 110470 102111 8742 10782 7.9% 10.5%
1 frame Load balanced 512 DoS 1ms 0.1 119124 112873 57 96 0.05% 0.09%
32 frames Load balanced 512 DoS 1ms 0.1 119121 112939 0 0 0.0% 0.0%

7 – 10% of the frames require buffered retransmission that
causes additional delays.

6.5 Immediate improvements: faster relays,
more relays

Faster relays exist2, e.g., solid state relays that operate in
the 0.5− 1ms range are common and have a higher life ex-
pectancy since they have no mechanical parts. But even the
off-the-shelf relays that we used in the experiments (5ms op-
eration time) proved highly effective and eventually led to 0%
frame loss. In case of the load-balancing algorithm, i.e., the
worst case for an attack, the 100ms triggering rate results in
little or no errors at all (5ms out of 100ms means that relays
impede a maximum of 5% from the total bus time). We now
determine the theoretical upper-bound for the relay triggering
rate based on relay operating time and bus parameters.

Maximum relay triggering rate. Since the bus is temporarily
unavailable during the relay operation time (less than 5ms
with the relays that we used), all frames that are scheduled for
sending during this period will be automatically re-sent when
the bus becomes available. We determined a theoretical upper-
bound for the rate at which the relays can be triggered λrelay
depending on the relay operating time trelay, frame arrival rate
λbus and frame time tframe as follows:

λrelay ≤
1−λbus× tframe

trelay

The relation follows from the fact that for any fixed time
interval T the bus has to be available to accommodate λbus×T
frames. But during this period the bus will be unavailable
for λrelay×T × trelay. This leads to the following condition
T −λrelay×T × trelay ≥ λbus×T × tframe which divided by T
gives the upper bound for λrelay. As a practical example, for a
500Kbps bus, setting tframe = 200µs, i.e., the average time of a
CAN frame, and λbus = 2000 fps, i.e., the usual 50% busload,
having trelay = 5ms we get λrelay = 120. That is, the relays
can be triggered at 8.3ms cycles without losing frames on the
bus. The upper side of Figure 17 summarizes these results by
depicting the rate λrelay as a function of relay operation time
trelay for a 500Kbps bus with tframe = 200µs. The lower side of
Figure 17 extends this depiction for a frame arrival rate from
500 up to 4000 frames (a 50% bus-load for the highest CAN
data-rate, i.e., 1Mbps). This is a theoretical bound, in practice,

2https://www.ni.com/ro-ro/innovations/white-papers/06/
how-to-choose-the-right-relay.html

Figure 17: Maximum relay triggering rate λrelay as function of
relay operation time trelay (up) and λrelay as function of relay
operation time trelay and frame arrival rate λbus (down)

the CAN controller (or the upper-layer software) must be able
to buffer frames in order to cope with the relay rate.

Adding more relays. Given the nature of in-vehicle net-
works, it is expected that adversaries will use predictable
locations as entry points, e.g., the OBD port, the infotainment
or telematics units, etc. Consequently, a small number of re-
lays can be conveniently placed at key locations on the bus.
However, for a comprehensive treatment, we cannot exclude
the scenario where an adversary taps the bus at random lo-
cations. In this case adding more relays may increase the
chances to isolate the intruder if he is unaware of the exact
topology. The complexity of interwinding the relays with the
ECUs increases exponentially. Concretely, for k controllers
and n relays the number of placements corresponds to the
number of k+1 compositions of integer n (the composition
of an integer is a way of writing it as a sum of exactly k posi-
tive integers). Indeed, assuming that the relays can be placed
anywhere, to the left and right of each ECU, there are k+1
bus segments starting from the left side of the first ECU, i.e.,
the first bus segment, to the right side of the last ECU, i.e.,
the k+1 bus segment. The number of k compositions of an
integer n is given by the binomial coefficient

(n−1
k−1

)
and thus

https://www.ni.com/ro-ro/innovations/white-papers/06/how-to-choose-the-right-relay.html
https://www.ni.com/ro-ro/innovations/white-papers/06/how-to-choose-the-right-relay.html


