Efficient Intrusion Detection with Bloom Filtering
in Controller Area Networks (CAN)

Bogdan Groza and Pal-Stefan Murvay

Abstract—Due to its cost efficiency the Controller Area Net-
work (CAN) is still the most wide-spread in-vehicle bus and
the numerous reported attacks demonstrate the urgency in
designing new security solutions for CAN. In this work we
propose an intrusion detection mechanism that takes advantage
of Bloom filtering to test frame periodicity based on message
identifiers and parts of the data-field which facilitates detection
of potential replay or modification attacks. This proves to be
an effective approach since most of the traffic from in-vehicle
buses is cyclic in nature and the format of the data-field is fixed
due to rigid signal allocation. Bloom filters provide an efficient
time-memory tradeoff which is beneficial for the constrained
resources of automotive grade controllers. We test the correctness
of our approach and obtain good results on an industry-standard
CANoe based simulation for a J1939 commercial-vehicle bus and
also on CAN-FD traces obtained from a real-world high-end
vehicle. The proposed filtering mechanism is straight-forward to
adapt for any other time-triggered in-vehicle bus, e.g., FlexRay,
since it is built on time-driven characteristics.

I. INTRODUCTION AND MOTIVATION

Recently introduced communication interfaces such as
FlexRay or BroadR-Reach incur higher production costs which
are poorly justified for low or mid-end vehicles that form a
relevant segment of the market. In contrast, the CAN bus is a
cost-efficient solution and its reliability is proved by at least
three decades of use. However, when it comes to security all
in-vehicle buses are lacking.

Designed by Bosch in 1983, the CAN bus is a differential
two wire bus with arbitration based on the priority of the
message identifier (the lower the ID, the higher the message
priority). A typical network topology is suggested in Figure 1
where several nodes are placed inside a car on the two wire
CAN bus. Real-world network topologies may be complex,
with dozens of ECUs linked to one sub-network and several
sub-networks inside a single car, but mutatis mutandis the
same bus-oriented topology stays at the core of the network.
The structure of the CAN frame is suggested in Figure 2. The
frame encloses a data-field of at most 64 bits and the identifier
field (ID) which has 11 bits in standard frames and 29 bits in
extended frames. Recently, BOSCH proposed an extension of
the three decades old CAN with the newer CAN-FD (CAN
with Flexible Data-Rate) that carries up to 64 bytes of data
(instead of 64 bits). This proves serious intentions in keeping
the CAN bus on the market despite the existence of newer
alternatives.

Bogdan Groza and Pal-Stefan Murvay are with the Faculty of Automatics
and Computers, Politehnica University of Timisoara, Romania, Email: bog-
dan.groza@aut.upt.ro, pal-stefan.murvay @aut.upt.ro

Attacker

HCy uC,
aliL .llii‘

Fig. 1. Application setting: an adversary intercepts and injects frames on the
CAN bus, nodes are filtering the received packets

Start o‘f Frame Con‘trol

CR‘C End of‘ Frame
| | | |
Y Y Y Y

el [|| |] e
A

ZN N)]
|
‘ ACK

|
Arbitration I
Data Field
(up to 64 bits in standard CAN, 64 bytes with CAN-FD)

- CAN Frame »
Fig. 2. Structure of a CAN frame

By default, the CAN bus, and similarly CAN-FD, has no
intrinsic security mechanisms, except for standard CRC codes.
Consequently, recent attacks proved that an adversary that has
access to the CAN bus can take full control over the car by
locking the brakes, controlling the steering column, etc. The
seminal works in [19], [3] opened the road for a significant
number of attacks that were reported in the past few years. A
comprehensive practical analysis is available in [29].

In response to these, a number of security protocols for
the CAN bus were proposed. Some proposals rely on regu-
lar message authentication codes (MACs) and symmetrically
shared secret keys, e.g., [13], [44], [46] and [36]. Other
proposals extend these concepts with efficient signal allocation
to accommodate both regular signals and cryptographic MACs
[25], [26]. TESLA-like protocols which were highly effective
in sensor networks are discussed for the CAN bus in [12].
Group key-sharing between nodes is proposed in [11]. Other
works use physical properties of the bus in order to secretly
exchange cryptographic keys [16], [31] or to recognize nodes
based on physical characteristics of the signal [32]. Additional
hardware is introduced by [20] to discard attacker messages
by error flags.

Contribution in brief. Our main motivation stems from

, learning-stage filters runtime fiters [

/
93 93 \
! filtg
/ 2 I " 92 » y/n \
! P1 P1

index’
\ i
\ o
\ L—<— oo
yte Masking id||data
K I / CAN-H

Py

CAN-L

Fig. 3. Topology of the CAN bus and node setup, suggestive depiction of the proposed IDS to the left

the fact that the large majority of practical attacks, e.g., the
attacks from [19], [29], are done by replaying frames that
were previously recorded on the bus or by injecting modified
versions of already recorded frames. These are clear violations
of frame periodicity and/or structure. Since communication on
the CAN bus is done mostly within precise communication
cycles and signal allocation within a specific frame is rigid, it
appears feasible to detect such intrusions. Consequently, in this
work we design and evaluate an intrusion detection mechanism
based on the frame periodicity and its content by accounting
for parts of the data-field that do not change often.

