
DoS A�acks on Controller Area Networks by Fault Injections
from the So�ware Layer

Pal-Stefan Murvay
Politehnica University of Timisoara

Romania
pal-stefan.murvay@aut.upt.ro

Bogdan Groza
Politehnica University of Timisoara

Romania
bogdan.groza@aut.upt.ro

ABSTRACT
�e Controller Area Network (CAN) is still the most widely em-

ployed bus in the automotive sector. Its lack of security mechanisms
led to a high number of a�acks and consequently several security
countermeasures were proposed, i.e., authentication protocols or
intrusion detection mechanisms. We discuss vulnerabilities of the
CAN data link layer that can be triggered from the application level
with the use of an o� the shelf CAN transceiver. Namely, due to
the wired-AND design of the CAN bus, dominant bits will always
overwrite recessive ones, a functionality normally used to assure
priority for frames with low value identi�ers. We exploit this char-
acteristic and show Denial of Service a�acks both on senders and
receivers based on bit injections by using bit banging to maliciously
control the CAN transceiver. We demonstrate the e�ects and limi-
tations of such a�acks through experimental analysis and discuss
possible countermeasures. In particular, these a�acks may have
high impact on centralized authentication mechanisms that were
frequently proposed in the literature since these a�acks can place
monitoring nodes in a bus-o� state for certain periods of time.

KEYWORDS
Controller Area Network, DoS, fault injection, bit banging

ACM Reference format:
Pal-Stefan Murvay and Bogdan Groza. 2017. DoS A�acks on Controller
Area Networks by Fault Injections from the So�ware Layer. In Proceedings
of ARES ’17, Reggio Calabria, Italy, August 29-September 01, 2017, 10 pages.
DOI: 10.1145/3098954.3103174

1 INTRODUCTION
�e need of connecting various system components by both

cost-e�cient and reliable communication mechanisms is a natural
consequence of the rapid evolution in the complexity of embedded
systems. �is led to the development of a wide range of communi-
cation protocols that implement speci�c requirements of di�erent
industry sectors. �e Controller Area Network (CAN) is one of
the most proli�c protocols and is established as the most wide-
spread standard in the automotive industry. Besides its initial goal

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
ARES ’17, Reggio Calabria, Italy
© 2017 ACM. 978-1-4503-5257-4/17/08. . . $15.00
DOI: 10.1145/3098954.3103174

for building in-vehicle networks, it was also adopted in other in-
dustry areas such as avionics, automation and notably as part of
demanding applications such as the CERN particle accelerator [3].

Due to its lack of security and the safety critical nature of the
applications in which it is used, CAN a�racted active interest from
the security research community. One of the �rst experiments
on sni�ng and replay a�acks on CAN buses came from Hoppe
and Di�man [8] which proved the feasibility of such a�acks on an
electric window li�. �e extensive experimental analysis performed
on real-world automotives by Koscher et al. [14], Checkoway et
al. [2] and Miller and Valasek [16] conclusively showed that CAN
provides an easy to exploit surface for tampering with the systems
interconnected by it and even paves way for deploying remote
a�acks with the aid of malicious devices planted on the bus. More
recently Miller and Valasek [17] proved that remote a�acks can be
mounted without vehicle alteration by compromising CAN nodes
capable of wireless communication. All these results along with the
reported real-life incidents made it clear that the lack of security of
the CAN protocol should be mitigated.

A number of solutions for securing the Controller Area Network
were proposed as a result of the increasing number of reported
a�acks. Various approaches were considered, most of the e�orts be-
ing directed towards application layer authentication mechanisms.
Szilagyi and Koopman proposed a voting scheme [24] for time-
triggered networks while another approach [6] proposes the use of
a TESLA-like protocol, well known in sensor network applications,
to provide delayed broadcast authentication. �e LiBrA-CAN proto-
col proposes a Message Authentication Code (MAC)-based scheme
which uses keys shared between groups of nodes [7] and authenti-
cation tags are mixed to increase security. Other approaches were
centred on the physical layer proposing solutions like modifying
the standard CAN message transmission to carry authentication
information [25] or identifying nodes based on their unique sig-
nal characteristics [19]. Nonetheless, a centralized authentication
scheme is explored in [15] where a master node discards malicious
frames by overwriting them with error �ags. �is approach is par-
ticularly interesting as being both convenient for implementation
and fully backward compatible.

In this work we investigate a layer of the CAN protocol stack
which was mostly neglected from the security point of view. Namely,
we focus on the security of the CAN data link layer which provides
the means to mount Denial of Service (DoS) directly from the so�-
ware layer without the need for complex electronics. �ese a�acks
can be mounted from the application layer by systems equipped
with a basic CAN transceiver by fault injection using a bit banging
technique. We present several a�ack variants and demonstrate their

ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy Pal-Stefan Murvay and Bogdan Groza

Figure 1: CAN bus topology

feasibility at speeds up to 1 Mbit/s by showing an experimental
evaluation and discussing the requirements for mounting them.

�e rest of this paper is structured as follows. In section 2 we
present some background information on the CAN protocol which
is needed to understand its vulnerabilities and further discuss re-
lated work. We proceed with the description of the a�acks in
section and present experimental results in section 4. Section 5
discuses possible countermeasures before concluding the paper in
the �nal section.

2 BACKGROUND
2.1 �e CAN protocol

CAN was introduced as a result of the stringent need in the
automotive sector for a serial communication system at a time
when the number of point-to-point connections required by the
system architecture greatly increased the wiring overhead. Its
development started in 1983 at Bosch which has published several
versions of the protocol since then. �e latest of these versions was
published in 1991 and is known as CAN 2.0 [23]. Currently the
CAN protocol speci�cation is available as the multi-part standard
ISO 11898. Part 1 [9] of the standard covers the CAN data link
layer while parts 2 [10] and 3 [11] cover the physical layer for high-
speed and low-speed CAN respectively. A number of CAN-based
higher layer protocols were developed to ful�l the needs of various
industrial sectors, e.g.: CANopen for industrial automation, SAE
J1939 for commercial vehicles, UDS (Uni�ed Diagnostic Services)
for automotive diagnosis or NMEA 2000 for marine applications.
While each of these higher layer protocols has its particularities,
the underlying physical and data link layers of CAN are common
to all.