Figure 18: Relay placements for n = 8..12 relays on a k ∈
{4,6,8} ECU network (up) and possible placements given
n ∈ [1,12] and k ∈ [1..8] (down)

there are
(n−1

k

)
placements for n relays on the segments of a

bus with k controllers. The upper side of Figure 18 shows the
number of possible placements in a network with k ∈ {4,6,8}
controllers for n= 8..12 relays. The number quickly increases
to 500 possible placements for 12 relays. The lower side of
Figure 18 shows the number of possible placements as a func-
tion of the number of ECUs 1..8 and number of relays 1..12.
The interwinding options quickly reach the order of several
hundreds.
6.6 Further analysis: intermittent adversaries

and multiple adversaries
Intermittent intrusions. Due to the efficient binary search,

an intruder can be localized in roughly log2(n) packets that
are recognized by the filter as intrusions. An intruder may
try to mount a low-rate attack or even send attack frames
intermittently in order to avoid detection. If adversarial frames
do not occur at some fix cycle time but occur independently
in time (unaffected by each other), we can use the Poisson
distribution to model the occurrence of at least one adversarial
frame in a specific time interval T . That is, assuming that the
time of occurrence for adversary frames follow a Poisson
distribution with mean arrival rate λadv frames per second, the
probability that k adversary frames occur in time T is:

Pr[k] =
(λadv×T )ke−λadv×T

k!
The probability to receive at least one adversary frame in

time T immediately follows as p1 = 1−Pr[0]. This probabil-

Figure 19: Probability to receive at least one adversarial frame
p1 during filtering time T at adversary rate λadv

ity increases exponentially. Figure 19 depicts p1 in relation
with filtering time T ∈ [0.010,2] and λadv ∈ [1,10]. An ar-
rival rate of 10 frames per second corresponds to a 100ms
cycle time which is a slow cycle time for in-vehicle network,
cycle times usually go as low as 10ms. But even if the ad-
versary frames arrive at an average of 1 fps, the probability
to receive one adversarial frame in T = 4s is quite high at
98.16%. Parameter T can tuned in the localization algorithm,
i.e., Algorithm 1, according to specific needs.

Multiple adversaries. Our defense mechanism was de-
signed to address a single adversary (or compromised unit)
that taps the bus. We believe that this scenario covers most
practical needs, but indeed, it may happen for adversaries to
be present at multiple locations. For example, if adversaries
are present at the two bus ends they may evade the local-
ization mechanism since the attack comes from both sides
of the bus and they may further cause a full DoS. As a di-
rect extension to CANARY, to address this, we can add new
transceivers to the bus as suggested in Figure 20. This would
allow monitoring individual segments and removing them
from the bus if needed, i.e., the Bus Guardian can disconnect
any of the nodes in Figure 20 and individually monitor any
of the nodes. However, this solution will increase the wiring
complexity and implementation costs which may be unnec-
essary for most practical needs. A decision on the correct
trade-off would require further investigations which due to
obvious space constraints are unsuitable for the current work.

Figure 20: A multiple adversary scenario and multi-
transceiver Bus Guardian



6.7 Remaining challenges and limitations

While our work is the first to propose an effective mecha-
nism for defending the CAN bus against DoS attacks, the
solution that we envision has several limitations which we
now enumerate and leave as potential future work.

