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Abstract—The Controller Area Network (CAN), which is used
for communication between in-vehicle devices, has been shown
to be vulnerable to spoofing attacks. Voltage-based spoofing
detection (VBS-D) mechanisms are considered state-of-the-art so-
lutions, complementing cryptography-based authentication whose
security is limited due to the CAN protocol’s limited message size.
Unfortunately, VBS-D mechanisms are vulnerable to poisoning
performed by a malicious device connected to the CAN bus,
specifically designed to poison the deployed VBS-D mechanism
as it adapts to environmental changes that take place when the
vehicle is moving. In this paper, we harden VBS-D mechanisms
using a deep learning-based mechanism which runs immediately,
when the vehicle starts; this mechanism utilizes physical side-
channels to detect and locate physical intrusions, even when the
malicious devices connected to the CAN bus are silent. We demon-
strate the mechanism’s effectiveness (100% intrusion detection
accuracy and error rates of close to 0%) in various physical
intrusion scenarios and varying temperatures on a CAN bus
prototype. In addition, we present a deep learning-based VBS-D
mechanism that securely adapts to environmental changes. This
mechanism’s robustness (99.8% device identification accuracy) is
demonstrated on a real moving vehicle.

Index Terms—Intrusion detection, CAN Bus, side-channel
analysis, deep learning

I. INTRODUCTION

The Controller Area Network (CAN) protocol has been
widely adopted for real-time communication between elec-
tronic control units (ECUs) in modern vehicles [1], [2]. The
CAN protocol was designed to provide a high level of fault
tolerance, however less attention was paid to security issues
(e.g., authentication), which were not a major source of con-
cern when it was developed. These unaddressed security issues
make the CAN protocol vulnerable to today’s threats [3], [4],
[5], such as spoofing attacks [6], [7], [8].

A common approach for mitigating spoofing attacks on the
CAN bus is to add a cryptography-based authentication mech-
anism [9], [10]. However, limitations in the 64-bit payload
of CAN messages make it difficult to embed cryptographic
elements for a sufficiently high security level, resulting in the
need to develop complement techniques. In other studies, Liu
et al. [11], [12] propose a privacy-preserving trust evaluation
scheme; that can realize trust management and conditional
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privacy preservation simultaneously with low communication
overhead for facilitating distributed data fusion in cooperative
vehicular safety applications.

Another means of coping with spoofing attacks is to
authenticate connected ECUs by analyzing and modeling
their communication on the CAN bus. This can be done
by performing timing analysis, using various statistical and
machine learning-based mechanisms [13], [14], [15], [16],
[17] or by conducting payload-based analysis [18], [19], [20].
However, research has demonstrated that an attacker can evade
detection by such mechanisms [21], [13]; the attacker can
replicate the propagation delay behavior of a legitimate frame
transmitter [13].

Taking the evasion constraint into consideration, previously
proposed methods have statistically analysed the unique char-
acteristics of voltage signals generated during transmission by
each individual ECU in order to detect spoofing attacks [22],
[23]. Compared to the timing- and payload-based methods,
voltage-based spoofing detection (VBS-D) mechanisms are
more difficult to evade. Although the software of an in-vehicle
ECU can be remotely compromised, it is difficult to alter the
voltage signal’s characteristics, and hence the corresponding
fingerprints in a controlled manner.

In a recent study [24], the researchers presented a novel
technique to evade VBS-D mechanisms. In their work, they
exploit the VBS-Ds’ retraining process by connecting a mali-
cious ECU, specifically designed for poisoning the VBS-Ds’
models, to the CAN bus. Poisoning attacks against statistical
models have also been extensively researched [25], [26], [27].

In this study we propose a novel mechanism which utilizes
physical side-channels to detect and locate malicious intru-
sions, even when the connected devices are silent. Therefore,
detecting and locating physical intrusions can be done by our
proposed mechanism immediately when the vehicle starts.

The methods presented by Murvay et al. [13] represent a
mechanism for physical intrusion detection and localization.
In addition to the low accuracy reported in their work, there
are two other drawbacks to their approach: (1) to detect and
localize malicious intruders, the mechanism must rely on their
CAN bus transmissions, and (2) the proposed mechanism is
based on timing analysis and is thus susceptible to location
evasion by malicious intruders [13].

In order to secure the CAN bus, we propose CAN-LOC, a
security hardening system for in-vehicle networks, which mon-
itors the voltage signals transferred on the CAN bus (illustrated
in Figure 1). Our system consists of two mechanisms. The first
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Fig. 1: Example of CAN bus line topology with a CAN bus voltage signals monitoring unit connected. This unit is
responsible for sampling and analyzing voltage signals transferred on the CAN bus.

is a physical intrusion detection and localization mechanism;
this mechanism uses a deep autoencoder that detects whether
an additional ECU is introduced on the CAN bus, and a
convolution neural network (CNN) multiclass classifier that
reports the exact location in insertion scenarios. The second
is a continuous ECU authentication and identification mech-
anism, which uses CNN binary classifiers and is capable of
detecting spoofing attacks performed by legitimate ECUs that
impersonate their peers.

From a practical standpoint, the proposed system is compre-
hensive in that the physical intrusion detection and localization
mechanism runs immediately, when the vehicle is started,
attempting to detect and locate changes that have been made
to the original network’s topology, and the continuous ECU
authentication and identification mechanism runs continuously
after the vehicle has been started. In this study, we show that
the proposed physical intrusion detection mechanism is robust
to environmental changes and present a complement VBS-
D mechanism (i.e., the continuous ECU authentication and
identification mechanism) which does not require the ECUs
to communicate using MACs during the proposed VBS-D
retraining.

Our system design is inspired by recent power analysis
research in which classification using deep learning has been
shown to be more powerful and robust to environmental
conditions than other statistical methods [28], [29], [30].
In the course of our research, we derived the novel insight
that information related to physical intruders and their loca-
tion is encoded within the legitimate ECUs’ voltage signals
transferred on the CAN bus. Thus, our physical intrusion
detection and localization abilities do not depend on malicious
data transfers. In other words, our system is effective against
sniffing devices connected to the CAN bus.

We validate the physical intrusion detection and localization
mechanism on a CAN bus prototype using a large dataset
of ECU replacement and insertion attacks, and show that
our mechanism can locate the intrusion points with 100%
accuracy. We demonstrate that the proposed mechanism can

detect physical intrusions with +0.99 precision and 1 recall
in various environmental conditions (e.g., at temperatures of
0°C, 24°C, 50°C, and 60°C).

We validate the continuous ECU authentication and identifi-
cation mechanism on a CAN bus prototype and traffic recorded
from a real vehicle, i.e., a 2015 Honda Civic. We report 99.8%-
99.9% ECU identification accuracy.