Since it is inconvenient to store all the required information
for each frame (due to obvious memory constraints), we use
Bloom filters to identify messages along with their content
provided that they are broadcast at fixed time intervals. The
size of the IDs, i.e., 11 bits for regular frames and 29 bits for
extended frames, along with an 8 to 64 byte data-field makes it
inefficient to store all this information for each frame on each
node. In contrast, Bloom filters [2] allow a time-memory trade-
off for testing set membership which makes them suitable
for a large number of networking applications. Briefly, we
store only several Bloom filters and a byte-mask for each ID
which requires a single bit for each byte of the message. By
using these we filter-out the most significant amount of frames,
which are the cyclic frames for periodic reports. On-event
frames can be treated by distinct, less efficient mechanisms,
without causing much disturbances on the bus since they form
a smaller amount of the total traffic. Our proposal addresses
CAN in general, regardless of its actual embodiment, be it the
older CAN or the newer CAN-FD. In the experimental results
we cover datasets from both these implementations.

Details of our application setup are graphically depicted
in Figure 3 which presents several nodes linked to the CAN
bus. An external device, potentially malicious, is also linked
to the bus based on the On-board diagnostics (OBD) port.
The external device sends messages on the bus which are
represented by an ID and data-field. Each node receives the
messages, passes them through the Intrusion Detection System
(IDS) and then through some authentication mechanism that
may be in place but which is beyond the scope of this work.
The IDS is expanded to the left of the figure. As detailed on the
left side of the figure, the received frames first go to the byte-
masking mechanism, then they are verified by the learning-

stage filters and by the runtime filters in order to decide if an
intrusion took place.

A. Related work on intrusion detection

While intrusion detection systems (IDS) have a long history
in computer networks, the use of IDS for in-vehicle buses
is a more recent topic. One of the earliest discussions for
intrusion detection on the CAN bus can be found in [14].
This solution accounts for the number of occurrences of each
message in a specific time-slot, thus detecting potential replay
or injection attacks. An extended discussion on security threats
and counter-measures, including the use IDS can be found in
[15].

In the past few years, the number of IDS proposals for CAN
has surged. The use of message periodicity seem to frequently
re-occur in designing intrusion detection on CAN, e.g., [30]
and [38]. Neural networks were proposed to detect intrusions
on the CAN bus in [17], [18] and [41]. However, the test-
bed from [17] is based on the OCTANE automotive network
simulator [9] and unfortunately contains only three CAN ids
(a very small number) which makes it unclear if the content
of the data-field is representative for genuine in-vehicle traffic.
Hidden Markov models for detecting anomalies on in-vehicle
traffic were employed in [35]. Other techniques that were
recently explored include: machine learning [43], multivariate
time series [42] and regression learning [23]. A more formal
approach based on finite-state automatons is considered in
[40]. In [28] the authors proposed that ECUs that see messages
on the bus with their own ID should discard the message with
an error flag before transmission is completed. This proposal
can not prevent the case when the genuine ECU is unplugged
from the network or is in bus off.

The use of anomaly detection sensors is discussed in [34].
Entropy is considered in [33] and [27]. Hardware implementa-
tions based on the error-confinement mechanism of CAN are
discussed in [10]. Other lines of work are focused on physical
characteristics, e.g., clock-skews [5] or voltage levels [32],
[7], [6] to detect anomalies on the bus. The delay between
regular frames and remote frames is used by the authors in
[21] to decide if intrusions occur on the bus. However, recently
the clock-skew based detection mechanism in [5] was proved
vulnerable to cloaking attacks [37] in which a malicious node
modifies the timing of the frames he sends to mimic a genuine

node from the bus. This proves that intrusion detection systems
based on timing alone, such as the ones in [5], [21], may be
quite fragile. In contrast to these, besides accounting for the
timing of the frame our proposal addresses the content of the
data-field.

Analyzing the behaviour of in-vehicle ECUs, i.e., detecting
anomalies, is put in a distinct context in [45] where anomalies
are used to detect manipulated in-vehicle ECUs. Techniques
for intrusion-detection on the CAN bus are far reaching as
recent work discusses applications to an avionics bus [39].

As the previous enumeration points out, proposals from
related work are hard to compare as they use very distinct
mechanisms. What makes such a comparison even harder is
that all approaches use distinct datasets making it impossible to
confront the success rate of the intrusion detection algorithm.
For example [27] uses data from a Ford Fiesta and [5] from
Honda Accord, Dodge RAM and a Toyota Camry. What is
relevant however, is that most of the relevant proposals validate
their effectiveness on real-world data. In our work we use the
output of an industry-standard CANoe simulation and a CAN-
FD trace from a real-world high-end vehicle.