CAN was designed as a two wire di�erential bus that intercon-
nects a number of nodes. Each node that participates in CAN
communication requires a CAN interface which is comprised of
a CAN controller and a CAN transceiver connected by 2 wires as
suggested in Figure 1. �e CAN controller unit can be found as a
stand-alone circuit or o�en as a dedicated module of the host micro-
controller. �e controller implements the CAN protocol at the data
link layer as described in CAN 2.0 or ISO 11898-1 generating the
transmit bit sequence or decoding incoming messages. �e CAN
transceiver is responsible with converting between logical data and
the corresponding physical signalling as it connects the CAN con-
troller to the physical communication lines. Depending on whether
high-speed or low-speed CAN is employed, appropriate high- or
low-speed transceivers have to be used because of di�erences in

the signalling behaviour. High-speed CAN transceivers support
bit rates of up to 1 Mbit/s while low-speed transceivers can only
provide communication speeds of up to 125 Kbit/s. An advantage
of the low-speed CAN transceivers is that they can provide fault
tolerant communication.

Figure 2: Bus levels for CAN high-speed (le�) and low-speed
(right)

�e CAN speci�cation de�nes the logical bit values as dominant
when referring to logical ”0” and recessive when referring to logical
”1”. �ese logical values are encoded for transmission on the phys-
ical layer as di�erential signals. �e speci�c di�erential voltage
levels are dependant on the type of transceiver as illustrated in
Figure 2. A high-speed CAN transceiver (ISO 11898-2) interprets
a di�erential voltage of up to 0.5 volts as a recessive value, while
a di�erential voltage that exceeds 0.9 volts is considered as the
dominant level. Low-speed transceivers (ISO 11898-3) will consider
a di�erential voltage of 5 volts as a recessive bit and a typical di�er-
ential voltage of 2 volts as a dominant bit. According to the CAN
speci�cation a dominant bus level will always overwrite a recessive
bus level, therefore, the CAN bus is implemented as a wired-AND
bus. �is behaviour enables the implementation of CAN protocol
features such as the arbitration-based bus access where the lowest
message identi�er has priority. �e a�acks presented in this paper
are also facilitated by this behaviour.

Figure 3: CAN bit timing

Figure 3 depicts the four segments that form a nominal bit. �e
length of each segment is an integer multiple of the Time �an-
tum (TQ), the smallest timing resolution used by a node to derive
the bit time. �e synchronization segment is where the transition
from recessive to dominant or dominant to recessive is expected
to occur. It is followed by the propagation segment introduced to
compensate for the signal propagation delays. �e Phase 1 and
Phase 2 segments are used for resynchronization by being length-
ened or shortened. �e bit value sampling occurs directly a�er the
Phase 1 segment. Hard resynchronizations occur on all recessive
to dominant transitions signalling the beginning of a frame, i.e.
the Start Of Frame (SOF) bit. Subsequent falling edges are used
for so� synchronization which can only adjust the bit time by an
amount speci�ed as the Synchronization Jump Width (SJW) which
is limited to a maximum of 4 TQs.

Data is sent over the CAN bus a�er being framed by the CAN
controller. Besides the actual payload which can be 8 bytes at the

DoS A�acks on Controller Area Networks by Fault Injections ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy

Figure 4: Standard CAN and CAN-FD data frame

most, each CAN data frame contains additional �elds as depicted in
Figure 4. �e start of a data frame is signalled by the transmission
of a dominant SOF bit (the idle state of the bus is represented by a
recessive level). �is bit is followed by the identi�er �eld which has
a length of 11 bits in standard frames and 29 bits in extended frames.
In what follows we will be presenting the �elds of a standard frame.
�e RTR bit comes next indicating if the frame contains actual
data or it is just a remote request for data and the IDE bit which
speci�es the standard or extended type of the frame. A�er another
bit which is reserved and should be set to the dominant state comes
the data length code (DLC) �eld containing the length of the data
�eld followed by the data �eld itself and a CRC �eld. A one bit CRC
delimiter �eld is inserted a�er the CRC and should always be set
to the recessive state. �e 1 bit acknowledge �eld is also followed
by a recessive delimiter before the 7 recessive bits of the EOF (end
of frame) �eld.

CAN introduces an arbitration mechanism that assures collision
avoidance on the bus. �is mechanism is applied over the �rst part
of the frame which includes the frame ID and requires the sending
nodes to monitor the bit by bit transmission. If two or more nodes
start sending a frame at the same time they each continue the
transmission as long as the value of the bit read out from the bus
equals the value they have wri�en on the bus. �erefore, a node
pu�ing a recessive bit on the bus will always lose arbitration to a
node writing a dominant bit, consequently identi�ers with lower
values have higher priorities.

Another mechanism employed by CAN is the bit stu�ng pro-
cedure required to keep the nodes synchronised. �e mechanism
involves inserting additional bits of opposite value a�er each set of
5 identical consecutive bits. �e stu�ng bit will be inserted even
if the 6th bit in the normal transmit sequence is di�erent in value
that the previous 5 identical bits.

2.2 CAN error management
Understanding the error management system from the CAN

bus is relevant for understanding the a�acks that we discuss. �e
CAN protocol de�nes an error detection mechanism based on bus
monitoring performed by both the sender and receiver of a message.
�e sender is responsible with bit by bit monitoring of the sent
message as well as the acknowledge �eld. By monitoring the bus
bit levels the sender compares the sent bit value with the actual
sampled bit value. A bit error exist if these values di�er. Since all
sent CAN messages should be acknowledged by a receiver node, the
ACK �eld is checked by the sender. If the positive acknowledgement
is missing, then the sender records an acknowledgement error.