The main contributions of this study are summarized as
follows:

o We harden VBS-D mechanisms and present a mechanism
that allows the detection and localization of physical
intruders, even when they are silent.

e We perform a comprehensive evaluation of physical in-
trusion detection and localization on a CAN bus proto-
type, examining a wide variety of intrusion attacks and
temperature variations.

e We extend the above mechanism and show a VBS-D
mechanism (i.e., ECU authentication and identification
mechanism) that securely adapts to possible environmen-
tal changes that occur when the vehicle is moving. We
show that the mechanism’s retraining procedure does not
require the ECUs to communicate using MACs, serving
as another layer of defense against spoofing attacks.

e We perform an evaluation of the authentication and
identification mechanism on a moving vehicle.

o This research complements a recently published preven-
tion solution that requires accurate localization capabil-
ity [31].

II. BACKGROUND
A. CAN Communication

The CAN bus is a two-wire broadcast bus which uses the
differential voltage between the two bus lines, CAN-H and
CAN-L, to encode the bits. During the dominant state, the
CAN-H line is driven toward a nominal voltage of 3.5V, and
the CAN-L line is driven toward a nominal voltage of 1.5V.
The resulting differential voltage Vyiff during the dominant



state must be within 0.9-2.0V, a case in which a 0" is
interpreted by the ECU transceiver. During the recessive state,
both the CAN-H and CAN-L lines are driven toward a nominal
voltage of 2.5V, and a ”1” is interpreted for a differential
voltage less than 0.5V. An illustration of the differential
voltage is presented in Figure 2.

Figure 3 presents a standard CAN frame structure. The CAN
frame begins with the start-of-frame (SOF) bit, which is a
”0” bit that drives the CAN bus from the recessive state to
a dominant state. The identifier field ID, which is used for
arbitration, is next. Since multiple ECUs can write on the
CAN bus at the same time, an arbitration mechanism is needed
to avoid collisions. The arbitration mechanism is based on
the message identifier (ID), which is the first field after the
start of frame (SOF). Identifiers with lower values have the
highest priority; note that dominant bits, i.e., zeros, will always
overwrite recessive bits, i.e., ones. Several control fields follow
the identifier field ID: the RTR bit, which signals remote
frames; the IDE bit, which signals the extended identifier; a
reserved field, which signals future extensions; and the DLC
field, which represents the length of the data field. The latter,
which represents the actual data, can occupy up to eight bytes.
This field is followed by a 15-bit CRC field and a delimiter.
The acknowledgement field, ACK, is written by all ECUs that
successfully receive the frame. It is followed by a delimiter
and the end-of-frame (EOF).
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Fig. 2: Nominal voltage of the CAN-H and CAN-L lines
during the recessive and dominant states.
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Fig. 3: Structure of a standard CAN frame.

B. ECU Voltage Signals

Modern vehicles contain a variety of ECUs, each of which
generates unique analog signals. Even if the same CAN frames

are transmitted by two identical ECUs manufactured in the
same batch, their signals’ characteristics are different. Recent
studies showed that these characteristics are useful for highly
accurate ECU fingerprinting [40], [39]. When analyzing the
digital representation of a sampled signal, those differences
are expressed in relatively minor changes. Figure 4 visually
illustrates the difference between the signals of two ECUs, as
sampled from the rising and falling edges of a CAN frame.
Figure 5 visually illustrates how existing ECU signals are
influenced when an ECU is added at different locations on
the CAN bus.
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Fig. 4: A demonstration of a recessive ’1” to a dominant ~0”
transition and return by two distinct ECUs (differential
voltage Vgjrf recorded from two distinct ECUs).
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Fig. 5: A demonstration of how existing ECU signals are
influenced when an ECU is added at different locations on
the CAN bus.

Each CAN bus ECU outputs a signal that has unique
physical characteristics which are due to both manufacturer-
specific designs and tiny imperfections in the components,
e.g., the internal resistance and capacitance of the ECU’s
transceiver. Furthermore, each ECU added to the CAN bus
contributes its own resistance and capacitance, modifying the
overall electronic characteristics of the CAN bus and thus



TABLE I: Summary of related work.

Ref. - Atack vector P hyS].Ca] Method used Features Experimental testbed Sampling
Compromise Add new Replace intrusion frequency
ECU ECU ECU detection
[32] v - - Signal processing Raw signal CAN bus prototype 2 GS/s
[33] v Signal processing Statistical features extracted from CAN bus prototype & 50 kS/s
the raw signal two real cars
[34] v v - - ML (SVM, NN, BDT) 9 frequency domain & 8 time CAN bus prototype 2.5 GS/s
domain features
[35] v ML (LiSVM, BDT) 9 frequency domain & 8§ time CAN bus prototype 2.5 GS/s
domain features
[36] v v - - ML (logistic regression) Features extracted from rising and CAN bus prototype & 20 MS/s
falling edges two real cars
[37] v v - - Signal processing Features extracted from rising and One real car 2 MS/s
falling edges
[38] v Statistical analysis Temperature and voltage CAN bus prototype 50 MS/s
[23] v Reinforcement learning Raw signal (sampled from a dom- CAN bus prototype N/A
inant (0) bit)
[22] v ML (neural network) Raw signal CAN bus simulation 250 MS/s
[39] v ML (deep learning) Statistical features extracted from CAN bus prototype 2 GS/s
the raw signal
CAN-LOC v v v v ML (deep learning) Raw signal sampled from rising CAN bus prototype & 500 MS/s
’ ‘ ‘ ‘ ‘ ‘ and falling edges one real car ‘ ‘

affecting the signals of all existing ECUs. The influence of this
varies, depending on the connection location and the ECUs’
transceiver characteristics.

III. RELATED WORK

In contrast to timing-based or payload-based analysis, our
system relies on CAN bus voltage signals, which are difficult
to fake. Therefore, as related work, we only consider studies
that are based on features extracted from voltage signals.

Several methods to detect spoofing attacks based on ECUs’
voltage signals have been proposed. Table I summarizes and
compares prior studies based on the following criteria: attack
vector, physical intrusion detection, detection methods used,
features extracted, experimental testbed, and signal sampling
frequencies.

The first study that presented the idea of using voltage sig-
nals for ECU fingerprinting applied simple signal processing
techniques on the raw signal sampled from the CAN frame’s
arbitration field [32]. Another study [33] applied adaptive
signal processing on statistical features extracted from the
raw signal; the proposed mechanism enables modification of
the fingerprints and hence allows the mechanism to adapt to
possible environmental changes.

In other research presented by Choi et al. [34], the authors
presented improvements related to signal processing. In this
study, 17 features were extracted from the extended identifiers,
and a variety of machine learning algorithms were employed in
order to improve the identification accuracy obtained in prior
work.

Further improvements were presented in subsequent studies
[36], [41], [35] in which significantly higher accuracy was
achieved. The core idea behind the study is the observation
that the identification accuracy can be significantly improved
by processing the samples of the rising and falling edges of
the voltage signals.

Additional improvements in terms of computational and
data collection resources were achieved in another study [38]
in which statistical analysis was applied on either temperature
or voltage variations.