In contrast to related work, we consider that the advantage
of Bloom filtering is that it sets way for a memory-efficient
analysis of various parts of the data field. Extensive results
on Bloom filtering exist and these may benefit from a new
application area. Besides Bloom filters, our solutions exploits
the periodicity of messages and their entropy which is also
validate by related work. As a tool in our analysis, we also
use Hamming distances which have been recently suggested
for IDS on CAN in [8].

II. QUANTITATIVE ANALYSIS OF CAN BUS TRAFFIC

For a crisper image over the data on which we apply Bloom
filtering, we first give a quantitative analysis of CAN bus data.

A. Tools for analysis and results

Our analysis is focused on the number of IDs, their period-
icity and and the entropy carried by the data-field associated
to a particular ID. As shown by the analysis that follows, a
significant number of bits from the data-field have fixed values.
Fixed bits are decreasing the entropy of the frame and can be
efficiently exploited in filtering. We emphasize that while our
analysis is purely quantitative, automotive manufacturers have
additional knowledge on the particular values of these bits and
even more efficient filters can be design based on procedures
that are similar to ours. For brevity, we first formalize the
notions that we use for analyzing the CAN trace.

We denote the trace 7 recorded on the CAN bus as the
collection of identifier-message pairs (id;,m;) of length ¢, i.e.,

T = {(id1,my),(idr,m3), ..., (id¢,m¢) }

We consider that the ID-message pairs from the trace
occur in the order that they are recorded on the bus, thus
identical pairs may repeat. For the analysis in this section the
arrival time of the frame is of no importance but it will be
used in the filtering procedure. Also, we are not intersted in

particular violations of the CAN protocol, e.g., wrong CRCs,
malformed frames, etc., which are addressed by the CAN error
management layer.

Let Ty = {(id;,m))id; = id,i = 1.4’} be the trace
containing identifier-message pairs only for identifier id’. As
a straight-forward measurement for variations of the data-field
we use the tuple of intra-distances associated to a particular
ID which is defined as the Hamming distance between the bit
representation of each two messages from the trace 7y, i.e.,:

I,y = Hamming(m;,m;),Vi,j € [1..{]

We assume that for each identifier id’ the length of the
message, i.e., the data-field, is fixed to a value 6(id"). This is
consistent to the results of our experiments and even if this is
not the case our framework can be easily adapted for variable
length messages.

The entropy carried by each frame is a relevant indicator
for the amount of bits that stay constant and can be used
for filtering. For assessing the entropy carried by a message
associated to a particular ID we first measure the guessing
probability of each byte of the message and then we define
the minimum entropy based on this probability (this is a
standard procedure in defining the minimum entropy of a
random variable). Let Bj.d', Jj = 1..6(id") be the bytes of the
data-field associated to identifier id’, the data-field bytes define
a random variable over the trace 7; (the trace is a set of ¢’
trials for each byte). The guessing probability of each byte
from m; is defined as the maximum probability that the byte
takes a particular value, i.e.,

Yy = max {Pr[B;'F” =v]: ve {o..255}} V) = 1.8(id").

By definition, the minimum entropy of the message byte m;
is log,(1/ygw) and consequently we can define the minimum
entropy of the data-filed for identifier id’ as the sum of
entropies for all the corresponding message bytes, i.e.,

Hiy =). logy(1/ygu).
i=1,0(id") !

We also define the byte-mask of identifier id’ as a tuple of
zeros and ones that show whether a particular byte is constant
or not, i.e., Mz = bo,by,....,bss) where b; = 1 & ygw =1
and b; = 0 © ygiw # 1 (note that constant bytes by definition
have O entropy and equivallently their guessing probability
equals 1).

B. Results

We first analyze the traces from a J1939 CANoe simulation.
For generating the SAE J1939 traffic we employed a sample
CANoe configuration that comes with the installation of this
environment. The configuration simulates a network with two
sub-buses connected by a gateway node. One sub-network has
an additional 5 nodes while only one extra node is present on
the other.

In Figure 4 we depict the content of the frame as recorded
over the first 32 instances of a specific frames, the we depict

(@)

—~
S

=
]
S
IS
&

32 2 ‘ ° e 1 5 10 15 20 24

64

1 20 40 64 1

bis

IN]
S
IS
5
@
B

1 20 40 64

1 20 40 64

(©)

Fig. 4. Graphical depiction of frame content (left)
and histogram of hamming inter-distances (right)
for three CAN frames from J1939 CANoe simula-
tion: 4-bit entropy (a), (b) and 13-bit entropy (c)

the Hamming inter-distances as histogram distributions as
computed over all frames with the same ID from the trace.
We first show two frames with low entropy of 4 bits (a, b)
and then a frame that has higher entropy of 13 bits (c). This
represents the maximum entropy that can be extracted from
frames in the CANoe J1939 simulation, generally, frames had
a very small amount of entropy. The trace that we analyzed
had around 25,000 frames.