�e message format, bit stu�ng and checksum are veri�ed on the
receiver side. A form error occurs whenever a message is found to
be non-conformant with the speci�cation. Breaking the bit stu�ng
rules results in a bit stu�ng error while failing to verify the message
CRC produces a CRC error.

Figure 5: CAN error frame

Whenever an error is detected, the detecting node begins sending
an error frame beginning with the �rst bit following the error
detection. �e CAN error frame, as illustrated in Figure 5, starts the
Error �ag which consists of 6 dominant bits. Even if the error was
detected by a single node this �eld is meant to ensure that all other
nodes send an error �ag, e.g. as a result of the detection of a bit
stu�ng error. �e Secondary error �ag, also of dominant level, is
meant to compensate for the later detection of errors and can be 0
to 6 bits in size. �e last segment of the CAN error frame, called the
error delimiter, consists of 8 recessive bits. A�er the error frame
was sent and the intermission time has elapsed, the sender of the
erroneous message tries to retransmit it.

�e CAN protocol speci�cation describes a fault con�nement
mechanism to prevent faulty nodes from creating high bus loads.
According to this mechanism each node should implement two error
counters: TEC (Transmission Error Counter) and REC (Receive
Error Counter) �ese error counters are decremented by one on
each successful transmission or reception of a data frame. Upon
detection of an error, the sender node increments TEC by 8 while
receivers increment REC by 1 unless they are the ones causing the
error, in which case REC is incremented by 8. Depending on the
values of these error counters a CAN node can be in one of three
error states:

• Error Active. When in this state the CAN node behaves
normally without any speci�c restriction

• Error Passive. Nodes in the Error Passive state can only
indicate an error by sending 6 recessive bits preventing
other nodes from globalizing the error. When sending
consecutive data frames, nodes in this error state must
wait for an additional time equivalent to 8 bits (Suspended
Transmission Time).

• Bus O�. Nodes that reach the Bus o� state can no longer
in�uence the bus communication in any way. �is state can
only be exited a�er 128 × 11 correctly recorded recessive
bits.

Figure 6 shows the possible transitions between these three states
along with the triggering conditions.

2.3 CAN with Flexible Data-rate
�e increasing demands for higher bandwidth have pushed the

standard CAN to its limits leading to the need for developing an
alternative that solves the bandwidth problem. Although a higher
bandwidth alternative already existed, i.e. FlexRay, designing a
cheaper alternative was of great interest. �is is led to the design
of CAN-FD (CAN with Flexible Data-rate), an extension to CAN

ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy Pal-Stefan Murvay and Bogdan Groza

Figure 6: CAN error state transitions

that allows bigger payloads and higher bit rates for the payload.
To accommodate the added functionality the standard CAN data
frame is modi�ed as illustrated in Figure 4. �e RTR bit is renamed
to RRS which is always dominant since the remote frame format
does not need the FD extension. �e reserved bit in the CAN
frame is replaced with FDF which indicates a CAN-FD frame. �e
switch to a higher bit rate transmission is indicated by the BaudRate
Switch (BRS) bit when set to a recessive state. �e higher bitrate
employed depends on the transceiver capabilities. Most of the
existing CAN transceivers can cope with speeds of up to 5 Mbit/s.
�e high bandwidth segment ends at the sampling point of the CRC
delimiter. Another feature introduced by CAN-FD frames is error
state reporting which is done by se�ing the ESI bit to the dominant
state when the node is in the Error Active state or to the recessive
state when the node is in Error Passive. �e 4 bits of the DLC �eld
are used to encode payload sizes of up to 64 bits. In CAN-FD the bit
stu�ng rule is changed for the data �eld while the CRC �eld now
accommodates 17 or 21-bit CRCs depending on the payload size.

2.4 Related work on bit-injection in CAN
�e idea of mounting a�acks by targeting the CAN protocol

at the data link layer is not new. In [26] the authors mention the
possibility of exploiting the CAN fault con�nement mechanism
to disconnect can nodes by sending well directed error �ags but
without any practical instantiation of the a�ack. On the practical
side, injecting faults on the CAN bus has been in the focus of the
automotive industry for se�ing-up network reliability tests, there-
fore special tools were designed for this purpose. One example of
such a device is the Vector CANstress [5] which is capable of moni-
toring the CAN bus and injecting dominant and recessive bits in
speci�ed locations of targeted CAN frames as well as inducing a set
of disturbances on the physical CAN layer. �e CANstress or other
similar devices could be used to fault injection a�acks, however,
their high price and bulky construction makes them inappropriate
for a low cost stealthy a�ack.

More recently Palanca [20] demonstrated how a fault injection
a�ack can be mounted on the parking sensor functionality of a
2012 Alfa Romeo Giulie�a using an Arduino and a CAN transceiver.
�eir a�ack consists of leading a node in the bus o� state by over-
writing recessive bits with dominant bits to generate errors in target
messages which were previously recorded by sni�ng the CAN bus
accessible through the vehicle diagnosis port. However, their re-
sults contain no analysis of the real limits of such a�acks depending

on the CAN bitrate (their experiment was done on a 50Kbit/s bus
which is low considering the top CAN speed of 1 Mbit/s) or the
possible rami�cations of such a�acks.

Another use for bit injection was in designing a CAN protocol
variant which supports higher bit rates. �e authors of CAN+ [27]
proposed injecting additional bits at a higher frequency during each
CAN bit time to reach up to 16 times the normal data rate.

3 ATTACK DESCRIPTION
3.1 Basic rationale behind the attacks

In order to mount an a�ack on the CAN data link layer one must
be able to interfere with the logical data transmi�ed, implying that
the a�acker has the ability to a�ect the physical representation of
bits on the bus. Given the intrinsic wired-AND nature of the CAN
bus, any sampled value will be the result of the bus levels produced
by all active bus nodes, i.e. a dominant state is recorded if at least
one node outputs this state, while a recessive state is obtained only
when all the nodes are producing a recessive output. �us, by using
a CAN transceiver to generate the physical layer signals along
with a custom-built CAN controller one would be able to design
a CAN node that may force bits into the dominant state at will. A
custom CAN controller is required since standard controllers are
build to comply with the CAN speci�cation and cannot be used
to produce non-compliant behaviour. An e�cient CAN controller
implementation could be FPGA-based and the transceiver could
also be replaced with dedicated circuitry that allows forcing both
dominant and recessive bits. However, here we focus on mounting
a�acks with o� the shelf components found in any CAN node, i.e.,
a CAN transceiver and a microcontroller.