In another line of research, optimization of the authentica-
tion techniques mentioned above was suggested [23]. This
approach is based on reinforcement learning, which allows
authentication optimization via a trial and error mechanism.

More recently, deep learning techniques have been sug-
gested [22]. The researchers used a recurrent neural network
(RNN) multiclass classifier for the authentication of ECUs on
the CAN bus given a raw voltage signal. In other research, a
combination of feature extraction and a deep learning-based
mechanism was suggested [39]. Both methods achieved good
identification accuracy, however the studies did not demon-
strate the proposed method’s robustness to environmental
changes.

In a recent study [24], the researchers presented a novel
technique to evade VBS-D mechanisms. In their work, they
exploit the mechanisms’ retraining process by connecting
a malicious ECU, specifically designed for poisoning them
while adapted to environmental changes. To defend against
poisoning, the researchers in [24] propose that all ECUs com-
municate using MACs to collect the voltage signals of ECUs
during VBS-D retraining. However, as explained earlier, it is
difficult to embed cryptographic elements in CAN messages
for a sufficiently high security level, resulting in the need for
complement techniques.

In order to address the limitations of the prior work men-
tioned above, in this study we first propose a mechanism which
utilizes physical side-channels to identify and locate both
passive and active physical intruders on the CAN bus network
when the vehicle starts. Based on the legitimate ECUs’ volt-
age signals transferred on the CAN bus, our proposed physical
intrusion detection and localization mechanism determines
whether the CAN bus has been physically compromised. To
ensure safe operation of the vehicle, this process is executed
when the vehicle is started to immediately issue an alert before
the car is moving. We take advantage of the fact that each
CAN bus topology change influences all of the voltage signals
transferred on the CAN bus. Thus, our proposed mechanism
is effective against silent intruders.

For evaluation, we used a CAN bus prototype identical



to that of [13], which used timing analysis to detect and
locate malicious devices connected to the CAN bus. Despite
this similarity, our study differs in the following ways. First,
n [13], only the difference in the arrival time was used
(extracted by setting a threshold for the voltage level); the
shape of the signal on the CAN bus was not considered.
Second, their method requires a connection to each end of the
CAN bus, whereas our method only requires one connection
to the CAN bus, which simplifies the wiring harness. Third,
their method was unable to localize the physical intruder in
cases in which a new ECU was inserted into the CAN bus,
i.e., a change in the voltage characteristics of the CAN bus.
By using deep learning, we can localize malicious ECUs, even
when they are unknown to the mechanism and/or silent.

Then, after the vehicle has started and no intrusion device
has been detected, the ECUs’ voltage signals transferred on the
CAN bus are utilized to detect spoofing attempts; we propose
a robust continuous ECU authentication and identification
mechanism that adapts to possible environmental changes that
occur when the vehicle is moving. For evaluation, we use
voltage signals collected from both a CAN bus prototype and
a real vehicle.

IV. NETWORK AND THREAT MODELS
A. Network Model

While in-vehicle networks may have more than a hundred
ECUs, they are always grouped together in sub-networks of
less than a dozen ECUs. Typically, the sub-network topology
is bus oriented. In this topology, a two-wire cable connects
multiple ECUs that implement various car functionalities, as
illustrated in Figure 1. To protect the entire vehicle, our
proposed security hardening system must be connected to
each sub-network in order to sample signals from each of the
existing CAN buses.

B. Threat Model

In this study, we focus on spoofing scenarios, where attack-
ers can typically utilize the CAN bus to attack a vehicle or
take full control of the ECUs by maliciously injecting forged
or modified frames into the CAN bus; we consider various
ways to evade detection done by the state of the art spoofing
detection techniques (i.e., voltage-based techniques).

We consider two types of attackers: (1) an attacker with
remote access to the CAN bus, and (2) an attacker with
physical access to the CAN bus. The attacker with remote
access aims to compromise the software level of an existing
device and conduct spoofing attacks. The attacker with phys-
ical access aims to replace an existing ECU with a malicious
ECU or insert an additional ECU in an available location. This
physical intrusion is done for the purpose of poisoning VBS-D
mechanisms while they are adapted to environmental changes.

An illustration of the attack surfaces is presented in Figure
6. These include open entry points to the CAN bus (e.g.,
the OBD port), existing critical ECUs that can be physically
replaced (e.g., steering systems) or existing ECUs that can be
remotely compromised (e.g., infotainment systems).

We assume that an attacker has the knowledge required
to connect both sniffing and active tools to the CAN bus.
We also assume that an attacker is aware of the presence of
the security hardening system and how it works. However,
physical signals that originate from existing ECUs cannot be
cloned due to intrinsic physical properties of the transceivers
on each ECU and of the transmission line that connects them.
This assumption is well known and stays at the foundation of
many recent works that use voltage levels in order to determine
the source of messages on the CAN bus [24], [24], [35],
[36], [37]. Needless to say, the physical signals that originate
from each ECU are unique and cannot be reproduced by basic
laboratory instrumentation, e.g., signal generators. Moreover,
connecting a new device to the bus will immediately lead to
changes in the impedance of the line which can be immediately
detected by inspecting minute changes in the voltage levels
from the bus. Indeed, the protection mechanism that we design
allows for detecting topology changes and thus it is resilient
to such adversarial interventions.

Similar to the way in which software systems are secured,
we consider a CAN bus physically divided into trusted areas
and untrusted areas. The untrusted areas are cheap, easily
accessible, and spread over the entire network cable. The
trusted area is small and located in a secure place. Since
our defined attacker has physical access to the CAN bus, our
proposed security mechanism is assumed to reside on a trusted
area of the CAN bus, where malicious access is physically
hardened.
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Fig. 6: Surfaces that can be used to conduct attacks on the
CAN bus.

V. HIGH-LEVEL DESCRIPTION OF THE SYSTEM

In order to secure the CAN bus from physical intruders
and spoofing attacks, we propose a security hardening system
which is based on continuous monitoring of the voltage signals
transferred on the CAN bus.

The proposed system (illustrated in Figure 7) consists of two
mechanisms:

1) Physical Intrusion Detection and Localization - this
mechanism is activated when the vehicle is started.
It detects whether the CAN bus has been physically
compromised by a malicious intruder, and computes the
location of the intrusion. A new ECU can be introduced



by inserting a new ECU into an available location on
the CAN bus or by replacing an existing ECU.

2) Continuous ECU Authentication and Identification - this
mechanism runs continuously after the vehicle has been
started. It detects spoofing attempts and identifies the
real origin of the spoofed frame.
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Fig. 7: High-level architecture of the proposed system.

In this work we require all known ECUs to communicate
using MACs for a few seconds when the vehicle is started
(i.e., during the physical intrusion detection phase). During this
phase, training set is collected for generating the fingerprints
of the known ECUs. If no intrusion device is detected, then
our system moves to the second phase in which all the frames
transferred on the CAN bus, are authenticated.