We proceed to the analysis of the real-world CAN trace
in Figure 5, the trace contained almost 1 million frames. We
first depict the results for frames of 24-96 bits. We display
the content of the frame as recorded over the first few dozen
packets along with the Hamming inter-distances as histogram
distributions in Figure 5 (a-c) as computed over all frames
with the same ID in the trace. Figure 6 (a-c) gives similar
depictions for large frames of 256 and 512 bits. The entropy
of real-world frames is much higher and the Hamming inter-
distances form a clear Gaussian distribution. This is not only
due to the larger data-set as it can be clearly seen that even
for the first few frames bit variations are significantly higher
than in the case of the CANoe simulation.

In Figure 7 we give a graphical depiction of the entropy
and the length of the byte-masks for smaller frames of 24
to 160 bits. Figure 8 does the same for larger frames of 192
to 512 bits. As shown in the figures, the entropy can vary
from as little as 12-13 bit to up to 203 bits. Even large 512-
bit frames can carry as little as 61 bits of entropy while a
smaller 256-bit frames can carry almost the same amount at
60 bits of entropy. In the extreme case, frames that carry 0
entropy, i.e., identical data on all frames from the same ID
were also present in the real-world trace. In total, there were
15 such frames. Perhaps surprising, this happens even for two
of the larger frames of 512 bits. We emphasize that this is the
minimum entropy that was recorded on a trace of ~ 1 million
packets but there is no guarantee that it will stay so for the full
run-time. Consequently, these values serve merely as a lower

1 1 amies " :

o0]
10 10 20

60} 30 i .
20 20 4 g

o 40 ﬁ

-, 4Bp, 08 :

32 a 32 ‘ ° B 1 20 40 60 80 96

Fig. 5. Graphical depiction of frame content (left)
and histogram of hamming inter-distances (right)
for: smallest 24-bit frame with 13-bit entropy (a),
regular 64-bit CAN frame with 12-bit entropy (b),
and a 96-bit frame with 30-bit entropy (c)

1 samples
30, samples
pot 700

600
5 20

500
18] o 400
10
5

bits
12 4 6 8 10 12 14 % a0 6o B0 0 bt

1 samples
150,

ples

2
1 samples.
400
50 309
200
100 100
128 o 15 20 25 a0 s O°

256

(©

100,

20 4

]
=}
S

=]
S

1
T samples 1
10 200
g 1% 50
100!
30 ’ .ﬁ
£

100§
bits 128

1 PR R

ARBBIRAEITRRIARE
IR GRER RS

=]
S

Fig. 6. Graphical depiction of frame content (left)
and histogram of hamming inter-distances (right)
for: large 512-bit frame with 61-bit entropy (a),
large 512-bit frame with 203-bit entropy (b), aver-
age 256-bit frame with 60-bit entropy (c)

10/20
1020
20

]57/160 |
|

| 49/160 1020
| 49/160 ;]10/20

id id

Fig. 7. Barchart of recorded entropies in bits (left) and length of the frame
mask in bytes (right) for smaller frames 24—-160bits

bound on the number of distinct bits carried by the frame. The
byte masks vary accordingly from masks filled with ones or
zeros. For frames of zero entropy the length of the byte-mask
will be filled with ones since in these frames no change is
recorded on the trace.

Finally, in Figure 9 we depict the byte-masks for the 89 IDs
in our trace. The size of the frames from Figure 9 varies from
3 bytes to 64 bytes (the maximum allowed by CAN-FD). The
black values denote bytes that are unchanged over the entire
trace while the light-gray values denote bytes that change at
least once. White squares denote unallocated bytes, i.e., for
frames smaller than 512 bits.

We performed a similar analysis on the publicly available
CAN bus dataset that was used by the authors in [21].
Unfortunately, at the time of our work, the downloaded dataset
did not contain a flag to separate between genuine and injected
frames in case of fuzzy and impersonation attacks. This made

100z

1203/512

— 1264

163/64

17/64

I

j203/512 |0/64

61/64
61/64

163/64

W2es

[—
I 17/64
064

id

Fig. 8. Barchart of recorded entropies in bits (left) and length of the frame
mask in bytes (right) for larger frames 192-512bits