Re-certification and costs. Relays with automotive certi-
fication are common, in fact relays have been used inside
cars long before the CAN bus. The topology induced by our
modifications is still a bus compliant to ISO 11898 which
should make certification feasible. Of course, certification
will call for additional investigations on various issues, e.g.,
electromagnetic compatibility, which are out of reach for a
first research communication. Porting the solution will induce
additional costs related to wiring and components, i.e., the
wires, relays, resistors and the bus guardian. However, the
relay-resistor pairs should be placed only at critical positions
around ECUs that can be easily corrupted or ports that are
easy to access so that they can be isolated from the network.
CAN buses usually connect less than a dozen ECUs, buses
with 2-8 ECUs are common, and thus a dozen relays or so
may be sufficient. The length of a CAN bus wire is typically
between 3-15 meters and CANARY will require an amount
of cable equal to the length of the bus to tap the two bus ends,
one control wire and one power supply wire for each relay-
resistor pair. At a minimum, CANARY may require similar
modifications to existing after-market car access control sys-
tems, e.g., remote start-stop systems, that are connected to
the CAN bus which hosts the electronic immobilizer of the
car (usually the body control module) and which may also
add relays to each door to facilitate remote access. By using
relays, CANARY can disconnect (upon intrusions) the OBD
port or the infotainment unit which are not vital for the car
to function anyway. Due to physical difficulties in accessing
random points of the in-vehicle wiring, adversaries will likely
use predictable locations as entry points which can be effi-
ciently protected by a small number of relays. Porting the
full scale CANARY mechanism would indeed require more
complex wiring. But according to recent estimates from the
industry [13], common cars already have around 2.2 km of
wires that connect 100 sensors and control units. Compared
to these, CANARY should call only for a small additional
fraction.

Further experiments. Our experimental model would
greatly benefit from testing in a car-on-bench setup. The
collected in-vehicle traffic that we use in the experiments
perfectly mimics the behaviour of the bus from the real car
but it is hard to predict the behaviour of the physical vehicle
under an attack or when the active defense mechanism is trig-
gered. Such tests will be particularly necessary if CANARY
is placed behind some safety-critical subsystems and this type
of evaluation would be required in case of re-certifications.
Finally, a powerful attacker that has full knowledge of the car
topology (including the wiring of the active defense mech-

anism) and which can tap the bus at any random location
(possibly even in more than one location at the same time)
would be extremely difficult or impossible to stop by the
mechanism. In this respect, a systematic evaluation of all at-
tacker entry points inside vehicles may provide better insights
on the correct placement of the active relays.

Further applications of the proposed mechanism outside
the automotive domain in areas where the CAN bus is also
in use, e.g., industrial control systems, avionics, etc., may be
also considered as future challenges.

7 Conclusion

Due to its bus topology and ID-oriented arbitration, the CAN
bus remains vulnerable to message injections and in particular
to DoS attacks. While cryptography can stop malicious mes-
sages from being accepted by legitimate nodes, it provides
no solution against DoS attacks. The procedure presented in
our work may help in this respect. Isolating the intruder and
filtering/redirecting traffic provides an efficient mechanism
that prevents the adversary from gaining full control over the
bus. Since relays are cheap and the proposed algorithms easy
to implement, there should not be many practical constraints
in implementing the proposed solution or at least part of it.
The relays that we use have an operation time of 5ms and
changing them to faster solid-state relays will bring even bet-
ter performances. Even with the relays from our setup, the
frame-loss was reduced to zero by buffering frames during
retransmissions. Notably, the relay action on the bus causes
no frame loss since the clever error control mechanism of
CAN sets room for transmitting the frames until the acknowl-
edgement bit confirms successful reception. The few frames
that were lost in our experiments were due to overlaps during
retransmissions and the issue was solved by a rather small
software buffer. The results from our experiments are on a
real-world in-vehicle trace that was ported to our laboratory
setup which proves the feasibility of practical use inside ve-
hicles. While there are many works that focus on detecting
intrusions on the CAN bus, there is still much work to be
done in designing systems that can effectively prevent such
intrusions. We hope that our work paves the way towards
developing such systems.
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Figure 21: Oscilloscope plot of incoming frames during relay
action