The advantages of the proposed system are twofold. First,
for physical intrusion detection and localization, our system
does not depend on voltage signals transferred by the intruder
device. Our system only relies on known ECUs’ signals, and
is capable of detecting physical intrusions immediately when
the vehicle starts. We show that a single voltage signal per
each known ECU is sufficient to detect and locate the mali-
cious intruder with high accuracy. Second, to detect spoofing
attacks, the system is based on the analysis of voltage signals
transferred on the CAN bus, which is considered as a state-of-
the-art technique that well complements cryptographic-based
techniques. We show that our proposed system is robust both
to environmental changes and poisoning conducted by known
ECUs, without requiring cryptographic operations during re-
training.

A. Data Acquisition

When data is acquired from the CAN bus, CAN-LOC
samples the voltage signal of CAN frames. Each CAN frame
can be associated with a particular sender based on its ID field.
While the CAN bus is a broadcast bus, in existing practical

implementations each ECU is associated with a set of IDs that
it uses to send data on the CAN bus. Remote frames (which
request specific data) with the same ID as data frames can be
sent by distinct ECUs, but since this type of frame does not
carry any data, it cannot be the source of an impersonation
attack and is not relevant to our analysis. Remote frames are
easily distinguished by the RTR bit, which is set at one.

One of our goals is to authenticate each of the legitimate
ECUs based on the sampled signals. Therefore, when gen-
erating the fingerprints, we need to associate each sampled
signal with its ECU. Since other ECUs are allowed to transmit
information in the arbitration and acknowledgement fields, the
only fields that can be sampled for ECU identification are the
control, data, and CRC fields (gray fields in Figure 3). As
shown in previous studies [36], rising or falling edges should
be sampled in order to increase the detection accuracy.

B. Proposed System Description

Physical Intrusion Detection and Localization. This
mechanism determines whether the CAN bus is clean (no ECU
was replaced or added to the CAN bus) or dirty (a new ECU
was added or replaced an existing ECU), i.e., the CAN bus
is compromised. In this study we show that a single voltage
signal is sufficient to detect that the CAN bus is physically
compromised. If the CAN bus is compromised, an alert is
generated, and the intrusion point location is returned. As
illustrated in Figure 7, two modules are proposed: (i) the
physical intrusion detection module, and (ii) the intrusion point
localization module.

Algorithm 1 describes the physical intrusion detection and
localization mechanism. The input to the algorithm is the
inspected signal (denoted by Sig), which is a list of voltage
samples collected from the CAN bus during a frame trans-
mission. First, the physical intrusion detection module is used
to detect whether the CAN bus is compromised (line 2). If
the CAN bus is compromised, an alert is generated (line 3),
and then the physical intrusion localization module is used to
locate the physical intrusion point (line 4).

In this study, we assume that in-vehicle ECUs transmit
frames periodically, although the presence of a silent ECU
is technically possible. This would be uncommon, since each
ECU handles several functionalities and must periodically
report data from various sensors/actuators. Thus, the physical
intrusion localization module is based on a process of mon-
itoring legitimate ECUs’ signals (line 6) which is performed
to distinguish between insertion and replacement scenarios:

e All known ECUs are identified within a given time period
(line 7). In this case, we conclude that it is an insertion
attack, and an insertion localization procedure is executed
(line 8) to return the insertion location (line 9).

o If the time period has ended, and there is a known ECU
that has not been identified (line 10), we conclude that it
is a replacement attack. In this case, the location of the
missing ECU is returned (line 11).

The replacement of a faulty ECU is not a very frequent
operation, but it may indeed happen in practice. Such an



Algorithm 1 Physical Intrusion Detection & Localization

1: procedure DETECTPHYSICALINTRUSION(S{g)

2: if IsSBusCompromised(sig) then

3: GenerateAlert()

4: return LocatePhysicallntrusion()

5: procedure LOCATEPHYSICALINTRUSION

6: M «— Monitor.getMissingECUs()

7: if M = @ then

8: S — Monitor.getMonitoredSignals()
9: location < LocatelnsertionPoint(S)
10: else

11: location < LocateReplacementPoint(M)
12: return [ocation

intervention in the proposed system can be handled by up-
dating the models used by the Physical Intrusion Detection
and Localization mechanism which can be done in authorized
locations since it requires data collection and retraining the
models as described later in this paper. We believe that it is
reasonable to assume that this operation is done in a secure
environment, since in practice ECU replacements can be done
only in authorized shops.

Continuous ECU Authentication and Identification. This
mechanism is responsible for the continuous detection of ECU
spoofing attempts. We call this mechanism Continuous ECU
Authentication and Identification since the source of each
frame is continuously checked for each new frame that arrives
on the CAN bus. This stands in contrast to the Physical
Intrusion Detection and Localization which runs only when
the car starts to check that there are no topology changes.
When a spoofing attempt is detected, an alert is generated,
and the real origin of the spoofed frame is returned. As
illustrated in Figure 7, two modules are proposed: (i) the ECU
authentication module, and (ii) the ECU identification module.

The input to the ECU authentication module is the inspected
signal, which is a list of voltage samples collected from the
CAN bus during a frame transmission, and the identifier of the
ECU transmitting it. If there is no match, an alert is generated,
and then the identification module is used to return the real
origin of the spoofed frame. Since the voltage fingerprint of an
ECU fluctuates over time due to environmental factors [24],
there is a need to frequently update the fingerprints.

Physical fingerprinting can be also done for any other sen-
sors or actuators that are present in the car. However, in gen-
eral, these components are not directly linked to the CAN bus,
they are connected via a dedicated port, e.g., GPIO (General
Purpose Input/Output), ADC (Analog-to-Digital Converter) or
PWM (Pulse-width modulation) circuitry, to a single ECU,
which makes these devices harder to access from outside. In
contrast, the CAN bus is a broadcast line where adversaries
can gain access and impersonate connected ECUs simply by
tapping the two CAN wires, which may stretch for several
meters inside the car, and are also easy to access from conve-
nient ports, e.g., the mandatory OBD (On-Board Diagnostics)
interface. Therefore, we are strictly concerned with ECU
fingerprinting in this work.

In the next section, we describe our proposed fingerprints
update method; because we assume that the CAN bus is clean
(verified earlier by the physical intrusion detection module),
we do not require the ECUs to communicate using MACs

during retraining. Further details are provided in the next
section.

VI. Low-LEVEL DESCRIPTION OF THE SYSTEM
A. Physical Intrusion Detection and Localization

The physical intrusion detection and localization mechanism
consists of two modules: detection and localization. This
mechanism is activated when the vehicle is started and deter-
mines whether the CAN bus is clean (no ECU was replaced
or added to the CAN bus) or dirty (a new ECU was added or
replaced an existing ECU), i.e., the CAN bus is compromised.
If a compromised CAN bus is detected, the intrusion point is
returned. The input to the mechanism should only consist of
legitimate (MAC-based authenticated) signals.