1
20
0
60
-1%9

n
64

40
EEEEEEEEEE mEEEEEEE

u

i

L

40

1
0

40 |-
g0
|

Fig. 9. Graphical depiction for byte-masks for each of the 89 IDs computed
from ~1 million packets recorded on the CAN bus (1 denote by black, 0
denoted by light-gray, no bytes on white)

the dataset unsuitable in our experiments from the next section
since it is impossible to make a clear assessment on the
sensitivity (true positives) and specificity (true negatives) of
the detection mechanism. Still, a brief look at the data made
public by the authors in [21] shows that the CAN trace from
the Kia Soul vehicle is very similar to the data that we used.
In fact, detection might be even simpler since the frames are
smaller and carry less data (we measured at most 11 bits of
entropy, while our frames top at 203 bits of entropy). In the left
side of Figure 10 we depict the timings and content recorded
for ID 0x164 in the attack free state. ID 0x164 was the only
ID targeted by impersonation attacks. By analyzing the dataset
from the attack free state we determined that 6 of the 8 bytes
of ID 0x164 are constant - a result obtained by analyzing the
first 1,000,000 frames of the attack free state in which 54270
frames had ID 0x164. The right side of Figure 10 depicts the
case of fuzzy attacks on ID 0x164, both data modifications
and timing deviations up to 3 times the normal 10ms delay
of this frame are clearly visible. Data modifications alone

20

Fig. 10. Depiction of timing and frame content based on data from OTDIS
[21] in case of an attack free bus (left) and fuzzy attacks (right) for ID Ox164

will be immediately detected by the masking algorithm while
duplicate frames will be reported as replay attacks by our
filtering algorithm. The data from the CAN traces in [21]
shows similarities with respect to the datasets that we use
in terms of periodicity of the messages and the fact that
many data fields are fixed and can be easily used to check
for anomalies. Further, the specific frame content that we use
in the experiments is more complex and has higher entropy
which likely makes our dataset a better testbed.

III. PROPOSED INTRUSION DETECTION ALGORITHM

We start with a brief outline of the adversary model and
outline some Bloom filtering basics. Then we proceed to the
description of the proposed intrusion detection algorithm with
cascade Bloom filters.

A. Adversary model

Our adversarial model accounts for two actions which we
consider to be the most relevant actions of an intruder: replay
and modification attacks. In case of a replay attack, a frame
that is identical to the genuine frame is sent over the bus. For
modification attacks, the data-field of the frame is filled with
random data. This behaviour is identical with the fuzzy attacks
from related work in [21].

For impersonating a target node, the authors in [21] consider
that the genuine node is stopped from transmitting and re-
placed by an adversarial node. Removing a node from the bus
requires either physical intervention or placing the node in the
bus-off state, the later possibility being recently demonstrated
by the work in [4]. To achieve this, the authors in [4] exploited
the CAN error management system which generates active
error flags on the bus. Active error flags are visible to all
other nodes, but indeed these flags may have natural causes
and thus they are insufficient to signal an intrusion. However,
if the targeted node will go off-line, this will likely result in
losing more frames since an ECU is usually responsible of
more than a single ID (or functionality in the car) and the
error frames along with the lost IDs should provide a good
indication that a node is in bus-off. If only part of the IDs from
the targeted node resurface on the bus, then such an abnormal
behaviour may be sufficient to signal an intrusion. We also note
that the bus-off state of a node may be only temporary as the

CAN bus specifications allows recovery after 128 occurrences
of 11 recessive bits (which at 1Mbps is ~1.5ms), so this attack
could be short lived or the adversary will have to repeatedly
send error flags on the bus. Consequently, while an adversary
that sends nodes to bus-off by injecting error flags is indeed
stronger, the resulting behaviour seems to be more conspicuous
and it may be easier to detect for an IDS. Finally, if an
adversary places a node off-line and then broadcasts all frames
that the node is in charge of, with exactly the same timing and
content, then any IDS that analyzes frame timing and content
alone will likely fail to detect the intrusion. The authors in
[37] already demonstrated that even clock deviations of other
nodes from the bus can be faked, which makes timing alone a
fragile indicator. The solution to this problem is to rely on
cryptography and secret keys that are not available to the
adversary, but this is not subject of an intrusion detection
mechanism based on traffic analysis. Our IDS provides only
some degree of protection in this case, namely, if random
modifications are done these are detected by the masking
algorithm regardless of the timing at which the frame is sent.
Extending our approach to record error flags or check whether
certain IDs did not occur on the bus is possible, but it would
have only complicated the exposition in this work, a reason
for which we do not account this behavior in our analysis.

In [21] DoS attacks are also considered for intrusion de-
tection. In this type of attack an adversary sends the highest
priority ID 0x000 and thus causes a DoS on the bus. We
omit to specifically address this scenario since detection is
trivial as the ID 0x000 does not occur in normal runs. Also,
considering only ID 0x000 as cause for DoS as done in
[21] may not be sufficient since any other higher priority
ID will cause the same problems. If such higher priority
IDs do not occur in normal traffic runs or occur more often
than usual (a behaviour consistent with replay attacks) the
proposed intrusion detection scheme will detect this as a
replay. Indirectly, without specifically accounting for DoS
attacks, our proposal will detect such intrusions.