A microcontroller can interact with the transceiver connected
to it directly through its I/O ports without the need of the CAN
controller. �e application layer has the ability to interact directly
with the CAN transceiver due to the nature of CAN transceivers
which are only responsible of translating logical levels provided on
the Tx pins to physical bus levels and providing feedback on the
existing bus levels on the Rx pin in a digital form. �is makes it
possible for any electronical circuit to interract with the transceiver
as long as it is capable of generating the needed logical Tx levels
and reading back the Rx line. �erefore, the controller logic can
be implemented in so�ware making it feasible for any electronic
unit equipped with a transceiver which is directly connected to
a microcontroller to monitor the communication and inject bits
on the bus. �is way of controlling serial communication through
so�ware instead of hardware is known as bit banging and is o�en
employed for implementing some communication protocols with
minimal hardware requirements or for inducing protocol violations.
�e only limitation is given by the bit duration which constraints
the amount of so�ware computation that can be performed for each
bit. �e setup needed for this a�ack is presented in Figure 7. An
a�acker can accomplish it by either introducing a self-built device
on the bus or by compromising an existing node by reprogramming
it (recently it was shown by [17] that reprogramming nodes might
be even done remotely).

Using this setup and the ability to inject dominant bits at speci�c
locations inside the frame, several a�acks can be deployed. We
present these a�acks in the following section.

DoS A�acks on Controller Area Networks by Fault Injections ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy

Figure 7: Attack setup

3.2 Attack variants
Full bus DoS. �e CAN communication can be completely pre-

vented by generating a continuous dominant state on the bus. �is
will prevent any other node from sending any type of messages on
the bus. To achieve this, an a�acker should assure a stable ”0” level
on the Tx line of the CAN transceiver. Many CAN transceivers
have built-in mechanisms for preventing bus disturbance caused
by an unintentional short to ground of the Tx line. �e protection
circuit will disable the transceiver output drivers when the length
of the Tx dominant level exceeds a speci�ed duration. �erefore,
additional actions should be taken by the a�acker to overcome
this issue. In most cases a simple toggling of the Tx line at time
intervals smaller than the error detection threshold is su�cient.
Some CAN transceivers such as the MC33742 system basis chip
implement more advanced error con�nement mechanisms which
require a speci�c reset command to re-enable the output drivers.
�is downfall can be surpassed by monitoring the transceiver error
state and rese�ing it as soon as detected.

Directed DoS. �e DoS a�ack can be directed to a single node
on the bus by injecting dominant bits only in messages sent by
the target node. For this, the a�acker should have a-priori knowl-
edge on the IDs of the messages sent by a certain node. �en by
monitoring the bus for the target IDs it should inject dominant bits
instead of recessive bits following the arbitration phase. Replacing
recessive bits with dominant ones in the arbitration phase would
result in the target ending transmission due to arbitration loss but
this is not the intent of this a�ack, hence we discuss it as a distinct
usecase. Following the bit value manipulation the sender node will
detect a bit error and immediately start sending an error frame and
increment its transmission error counter TEC by 8. By similarly af-
fecting subsequent retransmission requests the TEC of the targeted
node will exceed 255 forcing the node to enter the Bus O� state.
Depending on the local Bus O� handling the target node might stay
disconnected until a hard reset or re-enter the Error Active state
a�er the detection of 128× 11 recessive bits. In this second case the
a�acker can continue preventing successful message transmission
from the target node using the described approach.

�e time needed to make a bus go into Bus O� will depend
on several factors such as the bitrate used, the location within the
message where the fault is injected and the presence of other higher
priority bus tra�c. Figure 8 illustrates the in�uence of bitrates
higher than 100 kbit/s and fault injection location over the time
needed for a node to go into Buss O� considering a target message

with an 8 byte payload sent over a bus without any additional
tra�c. �e higher the employed bitrate the faster the Bus O� state
is reached, e.g. at 1 Mbit/s it will take at most 4.9ms before the
target node reaches the Bus O� state while at 125 kbit/s the node
will enter Bus O� a�er a maximum period of 39, 17ms . To accelerate
the process the bit injecting should occur as early as possible in the
frame transmission slot.

Figure 8: Time needed to force a node to the Bus O� state
depending on the bit rate and fault injection location within
the frame (with 8 byte payload) for bitrates higher than 100
kbit/s in the absence of other bus tra�c

Arbitration denial. As mentioned in the previous a�ack, by
injecting dominant bits in the frame arbitration area an a�acker
could prevent a node from winning arbitration and therefore, pre-
venting it to access the bus. As a side-e�ect this a�ack could also
stop messages with IDs which are not targeted depending on the
position of the injected dominant bit within the arbitration �eld.
Once the target node has stopped transmi�ing due to arbitration
loss the a�acker can release the dominant bus state. Since the frame
is not complete, an error (e.g. bit stu�ng or form error) will be
detected by all nodes on the bus and reported through an error
frame. �is will, however, not result in any node entering the Bus
O� state because all nodes will simultaneously enter the Error Pas-
sive state at which time the error counters will not be increased
past the threshold due to the lacking dominant error �ag (Error
Passive nodes are not allowed to send dominant error �ags). To
force all nodes in the Bus O� state, the a�acker should also inject
the dominant error �ag in the error frame space. Performing such
an a�ack with the intent to prevent a certain message to reach the
bus would be more time consuming since the message retransmis-
sion by the targeted node would occur faster than in the case of a
fault injection during or past the data �eld. Also, forcing the Bus
O� state will take longer since for each interrupted transmission
the TEC will be incremented by 1.