The Physical Intrusion Detection module. This module is
based on an autoencoder, which is an unsupervised learning
algorithm that comprises an encoder and a decoder. The
encoder first recreates the input data in a lower dimension-
ality, and then the decoder reconstructs the data back to its
original dimensionality. In this manner, the normal instances
are reconstructed properly, and the outliers are not. This allows
the identification of anomalous input data.

We define the encoder so that it has two hidden layers set
at decreased sizes of 50 percent and 25 percent of the input
layer’s dimension. For fast and robust training, we use batch
normalization and leaky ReLU activation. The decoder has a
similar structure, although in reverse.

As described in Section II-B, the basis for this module
is the electric property of CAN bus topologies, in which
each network topology change influences all of the signals
transferred on the CAN bus. Since any new ECU connected
to the CAN bus affects the voltage signals of all of the ECUs,
a single CAN frame (regardless of the sender) is sufficient for
detecting whether the CAN bus topology has changed.

During the training phase of the autoencoder, we use two
separate chronological datasets that only contain benign data
(i.e., signals transferred on the CAN bus when the network is
clean), from which the autoencoder learns the patterns of the
original CAN bus topology.

The first dataset is the training set (TR!€@™) and the sec-
ond dataset is the validation set (VALC€aM) Given TRC€aN
we train the autoencoder until the mean absolute error (MAE)
reaches its minimum on VAL We use the root mean
square propagation (RMSProp) optimizer and a learning rate
of 10~% with a rate decay of 0.2.

During the inference, given an authenticated signal trans-
ferred on the CAN bus, we execute the autoencoder and
measure the reconstruction error of the signal. If the recon-
struction error exceeds a predefined threshold (thr), an alert is
generated, and the intrusion point localization module is used
to locate the intrusion point on the CAN bus. The method used
to calculate thr is described later in this section.

The Intrusion Point Localization module. This module is
responsible for physically locating the intrusion point on the
CAN bus when the latter is detected to be compromised (i.e.,
dirty). First, we need to eliminate a case in which the CAN
bus is dirty due to the replacement of a legitimate ECU. We



identify the replacement of a legitimate ECU by monitoring
the CAN bus for a certain period of time TP, in order to
determine whether all of the ECUs are present.

Given the cyclical nature of in-vehicle traffic in which there
are predefined cycles (usually in the range of 10-100 ms) and
each ECU is in charge of multiple such frames, a few dozen
milliseconds, on average, should be sufficient to verify whether
all the legitimate ECUs are present.

As illustrated in Figure 8, when the CAN bus found
to be dirty by the physical intrusion detection module, the
monitoring process collects signals authenticated during time
period TP (one per ECU). If all of the ECUs are successfully
authenticated during time period TP, the insertion point lo-
calization procedure is used to locate the intruder. Otherwise,
the location of the ECU that wasn’t authenticated is returned.

Authentication ECUs during 7P [N

2 4 1“41IIH
—— = = 1
\ J ‘

Time period TP of ECU monitoring

Decision-making point:
Is there a missing ECU?

Compromised CAN bus
detected

Fig. 8: Authenticated signal monitoring process on a CAN
bus containing five legitimate ECUs.

The insertion point localization procedure is based on a
CNN multiclass classifier. The proposed architecture is a one-
dimensional variant of VGG16 [42] in which a softmax output
layer is attached, providing a probability distribution over
the predicted output classes. VGG16 is a neural network-
based classification model whose architecture was originally
designed for image classification; the default input size is
224x224. In our case, we changed the input layer to a one-
dimensional layer whose input size is 1x|S| for S representing
a voltage signal containing |S| samples.

Let P = {p1,p2,..., Pn} be a set of insertion points on
the CAN bus. These points are represented by the classes of the
classifier’s output layer. During the training set collection, the
transmitted signals are collected for a predefined time period
at each point p € {p1, p2, ..., Pn} where a new silent ECU
should be inserted. The transmitted signals collected in each
time period are labeled with insertion point p. Only signals
that are associated with legitimate ECUs are considered.

To increase classification accuracy, we employ a data aug-
mentation technique. Data augmentation is the creation of
data from original data, typically by applying a transformation
to the original data. Data augmentation is commonly used
to improve the versatility of machine learning models, as
well as to provide more training examples for datasets of a
limited size. In signal data, for example, it is common to use

data augmentation techniques like Gaussian noise addition,
cyclic rolling-off (shifting), clipping distortion, and frequency
masking [43], [44]. In this study, to ensure robustness of the
proposed classifier to environmental changes[45], we extend
the collected training set by using the following data aug-
mentation techniques: (1) Gaussian noise addition, and (2)
random cyclic rolling-off (shifting). When the data set is too
small, data augmentation techniques can be used to improve
the classification accuracy [43], [44].

Algorithm 2 Generate Augmented Signals

1: procedure GENERATESIGNALS(S', P, K, R)

2: ASt— @

3: H—0

4: o<1

5: for p € P do

6: AS;’ —@

7: for each s € S do

8: for c € C(K, s) do

9: n «— RandomizeGaussian(u, o)
10: Ce—cCc+n

11: r — RandomizeUniform([0, R])
12: AS‘p «— RollOff(c,r)

13: AS Asll‘)

14: return AS!

The proposed data augmentation process is described in Al-
gorithm 2. The input to the algorithm consists of the collected
signals associated with ECU i (denoted by S'). Other input
to the algorithm consists of a set of discrete insertion points
(denoted by P) and two integers K and R. For each insertion
point p € P (line 5) for each signal S € S' (line 7), we
generate K copies of the signal S (line 8). To each copy (line
9), we first add Gaussian noise that is distributed with mean
M = 0 and standard deviation 0 = 1 (lines 10-11), and then
we roll off (shift) a random amount of steps (line 12). Finally,
we assign class p to each signal generated in this loop (line
13).

During the training phase of the classifier, we use the
RMSProp optimizer and a learning rate of 107> with a rate
decay of 0.9, and categorical cross-entropy is used as the loss
function. First, we chronologically extract 30% of the training
set to serve as the validation set. Then, we train the classifier
until the loss function reaches its minimum on the validation
set.

During the inference (i.e., insertion point localization), the
signals collected by the monitoring process described earlier
are used by the insertion point localization procedure for
locating the insertion point. The insertion location estimation
technique is presented in Algorithm 3.

Algorithm 3 Locate Insertion Point

1: procedure LOCATEINSERTIONPOINT(S)
: P « Classifier(S)
C—0Q
for P; € P do
C.add(argmax(P;))
L — majority(C)
if size(L) =1 then
location « L
else
location « RandomizeElement(L)
return location
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Given m which represents the number of legitimate ECUs
that are connected to the CAN bus, let S = {S1,S2,...5m}
be a set of signals represented as one-dimensional vectors
(one per ECU). Let P be a matrix such that the column P;
is the classifier prediction given the input S;. P; represents the
probability distribution over the classes (insertion locations on
the CAN bus). The input to the algorithm 3 is a group of
m signals where signal i is associated with legitimate ECU i
(the group is denoted by S). First, we call the classifier and
obtain |P| = m predictions (line 2). Then, we take the most
probable class from each column P; as a class candidate (lines
4-5) and apply a majority over the candidates (line 6). If one
candidate remains (line 7), it is returned (line 8). Otherwise,
a randomized candidate is returned (line 10).