B. Bloom filtering basics

Bloom filters [2] are a probabilistic structure for testing
membership in a set with 100% recall rate. That is, while
false positives may be reported by the filter, there are no false
negatives. For addressing false positives, several improvements
were proposed: the use of complement filters in [24] or the
addition of a secondary filter for treating false positives in
[22].

The Bloom filter is an m bit array accompanied by k distinct
hash functions. When passing a message through the filter, the
message is passed through the k hash functions that activate k
distinct positions inside the filter - these positions are set to 1.
Testing for membership requires hashing the message through
the k£ hash functions and checking that the corresponding
positions are all set to 1 inside the filter.

Given an m-bit filter and n messages that will pass through
the filter, the optimal number of hash functions is k = mn~'In2.
Given the false positive probability p, the filter size m can be
computed as: m = —nlnp(In2)~%. Note that while the filter size

m increases with the number of elements n, the number of
bits per element m/n is constant given a fixed false positive
probability p. In Figure 11 we show the variation in the
number of bits per element (left) and number of required
hash functions (right) with false positive probability p. Even
at a very low false positive probability of 1073 the number
of required bits/element is 15 which is lower than the 29 bits
required for storing each ID explicitly in case of extended
frames. While the number of IDs is generally much lower
than the maximum address space and storing them is feasible,
the procedure easily extends to the rest of the data-field, a
case in which Bloom filtering will be even more effective
as a time-memory trade-off. In particular, rather than storing
the full data-field, we merely store 1 bit for each byte which
determines if the corresponding byte is used in the filtering
process. The number of hash computations is less than 10
even if a low false positive probability of 1073 is desired.

m/n (bétg/e/ement)

25
20

—

5
0.002 0.004 0.006 0.008 0.010 0,002 0.004 0.006 0008 0.0

—
NAO‘OOO»

Fig. 11. Variation in bits/element (left) and hash computations (right) with p

C. The cascade filtering mechanism and protocol

We define a cascade Bloom filter as a collection of Bloom
filters ¢ = {¢1,¢2,...,0¢} associated to time intervals A =
{61,02,...,0¢}. A learning stage is used to calibrate the filters
in ¢ such that they recognize message periodicity based
on its ID. We assume that the learning stage is done in
a safe environment during production time and there is no
adversarial activity on the bus. The learning stage of the
cascade filtering algorithm is graphically depicted in Figure 12
and formalized in Algorithm 1 from Figure 14. The detection
stage is graphically depicted in Figure 13 and formalized in
Algorithm 2 from Figure 14. We explain these in what follows.

In the learning stage, see Figure 12, for each filter ¢;,i € 1..£
we use a pre-filtering phase immediately followed by a fix-
filter phase. The role of the pre-filter is to collect the IDs that
arrive during a time interval of length &; + €/2, here € is a
small margin to compensate for delays on the bus. The pre-
filter ¢, is reset before the learning periods of each filter. By
e and (E)’;” we denote the time intervals for the pre-filtering
and fix-filter phase respectively. Consequently, the pre-filter
@pre is updated with all packets arriving in the pre-filtering
period, i.e.,

i—1 i—

=2 (5j + g),zz(der g) L6+ g) (1)

J=1 J=1

Since each filter j has a learning period of 26; + €, the pre-
filtering stage of filter i starts at ;;11 (26; + €) (this is the
sum of the learning time for each of the previous filters).

pre-filter

fix-filter

pre-filter

fix-filter

pre-filter fix-filter

& & & & &
51+§ 51+5 5Z+E 52+E 63+5 53+§
;10 ms ;10 ms | ~25ms - ~25ms - ~50 ms - ~50 ms o
Poe | Py Pore ?, Pore 0,
! 1 N N \\\ \\\\‘/
N v v
v ey ey , PV 9,V N P Pav
‘ ID, ‘ ID, ‘ .| [1D] | ID, ‘ 1Dy ‘ ‘ 1Dy ‘ ‘ - ‘ IDd ‘ t
Fig. 12. Cascade Bloom filtering: the learning stage
Learning algorithm. Algorithm 1 is immediately called
whenever a frame is received. In steps 2—6 the current time ¢
§1+g §1+§ §2+§ S, +§ is retrieved, the frame identifier id is extracted, the data data
10ms ~10ms 25 ms 25ms is extracted, masked and concatenated to the identifier id, then
o o 0 the index of the current filter ind is computed based on the
2 2 . ..
| 11| B ! [“]2] ! value of ¢ according to the definition of ®" and ©/". The
S | g, 2.l 0, 2, o, P, | index ind is set to —1 if we are in the pre-filtering phase. In
E : | (I :{[']]]]:['I']]: : steps 7-11 ¢, is cleared and the flag clr,, is set denoting
2 4 ! s :” ! LA that ¢,,, was cleared. This prepares the fix-filter phase and
LY ! : \ ! ! / ! @pre Needs to be cleared as soon we enter a new pre-filtering
D, : | D, | | D, | | Dy | | IDa : phase, otherwise if we are in the fix-filter phase the flag is set
|
3 to false. In steps 12-16 we check if the retrieved id has hit any
/ 4 . . .
® \ IL ha SO\ AN ,\‘/ / t of the previous filters j = 1..ind — 1. By ¢(data) we denote
iy \\\ \ BN -~ b the result obtained from applying the filter hash functions over
§ E iz AL ;oo the data-field. If this is not the case, i.e., —hit, we are either