Disrupting synchronization. Synchronization between a sender
node and the receivers is assured by a hard clock synchronization
done at the start of frame and subsequent limited clock adjustments
done at every transition from recessive to dominant. �erefore, by
placing a falling edge followed by a transition back to the recessive

ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy Pal-Stefan Murvay and Bogdan Groza

state in the propagation segment of a recessive bit (this should
occur before the sampling point to avoid a�ecting the sampled bit
value) an a�acker could determine the receivers to re-adjust their
bit time. �is may have one of two outcomes, depending on the bit
timing se�ings of each network node. If all nodes have identical or
close enough bit se�ings, injecting a pulse during the bit time will
result in a change of the bit duration and, therefore, each a�acked
frame will generate a higher or lower bus load. Otherwise, if bit
timing se�ings and the SJW (i.e. the maximum bit time adjust-
ment amount) in particular are di�erent throughout the network
the constant pulse injection will result in de-synchronisation and
subsequently communication errors will occur.

Figure 9 illustrates the lengthening of a bit by injecting a falling
edge in the propagation �eld. �is bus manipulation would not be
detected by the sender node as a bit error since it does not check the
bus level over the entire bit time for synchronization but only does
so on the sampling point by which time the a�acker has switched
back the bus level to its original value.

Figure 9: Intentionally lengthened CAN bit timing attack

�e amount of lengthening is controlled by modifying the dis-
tance between the bit synchronization segment and the injected
pulse but cannot exceed the SJWs employed by the CAN controllers.
According to the CAN speci�cation the SJW cannot exceed 4 TQs.
�e TQ con�gured by each CAN node will also in�uence the maxi-
mum delay which can be induced. �e SAE J2284/3 standard [21]
makes recommendations for con�guring bit timing for high-speed
500 kbit/s communication. Considering these recommendations for
a standard CAN frame with an 8 byte data �eld in which 50% of
the bits are recessive and there are no stu�ng bits the maximum
theoretical increase in frame length would be between 6.15% and
9.01%, depending on the bit timing se�ings.

3.3 CAN DoS impact on system reliability
Any DoS a�ack on systems employing CAN communication

would a�ect functionalities that rely on CAN communication to
perform properly. �is includes subsystems that require any kind of
input being received over CAN from other subsystems. In automo-
tive systems safety critical components, e.g., the engine control unit,
can continue performing with limited functionality in the event of
loosing CAN communication capabilities. �is limited functioning
regime is called limp mode and was designed to allow the car to
be safely driven home or to the nearest service center. �erefore,
when under a CAN DoS a�ack these safety critical systems will
continue functioning but with limited functionality while all other
vehicle systems not considered in the limp mode would be unable
to completely ful�l their functionalities that require CAN commu-
nication. One example of a system that would be greatly a�ected

by a DoS a�ack is the cluster instrument panel which displays
information on a wide range of car subsystems. Preventing CAN
status messages from being sent to the cluster instrument would
render it useless since it would not be able to display information
on the actual vehicle state.

3.4 Impact on proposed authentication
protocols for CAN

We give some brief clari�cations on the impact of bit-�ip a�acks
on proposed security protocols for CAN. In principle, bit injection
leads to two kinds of a�acks: i) placing nodes in a bus-o� state
due to accumulation of send/receive errors and ii) changing the
values of the interpreted messages in case when the error control
mechanisms in CAN is bypassed (e.g., [18] and [12]).

�e �rst type of a�ack has impact on centralized authentication
schemes were the authentication master can be put o�-line. In case
of the protocol proposed in [15], if the master is placed in bus-o�,
forged frames that are injected by an intruder will not be discarded
by error �ags and will pass as authentic. �is leads to breaking
authenticity. For other protocols where authentication is done in a
centralized manner, the master node will not be able to send the
authentication tag and in this case the frame will be discarded by the
receivers. �is is simply a DoS a�ack and may happen on protocols
such as the centralized authentication version of Libra-CAN [7].
Bit injection may also in�uence protocols such as CAN-Auth [25]
in a distinct fashion. CAN-Auth [25] takes advantage of the CAN+
extension to CAN [27] which injects additional bits before the
regular sampling point of a CAN bit. In this way, regular CAN
frames are unchanged by CAN-Auth and the additional security bits
are inserted before the sampling point. However, by bit injections,
the authentication bits can be erased and genuine frames will have
normal data �elds while the authentication bits will be altered.
Moreover, as discussed in section 4.2, bit injection may force the
nodes to adjust the sampling point, if the sampling may be forced
inside the CAN+ transmission window CAN+ sender nodes will
be put in bus o� by error �ags from regular nodes which will
detect errors in the data �eld. Validating such a�acks on CAN+ is
out of reach for the current work since CAN+ is only available as
prototype FPGA implementation.

Negotiation of wrong cryptographic keys is possible for pro-
posals such as the ones from [18] and [12]. �e nodes will detect
that they are in the possession of the wrong key and the adversary
cannot control the bits of the key so the a�ack is again simply a
DoS and keys will be renegotiated. We point out that the DoS is
indeed a less relevant adversarial action and placing the authenti-
cation master in a bus-o� is a more dangerous consequence. We
summarize these potential threats in Table 1.