Calculating thr. The threshold (thr) is determined to
discriminate between benign (i.e., voltage signals transferred
on the CAN bus when the CAN bus is clean) and anomalous
signals (i.e., voltage signals transferred on the CAN bus
when the CAN bus is dirty). To determine a robust threshold
thr, we need to consider that environmental conditions (e.g.,
temperature) influence the voltage signals. However, as we
show later in this paper, insertion/replacement of another ECU
to the CAN bus influences the voltage signals significantly
more than the temperature. This is due to the fact that inser-
tion/replacement is an intrusive operation. Using our trained
autoencoder, we show that the signal reconstruction on a dirty
CAN bus is significantly worse than the signal reconstruction
on a clean CAN bus, even when the latter is computed under
a wide range of temperature conditions. Let Valdrty pe
the validation set representing the voltage signals collected
from a dirty network (i.e., while the network is physically
compromised at different points), a robust thr is calculated
as:

thr = min(MAE, 4 dirty) (1

The replacement location estimation technique is presented
in Algorithm 4. Given the group of missing, known ECUs
detected by Algorithm 1, the set of their original physical
locations on the CAN bus is returned. These locations are
assumed to be pre-known by our localization mechanism.

Algorithm 4 Locate Replacement Point

1: procedure LOCATEREPLACEMENTPOINT(M)

2: L—@

3: for M; € M do

4: L.add(location(M;))
5 return L

B. Continuous ECU Authentication and Identification

The ECU Authentication module. For each legitimate
ECU i, a binary classifier is built based on a CNN responsible
for authenticating the ECU. We define each binary classifier
so it includes two convolutional layers followed by a max
pooling layer to reduce the size. Each convolution layer has
32 filters. In addition, one fully connected layer is attached,
which contains 100 neurons. All layers use the rectified linear
unit (ReLU) as an activation function except for the output

layer. The output layer consists of a single neuron which uses
a Sigmoid as an activation function; this layer is aimed at
producing the probability that a given example is associated
with ECU 1.

The training set used to train the binary classifiers consists
of the voltage signals transferred on the CAN bus and associ-
ated with the legitimate ECUs. To train the binary classifier B;
for ECU i, each signal is classified according to the associated
frame’s origin (’1’ if the origin of the signal is ECU i and ’0’
otherwise). To address a possible data unbalance, we use the
cost-sensitive learning method described in [46]. The idea
behind this method is that the training procedure is modified
so that some examples have more or less errors than others.
In addition, to avoid overfitting, we define two dropouts set at
0.5; one is for the max pooling layer, and the other is for the
fully connected layer.

The initial training set is collected when the vehicle is
started. First, we chronologically extract 30% of the initial
training set to serve as the validation set. Then, to generate B,
we use the RMSProp optimizer and a learning rate of 10~4
with a rate decay of 0.9, and binary cross-entropy is used as
the loss function. Finally, when the loss function reaches its
minimum on the validation set, the hyperparameters for each
binary classifier are locally stored.

During the inference (i.e., ECU authentication), given a
signal associated with a CAN frame, we extract its ID and
apply the appropriate binary classifier to the signal. The output
returned from the classifier is the probability that the given
signal matches the CAN frame ID. If the network output is
less than 0.5, an alert is generated, and the ECU identification
module is used to return the real origin of the spoofed frame.

In this work, we assume that environmental changes occur
progressively, and accordingly, we use each authenticated sig-
nal to retrain the binary classifiers. Each classifier is retrained
given the most recently stored hyperparameters (i.e., CNN’s
weights, learning rate, and rate decay). A single epoch is
performed per each authenticated signal.

The ECU Identification module. Given a signal to identify,
we call each of the binary classifiers and return the appropriate
identifier according to highest value returned.

VII. EXPERIMENTS AND RESULTS

In this section we describe the experiments performed to
evaluate the proposed system and present the results.

A. Evaluation Setup

CAN Bus Prototype. As shown in Figure 9, our experimen-
tal setup is identical to the setup used in prior research [13].
In this section we show that significantly better results are
achieved when using the proposed physical intrusion detection
and localization mechanism while only utilizing physical side-
channels. As illustrated in Figure 10, there are 10 connection
points on the CAN bus. Some of them (green) are for legiti-
mate ECUs, and the others (white) are left open for malicious
ECUs to be connected to the CAN bus.

We consider a number of networks with different configura-
tions to evaluate the CAN-LOC system:



VN5610A
(TJA1051)

EVBS12XF512
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Fig. 9: CAN bus prototype.

e Network 0 - a clean network in which all of the legitimate
ECUs (and only those ECUs) are connected and transfer
CAN frames, as depicted in Figure 10.

e Networks 1-3 - dirty networks in which a malicious ECU
replaces a legitimate ECU at one of the locations depicted
by the red circles in Figure 11 (i).

e Networks 4-8 - dirty networks in which a malicious ECU
is inserted into the CAN bus at one of the locations
depicted by the red circles in Figure 11 (ii).
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Fig. 10: Location of legitimate ECUs (green) and available
points (white) for intruders on our CAN bus prototype.

As depicted in Figure 9, we use PC-to-CAN adapters (USB-
CANmodull and VN5610A) and the EVBS12XF512 auto-
motive grade development board, equipped with an external
transceiver (TJA1050), in our setup. Table II lists the abbrevi-
ated notation used, device type, transceiver type, and amount
of each ECU, as well as its role in our experiment. L; is the
legitimate ECU i (1 < i £ 5), A1 is the malicious ECU
used for training, and A (a completely different ECU related
to A1) is the malicious ECU used for testing. The network
configurations, along with their designations, are listed in
Table III.

TABLE II: ECU devices and transceiver types and their role
in the experiments.

l [ Abbrev. Device Transceiver  Amount Role [ ]
L; USB-CANmodull PCA82C251 5 legitimate
A1 VN5610A TIJA1051 1 adversary
Ao EVBS12XF512 TIA1050 1 adversary

Real Vehicle. A 2015 Honda Civic (Figure 12) was used
to evaluate the proposed continuous ECU authentication and
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(i) dirty network configurations with replaced nodes (Nw 1-3).
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(ii) dirty network configurations with inserted nodes (Nw 4-8).

Fig. 11: The adversarial network configurations examined.

TABLE III: Experimental network configurations.