Fig. 13. Cascade Bloom filtering: the run-time stage

Subsequently, each of the filters is set based on messages
arriving in the fix-filter period, i.e.,

[22()+5+ 22(5+)

This interval starts at the end of @p " and ends in time §; + -

The full learning period is the sum of all learning 1nterva%s
plus the pre-filtering stage, i.e.,

Team = Y (OF +€7").

i=1,¢

2

3)

We now give specific details on the learning and de-
tection algorithms presented in Figure 14. External func-
tions that are called in the algorithms (marked by straight
fonts) are performing what their names suggest, e.g.,
BitOr, BitAnd, BitXor are the corresponding binary operators,
Length and Append are the corresponding string operators,
GetTime, GetID, GetFilterIndex return time, the ID of the
CAN frame and the index of the filter for the current interval.
GetMaskedData(frame) returns the data-field parsed accord-
ing to the masking data, i.e., the ones and zeros from the mask
determine whether a byte from the data-field is preserved or
set to zero, i.e., unused.

in the pre-filtering stage (step 18) and the frame is learned by
@pre Or else (step 19) if the packet pases ¢p (step 20) it is
also added to ;g (step 21). In this way, only packets that
did not already pass any of the previous filters ¢;,j = 1..i —1
are allowed in ¢, (this is tested in steps 12-16) and ¢; is
updated (step 21) only with packets that passed through ¢,
and none of ¢;, j = 1..i—1 (tested in steps 12-16). This ensures
that any packet that goes through ¢; occurred twice during a
period of 26; but never occurred twice in the smaller intervals
26j,j=1.0-1.

The learning stage is also graphically illustrated in Figure
12. In this figure the IDs are depicted as they arrive on the
bus. First ID, arrives and this is learned by pre-filter ¢,,.. Then
the ID, arrives again and since it is recognized by ¢, it is
also learned by filter ¢1. When ID, arrives for the third time,
it is recognized by ¢; and since has been already classified,
it will not be learned by the new instance of .. Next, IDy
arrives for the first time and it is learned by ¢p.. Then again
ID, arrives and it is recognized by ¢; and IDy which now
learned by ¢ since it is recognized by ¢,.. In all subsequent
occurrences of ID, and ID,, these are recognized by ¢; and
¢> and will be ignored by .. Finnaly, IDq is learned by ¢s.
When ID, arrives on the bus, it is not recognized by ¢, since
it did not occur previously and thus it will not be learned by
¥3.

Intrusion detection. The intrusion detection in Algorithm
2, is actually straight forward. Steps 2—6 are identical to the
learning phase algorithm presented previously. If any frame
hits more than 1 filter (we verify this in steps 6-14) an

intrusion is signalled (step 13), with properly chosen filter size
this event should however have low probability. In steps 15—
18 we keep a run-time filter for each interval that is refreshed
at each iteration for the corresponding interval (the number
of the current iteration is computed in step 16). In step 21
frames that appeared more than once in the run-time stage are
detected as intrusions while in step 22 frames that occurred
for the first time are learned by the current filter. The intrusion
detection algorithm ensures that a frame learned at periodicity
0; does not occur more than twice in such interval.

The run-time stage, which uses the intrusion detection
algorithm, is also graphically illustrated in Figure 13. In this
figure the IDs are depicted as they arrive on the bus. First ID,
arrives and this is verified by ¢; and updated to the run-time
filter ¢;. Then ID, but a filter collision occurs at this is checked
by two filters ¢; and ¢, thus an intrusion is signalled (the
filter collision event is for illustration purposes only, by proper
choice of filter size this event is unlikely). Subsequently, IDy
arrives and this again passes as valid message similar to ID,.
Then IDy occurs again, it is recognized by ¢, but the run-
time filter ¢, has already set its bits and thus this is detected
as an intrusion (replay attack). Then ID¢ arrives which is not
recognized by any of the filters, thus an intrusion is signalled.
Finally, ID, arrives which is again in order.

IV. EXPERIMENTAL RESULTS

In this section we provide practical results for the efficiency
of the filters based on recorded CAN bus traces and compu-
tational results on real-world power-train ECUs (Electronic
Control Units).