4 EXPERIMENTAL ANALYSIS
4.1 Experimental setup

Our experimental setup consisted of 2 or 3 node CAN networks
out of which one was the a�acker node. We implemented the
a�acker capabilities on platforms equipped with 16-bit microcon-
trollers from the S12X family, namely the S12XD512 and S12XF512
family members. �e choice for these microcontrollers is motivated
by their common usage in the automotive industry as well as in

DoS A�acks on Controller Area Networks by Fault Injections ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy

Table 1: Potential threats from bit-injection to existing CAN security proposals

Protocol CANAuth’11 LiBra-CAN’12 Kurachi et al.’14 Mueller & Lothspeich 15 Jain & Guajardo’16
DoS at authentication X X - - -
DoS at key-exchange - - - X X
Loss of authentication - - X - -

other industrial applications. Equipped with up to 32 Kbytes of
RAM, 512 Kbytes of Flash and running at maximum frequencies of
50 MHz, these microcontrollers are representative for the low- to
mid-end performance products which is another reason for choos-
ing them for se�ing a baseline for performing the described a�acks.
We evaluated the a�acks on both high-speed and low-speed CAN
buses by using two sets of setups, i.e. one for each category of
transceivers. On the a�acker side we used the TJA1054T as the low-
speed can transceiver and the MC33742 system basis chip which
integrates a high-speed CAN transceiver. As the a�ack target nodes
we employed similar platforms as well as other o�-the-shelf devices
such as USB-to-CAN devices equipped with PCA82C251 high-speed
CAN transceivers and VN7570. Figure 10 shows one of the experi-
mental se�ings employed for testing a�acks on high-speed CAN
nodes featuring two S12XF512-based development boards (one as
the a�acker, the second as a legit node), an USB-to-CAN and a
Picoscope used for analysing the physical signalling during the
a�ack.

Figure 10: Experimental setup used for testing attacks high-
speed CAN

4.2 Attack validation
Full bus DoS. Mounting this a�ack is generally straightforward

and does not introduce a considerable increase of the CPU load. �e
port pin connected to the CAN transceiver’s Tx line is con�gured
as an output pin and set to ”0” for the duration of the a�ack. Also,
depending on the transceiver type, additional periodical toggling of
the Tx line to ”1” may be required to reset the transceiver internal
fault detection timers. Both the low- and high-speed transceivers
employed to build our a�acks included mechanism for detecting
permanent dominant errors on the Tx pin. �erefore, we imple-
mented periodic toggles of the Tx line to the recessive state and back.
In each case, the duration of the recessive pulse was determined
empirically as the smallest value detectable by the transceiver. With

the a�acker node added to the bus no other CAN node was able to
send messages for the entire a�ack duration. Te e�ect was the ex-
pected one since by forcing the lines to remain in the dominant state
no other signalling is possible due to the wired-AND behaviour of
the CAN bus.

Directed DoS. Directed a�acks are aimed at speci�c frames
whether this means targeting all messages with a speci�ed ID or a
precisely de�ned message. Performing this kind of a�acks requires
the ability to compare each bit on the bus against the de�ned �lter
and injecting dominant states to the speci�ed locations while ��ing
the frame bit timing. Our goals were to investigate the feasibility
of directed fault injection DoS a�acks on various CAN bus types
(i.e. low-speed CAN, high-speed CAN and CAN-FD) as well as
performance-related limitations in mounting them.

On the low-speed CAN setup, which is limited to speeds of up to
125 kbit/s, we were able to implement a more advanced so�ware bit
monitoring mechanism including identifying individual CAN frame
�elds while using the maximum 50 MHz microcontroller clock
frequency. We used this implementation to successfully implement
the a�ack on messages sent with the top 125 kbit/s bitrate. Figure
11 illustrates the bus levels while sending an una�ected frame and
while a dominant bit is injected at the start of the data �eld in the
same frame. As expected, the bit injection causes error frames to
be sent by the node sending the original message and 31 retransmit
a�empts a�er which the node goes into the Bus O� state which it
holds for 11.264ms , i.e. 11 × 128 recessive bits at 125 kbit/s (in the
absence of other bus tra�c).

For high-speed CAN, we aimed at implementing the a�ack for
the top 1 Mbit/s CAN communication speed. Given the 1µs bit time
constraint we were only able to build the a�ack for messages with
precisely speci�ed bit sequences. �is means that the knowledge
of exact frame representation on the bus including stu�ng bits is
required for performing the a�ack while using 1 Mbit/s bit rates.
�is limitation is given by the platform employed in our exper-
imental setup, therefore, less constraints should be obtained by
using devices with higher operating frequencies and more e�cient
CPU architectures. For speeds up to 500 kbit/s we were able to
implement more �exible versions of the a�ack. Using the same
high-speed implementation we also successfully performed the
a�ack on CAN-FD frames which are using a higher bitrate for the
data �eld. Figure 12 illustrates our a�ack mounted on an CAN-FD
frame transmi�ed using 5 Mbit/s as the higher bitrate and 1 Mbit/s
for the other frame �elds.

We compared the e�ect of our a�ack with the capabilities of the
CANstress tool and found them to be very similar as depicted in
Figure 12 for the a�ack on a CAN-FD frame. �e only noticeable
di�erences are in the signal form and timing. Even though in our
a�ack the signal exhibits higher in�uences from the legitimate
frame it does not fail in keeping the line voltage to a dominant level.

ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy Pal-Stefan Murvay and Bogdan Groza

Figure 11: Directed DoS on a CAN frame sent over a Low-speed bus at 125 Kbit/s: a - original frame, b - attacked frame with
error signalling and retransmission attempts

Figure 12: Directed DoS on a CAN-FD frame sent at 1 Mbit/s with 5 Mbit/s data rate: a - Original frame, b - Frame with SW
implemented bit injection in the data �eld, c - Bit injection on the same position with the CANstress device

�e CANstress is more precise in timing its bit injection due to the
superior performance. For speeds around the 1 Mbit/s limit our
fault injection timing is o� by several tens of nanoseconds due to
the inherent device limitations but are still su�ciently precise to
disrupt communication at the intended bit location.

Arbitration denial. �e actual implementation of the arbitra-
tion denial a�ack is similar to the approach used for the Directed
DoS a�ack. �e only signi�cant di�erence is the fact that the fault
injection occurs inside the arbitration �eld of the target frame. We
tested the a�ack on both setups and were successful in stopping
the transmission of targeted frames by injecting a single dominant
bit as a replacement for a recessive bit in the arbitration �eld. If
the a�acker does not send further bits a form or bit stu�ng error
will be detected by all nodes on the bus and an error frame will
be issued before the target node retries the transmission. A�er a
while all nodes enter the error passive state and are not permi�ed
to generate a dominant error �ag any more. �erefore, a 23 reces-
sive bit interval (6 recessive bits to trigger the stu�ng error + 6
bit recessive error �ag + 8 bit error delimiter + 3 bit inter-frame
time) will be seen between the transmission interruption and any

other message transmission. No Bus O�s occurred as a result of
this a�ack.