Appendix A - Testing relay impact on legitimate
bus traffic

To get a baseline on performance, we first consider testing the
relays and filtering mechanism in the absence of the adversary,
i.e., in case of an adversary-free bus. Table 3 provides a sum-
mary of the frame loss due the action of relays with or without
filtering in terms of: left transmitted count (LTC), left failed
count (LFC), right transmission count (RTC) and right failed
count (RFC). There is a slight increase of 1%-2% on the frame
loss from the right side which can be explainable by possible
differences in the relay blocks and slight asymmetries in the
network traffic. Frame loss is not due to the relay actions
but because of the buffering, i.e., the Bus Guardian does not
manage to send frames as quickly as they arrive from one
side to another. We solve this by proper buffering of incoming
frames. Surprisingly, a 1 frame buffer reduces the frame loss
to under 1%. For the case of a DoS attack at 1ms, as show in
our experiments, a 32 frame buffer is needed. A buffer of this
size is also sufficient for the adversary free bus as it reduces
the number of lost frames to 0. The frame loss when using
the Bloom filters is almost identical to the case in which no
filtering is used, proving that filters don’t affect performance.
Triggering the relays will cause a brief disturbance on the
bus and frames transmitted during this short period will be
affected. Figure 21 depicts the effect of switching the relays
on the bus. According to the data-sheet, the relays that we
use have an operation time of 5ms, but as the plots show the
actual time during which the bus is unavailable is much less,
i.e., around 1.5ms. Conveniently, frames that are destroyed
during relay switching are automatically retransmitted thanks
to the clever design of CAN. Concretely, the sender node will
get a transmission error and then automatically re-attempt to
send the frame on the bus until it succeeds. The error counters
are kept within acceptable margins as discussed next.

Impact on REC and TEC counters. Figure 22 shows the
evolution of REC and TEC counters during 100ms and 1s
relay triggering rate on one of the channels (the other chan-
nel looks identical). In both cases, the counters increase to
at most 50 which keeps them in the Error Active state, i.e.,
the normal state of CAN nodes. There is still much room
ahead until the Error Passive state (in which the nodes are
still able to communicate but will not signal errors) and the
counters are very far from the Bus off state. Nonetheless, the



Table 3: Frame loss at various relay trigger rates and buffer sizes without adversarial activity
Buffering Retransmission Filter size Adversary Relay Rate (s) LTC RTC LFC RFC LF% RF%
None None None none 0.1 113673 106356 6856 8522 6.0% 8.0%
1 frame Single side 1024 none 0.1 120333 114291 344 246 0.28% 0.22%
32 frames Single side 1024 none 0.1 120687 114559 0 0 0.0% 0.0%

counters quickly decrease on the next successful transmis-
sions/receptions so disturbances are short-lived and have little
effects on the ECUs. We have also tried to trigger the relays
at 10ms and the nodes still remained in the Error Active state
while counters rarely increased up to 80.

(i) 100ms

(ii) 1s

Figure 22: Evolution of REC and TEC counters with relays
triggered at 100ms (i) and 1s (ii)

Appendix B - Further validations with a CANoe
car simulation

The first attacks on the vehicular CAN buses were demon-
strated by Hoppe et al. [14] as early as 2008 by using a CANoe
simulation linked to a few car components on a bench. As
an additional validation for the proposed solution, we use an
existing car simulation from CANoe and show that (unsur-
prisingly) a DoS attack will completely halt all car functions
while CANARY is able to fully alleviate the attack.

Figure 23 shows the default CAN demo from CANoe. Five
IDs are broadcast related to car ignition, engine, ABS and
gearbox having cycles of 20ms (for the ignition) and 50ms
for the rest. Figure 24 (i) shows the plots with the recorded
signals from the car in case of normal traffic. Then we mount
a full DoS on the bus and in Figure 24 (ii) we show the
effects: the entire bus is locked and incoming signals halt,
i.e., the current value remains the last of the received values
(which is incorrect). Then in Figure 24 (iii) with 50ms load-
balancing the signals are almost identical to the adversary free
bus. While there is still a long road ahead from this simulator

Figure 23: An existing in-vehicle CAN demonstration from
CANoe

to a real-world demonstration, this at least proves that the
attacks can be efficiently mitigated by CANARY within the
simulation.

(i) normal traffic

(ii) full DoS

(iii) load balancing 50ms

Figure 24: CAN bus signals as interpreted by the CANoe car
simulator in case of: (i) normal traffic, (ii) full DoS and (iii)
load-balancing at 50ms
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