Nw. Connection point

Conf. A B C D E F G H 1 J
NwO Ly Ly L3 Lg Ls

Nwl A12 Ly L3 [ Ls

Nw2 Ly Ly A1 Lg Ls

Nw3 Ly Ly Ls [ A2

Nw4 Ly A1 Ly L3 Lg Ls

Nws Ly Ly A1 L3 Ly Ls

Nw6 L1 Ly L3 A1 Lg Ls

Nw7 [ Ly L3 Ly | A1 Ls

Nw§ L1 Ly L3 Ly Ls A2

Fig. 12: 2015 Honda Civic.

identification mechanism. Through the OBD-II port, the volt-
age signals were sampled from the in-vehicle CAN bus con-
taining six ECUs, running at a transmission bitrate of S00Kbps
which is the usual bitrate for passenger cars.

In all the experiments described in this study, we sampled



individual bits that are synchronized based on recessive to
dominant transitions (one to zero) which, in the worst case,
occur after 5 recessive bits. Note that the CAN protocol
requires one bit of opposite polarity to occur after 5 bits of the
same value (stuffing rule) in order to avoid desynchronization.
The digital representation of all voltage signals are normalized
to the range of 0 to 1, because this significantly impacts the
classification accuracy.

In Figure 13 we present two examples of the data used for
ECU identification, for two different ECUs. As can be seen,
the data exhibits realistic noise and voltage fluctuations, which
are expected in a real car but will not affect the accuracy of
the identification as we later show.
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Fig. 13: A demonstration of a recessive ”1” to a dominant
”0” transition and return for 100 voltage signals (differential
voltage Vgiff recorded from two different ECUs).

B. Results

1) Evaluating the physical intrusion detection: As de-
scribed in the previous section, this module focuses on detect-
ing whether the CAN bus is physically compromised or not.
The CAN bus prototype (Figure 9) is used to evaluate this
module. We only sample CAN-H values, since we observed
that sampling a single wire is sufficient to detect and locate
physical intrusions. We observe in preliminary experiments
that sampling CAN-L values provides similar results.

Training set collection. 300 signals for each ECU are
collected to train the autoencoder, all of which are collected
from network O, where only legitimate ECUs are attached.
Additional 300 signals for each ECU are collected for each
network from the set of networks 1-8 to determine the
threshold thr, associated only with the legitimate ECUs. The
malicious ECU used for insertion and replacement is Aj. All
the signals collected to train the autoencoder (i.e., the signals
collected from network 0) are collected at a temperature of
24°C.

Test set collection. 700 signals for each ECU are collected
to test the autoencoder, all of which are collected from network
0; the expected prediction for each signal is clean. Additional
700 signals for each ECU are collected for each network
from the set of networks 1-8, all of which are associated
with legitimate ECUs, and the expected prediction for each of
those signals is dirty. The malicious ECU used for insertion
and replacement is A. The signals collected from network 0
to test the autoencoder are collected at temperatures of 0°C,
24°C, 50°C, and 60°C.
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Fig. 14: The average MAE of clean and dirty signals as a
function of the number of epochs used to train the
autoencoder.

Detection evaluation. Figure 14 presents the average MAE
of clean and dirty signals a function of the number of epochs
used to train the autoencoder. As can be seen, there is a large
margin between the average reconstruction errors of clean
and dirty signals. Our evaluation results show high accuracy
(+0.99 precision and 1 recall) in identifying dirty scenarios
given the entire test set. These results reflect the ability of the
proposed module to detect intruders using solely the signals
of legitimate ECUs, in a wide range of temperatures. The
sampling frequency used in this experiment was 250 MS/s.

2) Evaluating the intrusion point localization: As described
in the previous section, this module is responsible for physi-
cally locating the intruder on the CAN bus when it has been
compromised. The CAN bus prototype (Figure 9) was used to
evaluate this module.

Since replacement point localization relies on the ability to
identify all of the legitimate ECUs, its performance is derived
directly from the accuracy of the MACs.

Training set collection. 300 signals for each ECU are
collected for each network from the set of networks 4-8 and
assigned respectively with points B, D, F, H, and J (see Figure
11). Those signals are provided to the data augmentation
algorithm (Algorithm 2, denoted by S') which generates
additional signal examples for training. To generate the entire
dataset for training, Algorithm 2 is executed five times, against
five legitimate ECUs that the CAN bus prototype contains.



TABLE IV: Authentication experiment results evaluated on
the CAN bus prototype.

ECU1 ECU2 ECU3 ECU4 ECU5
FRR [FAR [FRR [FAR |FRR [FAR [FRR [FAR | FRR [FAR
0.001] 0 [ 0 [0 [0 0] 00 J0o0oI] 0

On a call i to Algorithm 2, we provide the collected signals
associated with ECU i as input (denoted by S'), the set of
insertion points P=B, D, F, H, J, a parameter K set at 100,
and a parameter R set at 10. For all the five ECUs, the resulting
signals are used to train the classifier. The malicious ECU used
for insertion and replacement is Aj.

Test set collection. 700 signals for each ECU are collected
for each network from the set of networks 4-8. The malicious
ECUs used for insertion and replacement are both Aj and A3.

Localization evaluation. The localization evaluation is
performed by providing the classifier with five signals as
input (one per legitimate ECU). During our evaluation, perfect
results are achieved: we report 100% success rate in the ability
of the proposed module to localize inserted intruders using
solely the signals of legitimate ECUs. The sampling frequency
used in this experiment was 500 MS/s. In Figure 15 we
present the localization accuracy as a function of the sampling
frequency; as can be seen, sampling frequency of 250 MS/s
reduced the localization accuracy by more than 10%.
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Fig. 15: Localization accuracy as a function of the sampling

frequency.

3) Evaluating the continuous ECU authentication: Both the
CAN bus prototype and a real vehicle are used to evaluate this
module. We observed that using the differential between the
CAN-H and CAN-L values contributes to the robustness of the
proposed ECU authentication module. Each binary classifier’s
performance is evaluated in terms of the false rejection rate
(FRR) and false acceptance rate (FAR).

Evaluation on the CAN bus prototype. We train the
binary classifiers using 300 signals for each ECU that are
collected from each network from the set networks 0-8. Then,
we evaluate them using another 700 signals for each ECU that
are collected from each network at the set of networks 0-8. The

TABLE V: Authentication experiment results evaluated on a
real vehicle.

ECUI ECU2 ECU3 ECU4 ECU5 ECU6

FRR | FAR [ FRR | FAR [ FRR ]| FAR.[ FRR [ FAR [ FRR | FAR [ FRR | FAR
0 [ 0 | 0 J0.001]0.002] 00 [ Ao [0 ] 0 ] 0 J0.002] 0O
0.008] 0 | O [0,004[0.006[01.(5)031 ;) [0 ] 0 ] 0 [0.006] O
0 JTOTO0OTTO0ToO [3(:)mllnu:)es[ 0 [ 0 [ 0 JOOI[ ©
0 [ 0 ] 0 J0.004] © [(;6.303[ 0 [ 0 [ 0 [ 0 J0.003] O

malicious ECU used for insertion and replacement is A1. As
presented in Table IV, good results were achieved. Identical
results were achieved also when repeating the experiment
using A3 for insertion and replacement.