Disrupting synchronization. We performed a series of tests
with resynchronization pulse injection on various bit timing con-
�gurations both for the case when all nodes have the same bit
se�ings as well as the case when they are con�gured di�erently.
We found that the ability to manipulate frame duration through
forced resynchronization greatly depends on the a�acker knowl-
edge of the individual bit timing se�ings on each network node.
Failing to comply with bit timing characteristics of all nodes led to
de-synchronization which resulted in errors being reported. We
found the a�ack can still be mounted without a priori information
about the bit timing se�ings employed throughout the network by
gradually changing the resynchronization pulse location until it
begins generating error frames. �e ability to mount this a�ack
greatly depends on the computational power of the processor used
to mount the a�ack since it should be able to generate pulses �nely
grained to the size of a time quanta. We were not able to success-
fully mount the a�ack on bit rates higher than 500 kbit/s using our
S12X-based platforms.

DoS A�acks on Controller Area Networks by Fault Injections ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy

5 COUNTERMEASURES
In the light of the reported a�acks, we now brie�y discuss on

a�ack detection and countermeasures, i.e., prohibiting an adversary
from performing the a�ack.

Detecting the attacks. �e detection of such a�acks could be
carried out by using similar methodologies as in intrusion detection
systems, i.e., by analyzing the network tra�c and speci�cally the
physical layer. Signal processing techniques such as the ones in
[19] where the sender of each message is identi�ed based on signal
characteristics are promising for detection. As can be seen in Figure
11 the pa�ern of the a�ack signal is quite distinct from the regular
one, thus detection should be readily achieved.

Implementing countermeasures is unfortunately not a straight-
forward task. �e di�culty stems from the fact that an a�acker
node can only be prevented from performing the a�ack by blocking
its access to the CAN network.

Enhanced electronics. When using a bus topology, identifying
and blocking the a�acker node might prove to be a di�cult task.
Assuming that a bus monitoring system capable of identifying the
a�acker node is in place it will require an additional mechanism
to stop this node from further a�acks. �is mechanism could be
implemented in the form of a smart fuse box commanded by a
supervisor node to power-o� any network node. However, this
scenario would not be e�ective in the case of custom self-powered
a�acker nodes in�ltrated in the network. In what follows, we
present two potential countermeasures which are more e�cient in
handling this category of DoS a�acks.

Active star topologies with network guardian. We envision
a more e�cient protective measure capable of eliminating the at-
tack which requires the use of an active star network topology in
which all nodes are connected through a Network Guardian node.
Such an approach was considered for fault con�nement in CAN
networks [1] by Barranco et al. �e Network Guardian should im-
plement an intrusion detection mechanism based on CAN protocol
misbehaviour. Since all communication in this star topology would
pass through the guardian node, a node trying to mount any of
the presented a�acks would be easily detected since they involve
deviations from the CAN protocol speci�cation. Upon detection
any further communication to and from the a�acker node would
be prohibited.

�e obvious disadvantage of such an approach would be the
increased wiring complexity since a separate connection would be
needed between each node and the guardian. �e wiring complex-
ity could be reduced by partitioning the network around several
guardian nodes according to the actual placement of the nodes
within the vehicle.

Enhanced fault con�nementmechanisms. Another approach
to alleviate the e�ects of such a�acks is to change the fault con-
�nement mechanisms of CAN. Such a proposal came more than a
decade ago when the authors from [4] a�er a careful analysis of
CAN fault con�nement mechanisms noticed that the bus-o� state
may be reached too easy. �eir proposal is to take a bus-o� decision
only for nodes that jeopardize the real-time behaviour of the tra�c.
�is would be a natural approach and could remove the DoS a�acks
on master-oriented authentication that was previously discussed.
As already noticed in [4], such mechanisms can be easily deployed

by bypassing the existing CAN fault-con�nement mechanism and
implementing a new one at the application layer.

6 CONCLUSIONS
Considerable e�ort has been put in evaluating the security of

CAN-based networks and it revealed a number of a�acks which
can be easily performed given the lack of security mechanisms
within the CAN speci�cation. We add to these reports a new set
of DoS a�acks aimed at the Data Link Layer of CAN based on in-
jecting dominant bits during frame transmission. �ese a�acks can
be mounted on any CAN-based protocol (e.g., CANopen, TTCAN,
SAE J1939, etc.) using o� the shelf components requiring only the
ability to control a CAN transceiver’s digital pins by an application
layer a�ack logic. To successfully mount such an a�ack one must
be able to in�ltrate a device on the CAN bus of the target system
or compromise one of the existing network nodes. �e la�er sce-
nario is realistic especially in the automotive domain since a�acks
leading to successful remote reprogramming of in-vehicle nodes
were reported [17].

�e impact of this type of a�acks is even more severe as they can
also be used against some of the security mechanisms proposed for
CAN buses rendering them unusable. Moreover, since they a�ect
the CAN Data Link Layer, these a�acks are harder or impossible to
be detected by Application Layer intrusion detection mechanisms
based on tra�c analysis like [22] or [13] since these would not be
able to distinguish between injected faults and an honest node with
faulty behaviour. Due to the safety-critical nature of in-vehicle
communication, these a�acks should not be overlooked in real-
world security deployments.

ACKNOWLEDGMENTS
�is work was supported by a grant of the Romanian National

Authority for Scienti�c Research and Innovation, CNCS-UEFISCDI,
project number PN-II-RU-TE-2014-4-1501 (2015-2017).

REFERENCES
[1] Manuel Barranco, Julián Proenza, Guillermo Rodrı́guez-Navas, and Luı́s Almeida.

2006. An active star topology for improving fault con�nement in CAN networks.
IEEE transactions on industrial informatics 2, 2 (2006), 78–85.