Evaluation on a real vehicle. We evaluate our proposed
authentication method on a real vehicle when moving. To
generate the initial binary classifiers, 700 signals for each ECU
are collected when the vehicle is started. All of the signals are
collected when the vehicle is stationary, and their true labels
are used for training.

The signals used in our evaluation are collected when the
vehicle is moving. They are grouped into four separate datasets
according to the length of time the car was running: (1) O
minutes, (2) 15 minutes, (3) 30 minutes, and (4) 60 minutes.
Each dataset contains 4,000 signals for each ECU.

Table V presents the performance of the proposed authen-
tication module. Evaluation of dataset 1 was performed using
the binary classifiers generated when the vehicle was started.
Then, Dataset 1 is used to update the fingerprints. For each j
greater than 1, we evaluate dataset j using the binary classifiers
that were updated given dataset j-1. The labels used during
each update are determined according to the output value
obtained by the binary classifiers themselves.

In the table, we can see that low FRR and FAR values were
achieved on each dataset. The overall identification accuracy
was 99.8%. The sampling frequency used in this experiment
was 250 MS/s. Assuming that environmental changes occur
progressively, we conclude that the results achieved demon-
strate the robustness of our method to environmental changes.

VIII. SYSTEM DEPLOYMENT

Similar to the mechanism proposed in [31], our system can
be implemented on an external node attached to the CAN bus,
and the ML models should be stored in a physically secure
area. Such deployment addresses the fact that there is already
a large number of vehicles on the road. The dataset required to
induce the intrusion detection and localization models of the
system for vehicles on the road be collected at the garage. The
ML models should be re-trained each time an ECU is added
or replaced, since the ECUs’ electrical characteristics differ.
When an ECU’s software is updated, re-training the model is
not required, since no physical mechanism changes, but only
the logic. For new vehicles, the dataset required to induce these
models can be collected after the vehicle has been produced,
i.e., during the vehicle testing phase on the production line. To



achieve the accurate detection demonstrated in Section VII, a
DSP with a sampling rate of 500 MS/s should be used in the
deployed system.

Regarding the computational power, on a 2.11 GHz Intel
Core 17-8665U processor, it took about three seconds to parse
15K frames during authentication, which corresponds to a
processing time in the order of 200us per frame. This
corresponds to the time required to process frames in real
time, since the time spent by a frame on a 500 Kbps CAN
bus is around 200us. This amount of computational power is
available on a modern high-end DSP. During the authentication
models’ initial training, we observed that 2K signals are
sufficient for training when the vehicle is started. This number
of samples can usually be collected from an ECU in a matter of
seconds. Given 2K signals per each ECU, each binary classifier
is generated within a few seconds.

The neural networks’ hyperparameters were tuned using
data collected from the CAN bus prototype. All the results
presented in Section 7 reflect the experiments performed on a
new dataset using the pre-tuned hyperparameters.

As stated in Section I, our proposed system complements a
prevention mechanism proposed in [31] that requires accurate
localization of the intrusion point, which our proposed system
provides by using deep learning. From a data collection
perspective, the mechanism described by the authors in [31]
can also be used for the automatic examination and diagnosis
of specific segments of the CAN bus.

IX. CONCLUSION

In this study we demonstrated how CAN bus voltage signals
can be used to identify and locate physical intruders on the
CAN bus network. Since we do not depend on an adversary’s
transmission, our physical intrusion detection and localization
mechanism is effective against silent intruders. Our evaluation
results show high detection accuracy when simulating a large
variety of physical intrusion scenarios.

By using data collected in a wide range of temperatures, we
showed that the physical intrusion detection module is robust
to environmental changes; we observed that connecting a new
ECU to the CAN bus influences the original voltage signals
significantly more than temperature changes. Using an autoen-
coder trained to reconstruct voltage signals transferred on a
clean CAN bus, we showed that the signals’ reconstruction for
a dirty CAN bus is significantly worse than the reconstruction
for a clean CAN bus (when the latter is measured under a wide
range of temperature conditions). We rely on this observation
as an indication of the robustness of the localization module,
which is trained given augmented data, to adapt to possible
temperature changes.

Regarding adversarial machine learning, although the soft-
ware of an in-vehicle ECU can be remotely compromised, it is
difficult to alter the voltage signals’ characteristics, and hence
the corresponding voltage fingerprint of the compromised
ECU, in a controlled manner [24]. Therefore, the only feasible
way to evade voltage-based mechanisms is by exploiting the
retraining process using an additional ECU connected to the
CAN bus. In our work, we address this by detecting the

intruder prior to retraining as a preventative action, which
complements the limited cryptography-based authentication
methods.

Regarding the manipulation of bits inside frames, we point
out that given the electrical properties of the CAN bus, an
adversary can only force a recessive to dominant transition
(dominant bits cannot be overwritten by recessive bits). Since
this will immediately trigger a rising edge, and the deep
neural network is specifically trained on rising edges, such
manipulation will be detected; the only requirement is that
the intrusion detection system monitors every rising edge in
a frame. Such attacks are very difficult to perform due to
synchronization issues and the fact that the legitimate node
needs to be eliminated from the CAN bus, otherwise there is
a strong chance of at least a CRC error, since the data field is
manipulated.

In this study, we focused on the degree of sensitivity of
the proposed mechanism to different physical conditions like
(1) steady state, (2) short and long-time movement, and (3)
temperature. This sensitivity has been shown to detect physical
intrusions with high accuracy; in Section 2, we visually
illustrate the difference between the signals of two ECUs, as
sampled from the rising and falling edges of a CAN frame
(Figure 4). In Figure 5 we visually illustrate how existing
ECU signals are influenced when an ECU is added at different
locations on the CAN bus.

For real-world vehicles, it is much more likely that an
adversary performs a single insertion on exposed ports, like
the OBD, due to obvious difficulties in exposing the in-vehicle
wires that are generally hard to access. Still, even if such a
scenario occurs, the attack will be detected as it will lead
to impedance changes on the bus and, if the localization
becomes inaccurate, the car can be sent to a specialized garage
for inspection by qualified personnel (note that the presence
of adversarial devices, single or multiple, will be signaled
immediately after the car is started, so that the owner will
be informed in time).

As stated, our experiments include realistic noise from an
in-vehicle CAN bus. But it is indeed true that one cannot
collect all possible kinds of noise that occur on a CAN bus.
Still, the differential signaling of the bus is specifically meant
to eliminate electronic noise (by computing the difference
between CAN-H and CAN-L and thus removing common
mode errors, rather than using the ground voltage GND as
a reference). We leave further experiments with extreme noise
variations as potential future work.

In future research, we also plan to evaluate the authentica-
tion and identification mechanism in additional scenarios, e.g.,
when an ECU goes into bus-off or low-power mode, and when
the supply voltage from the ECUs’ fluctuates.
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