[2] Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav
Shacham, Stefan Savage, Karl Koscher, Alexei Czeskis, Franziska Roesner, Ta-
dayoshi Kohno, and others. 2011. Comprehensive Experimental Analyses of
Automotive A�ack Surfaces. In USENIX Security Symposium.

[3] D Di Cala�ori, P Adzic, G Dissertori, Oliver Holme, Dragoslav Jovanovic, W
Lustermann, and S Zelepoukine. 2012. Maintaining and improving the control
and safety systems for the Electromagnetic Calorimeter of the CMS experiment.
In Journal of Physics: Conference Series, Vol. 396. IOP Publishing, 012016.

[4] Bruno Gaujal and Nicolas Navet. 2005. Fault con�nement mechanisms on CAN:
analysis and improvements. IEEE transactions on vehicular technology 54, 3 (2005),
1103–1113.

[5] Vector Informatik GmbH. 2006. User Manual CANstress, Version 2.1.
[6] Bogdan Groza and Stefan Murvay. 2013. E�cient protocols for secure broadcast

in controller area networks. IEEE Transactions on Industrial Informatics 9, 4
(2013), 2034–2042.

[7] Bogdan Groza, Stefan Murvay, Anthony Van Herrewege, and Ingrid Ver-
bauwhede. 2012. Libra-can: a lightweight broadcast authentication protocol for
controller area networks. In International Conference on Cryptology and Network
Security. Springer, 185–200.

[8] Tobias Hoppe and Jana Di�man. 2007. Sni�ng/Replay A�acks on CAN Buses:
A simulated a�ack on the electric window li� classi�ed using an adapted CERT
taxonomy. In Proceedings of the 2nd workshop on embedded systems security
(WESS). 1–6.

ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy Pal-Stefan Murvay and Bogdan Groza

[9] ISO. 2003. 11898-1–Road vehicles–Controller area network (CAN)–Part 1: Data
link layer and physical signalling. Technical Report. International Organization
for Standardization.

[10] ISO. 2003. 11898-2, Road vehicles Controller area network (CAN) Part 2: High-
speed medium access unit. Technical Report. International Organization for
Standardization.

[11] ISO. 2006. 11898-3, Road vehicles Controller area network (CAN) Part 3: Part 3: Low-
speed, fault-tolerant, medium-dependent interface. Technical Report. International
Organization for Standardization.

[12] Shalabh Jain and Jorge Guajardo. 2016. Physical Layer Group Key Agreement for
Automotive Controller Area Networks. In Conference on Cryptographic Hardware
and Embedded Systems.

[13] Min-Joo Kang and Je-Won Kang. 2016. Intrusion Detection System Using Deep
Neural Network for In-Vehicle Network Security. PloS one 11, 6 (2016), e0155781.

[14] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel, Tadayoshi
Kohno, Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson,
Hovav Shacham, and others. 2010. Experimental security analysis of a modern
automobile. In Security and Privacy (SP), 2010 IEEE Symposium on. IEEE, 447–462.

[15] R. Kurachi, Y. Matsubara, H. Takada, N. Adachi, Y. Miyashita, and S. Horihata.
2014. CaCAN - Centralized Authentication System in CAN (Controller Area
Network). In 14th Int. Conf. on Embedded Security in Cars (ESCAR 2014).

[16] Charlie Miller and Chris Valasek. 2013. Adventures in automotive networks and
control units. DEF CON 21 (2013), 260–264.

[17] Charlie Miller and Chris Valasek. 2015. Remote exploitation of an unaltered
passenger vehicle. Black Hat USA 2015 (2015).

[18] Andreas Mueller and Timo Lothspeich. 2015. Plug-and-secure communication
for CAN. CAN Newsle�er (2015), 10–14.

[19] Pal-Stefan Murvay and Bogdan Groza. 2014. Source identi�cation using signal
characteristics in controller area networks. IEEE Signal Processing Le�ers 21, 4
(2014), 395–399.

[20] Andrea Palanca. 2016. A Stealth, Selective, Link-layer Denial-of-Service A�ack
Against Automotive Networks. diploma thesis. Politecnico di Milano.

[21] SAE. 2002. High-Speed CAN (HSC) for Vehicle Applications at 500 KBPS. Standard.
SAE International.

[22] H. M. Song, H. R. Kim, and H. K. Kim. 2016. Intrusion detection system based on
the analysis of time intervals of CAN messages for in-vehicle network. In 2016
International Conference on Information Networking (ICOIN). 63–68.

[23] CAN Speci�cation. 1991. Version 2.0. Technical Report. Robert Bosch GmbH.
[24] Chris Szilagyi and Philip Koopman. 2010. Low cost multicast authentication via

validity voting in time-triggered embedded control networks. In Proceedings of
the 5th Workshop on Embedded Systems Security. ACM, 10.

[25] Anthony Van Herrewege, Dave Singelee, and Ingrid Verbauwhede. 2011.
CANAuth-a simple, backward compatible broadcast authentication protocol
for CAN bus. In ECRYPT Workshop on Lightweight Cryptography, Vol. 2011.

[26] Marko Wolf, André Weimerskirch, and Christof Paar. 2004. Security in automo-
tive bus systems. In Workshop on Embedded Security in Cars.

[27] Tobias Ziermann, Stefan Wildermann, and Jurgen Teich. 2009. CAN+: A new
backward-compatible Controller Area Network (CAN) protocol with up to 16×
higher data rates.. In Design, Automation & Test in Europe Conference & Exhibition,
2009. DATE’09. IEEE, 1088–1093.

	Abstract
	1 Introduction
	2 Background
	2.1 The CAN protocol
	2.2 CAN error management
	2.3 CAN with Flexible Data-rate
	2.4 Related work on bit-injection in CAN

	3 Attack description
	3.1 Basic rationale behind the attacks
	3.2 Attack variants
	3.3 CAN DoS impact on system reliability
	3.4 Impact on proposed authentication protocols for CAN

	4 Experimental Analysis
	4.1 Experimental setup
	4.2 Attack validation

	5 Countermeasures
	6 Conclusions
	Acknowledgments
	References