A. Rationale behind our experiments

In all scenarios that follow, the run-time analysis was carried
for a trace of 100,000 frames. We present the results both after
the analysis of the entire trace and in the middle of the trace,
i.e., at frame 50,000. Byte-masks were generally computed
at 25,000 frames which proves to be a good predictor for the
next 100,000 frames. The learning stage, i.e., the length of the
trace required for training the filters, depends on the size of the
filters and is generally a few thousand packets in length. The
number of adversarial injections is available from the table
containing the results by summing the true positives with the
false positives. In general, for 100,000 genuine frames there
are 1,000 adversarial frames injected at random locations.
If the result is for the middle of the trace, there are ~500
adversarial frames since the 1,000 injections are uniformly
distributed in the trace. We choose to keep the number of
injections at 1,000 frames for 100,000 genuine frames since
by increasing the number of injections the attack becomes
conspicuous and we assume that in a real-world scenario an
adversary would prefer to stay stealthy at least to some extent.
The experiments validate several scenarios and hypothesis that
we outline next.

Simulating adversarial attacks. The attacks were simulated
by inserting adversarial frames in the genuine trace. The inser-
tion point was either immediately after the genuine frame or at
some randomized time but no later than the next occurrence of

Algorithm 1 Learning algorithm (learning stage)

1: procedure LEARN FRAME

2: t « GetTime()

3 id — GetID(frame)

4: data — GetMaskedData(frame)
5: data «— Concat(id, data)

6: ind «— GetFilterIndex(z)

7 if (ind = =1 A —clrpr.) then

8: @pre < BitXor(@pre, @pre); clrpre = true
9: end if

10: if (ind # —1 A clrpre) then clryy, = false
11: end if

12: hit « false
13: for j =1 — ind-1 do

14: if p(data) = BitAnd(¢(data), ;) then hit «— true
15: end if

16: end for

17: if —hit then

18: if ind = -1 then @,,, — BitOr(g,., ¢(data))
19: else

20: if @,re = BitAnd(¢pe, ¢(data)) then

21: Pind < Bitor(‘pind’ w(dat“))

22: end if

23: end if

24: end if

25: end procedure

Algorithm 2 Filtering algorithm (run-time stage)

1: procedure FILTER FRAME

2: t «— GetTime()

3 id «— GetlD(frame)

4: data — GetMaskedData(frame)

5: data — Concat(id, data)

6: fipassed «— {}

7 for j=1—¢do

8 if ¢(data) = BitAnd(¢(data), ;) then

9: flpassed — Append(fipassed, j)
10: end if
11: end for
12: if Length(fipassed) # 1 then
13: return Intrusion
14: end if
15: ind = flpassed[1]
16: iteration = | (t — tsart)/Oind |
17: if iteration > count[ind] then
18: ¢ = p(data)
19: count|ind] = iteration
20: else
21: if ¢(data) = BitAnd(¢!", ¢(data)) then return Intrusion
22: else ¢(data) = BitOr(¢['7, ¢(data))
23: end if
24: end if
25: return —Intrusion

26: end procedure

Fig. 14. Learning and intrusion detection by Bloom filtering on CAN frames

a genuine frame with the same ID. Immediate injection should
be easier to detect unless the previous genuine frame was a
false-positive (in this case the adversarial frame is mismatch
for the genuine frame). Delayed injection should be harder to
detect since adversarial frames may be mismatch for genuine
frames. We consider both replay and modification attacks. In
a replay attack the adversary injects a frame that is identical to
the genuine frame. Replay attacks should be in general harder
to detect than modification attacks since they carry data that
looks normal, it is only the timing that may not match. For the
modification attack we considered that the adversary alters the

frame with some random noise. Modification attacks should
be easier to detect when masks are used.

Byte masks and filter training. Byte-masks are more ef-
fective when dealing with modification attacks, otherwise,
they slightly increase the false-positives rate. On the contrary,
disabling the byte-masks lowers the false-positives rate (frames
of high entropy hold higher risks to be reported as false-
positives due to significant modification of their bytes). How-
ever, disabling the byte-masks will increase the false-negatives
rate. The training duration has clear impact on the filter
performance. The length of the training refers to both filter
calibration and the extraction of byte-masks. The longer the
training duration the better the detection. However, the longer
the training trace for the masks, the fewer of the bytes will be
used as masks are filled with zeros. Thus choosing and optimal
training length is decisive. By experiments, we determined
that in general k frames are a good predictor for the next 4k
frames, but this of course varies according to the data from the
trace. We choose to work with binary byte masks which either
take or drop a byte since no specific information on the frame
content was available to us. If additional information exists
on how signals change inside the data-field (e.g., for speed,
torque or other predictable values), then the byte masks can be
adapted by first mapping the data through a specific function
for each signal with a known behaviour.

Filter calibration. The success rate can be tuned by modify-
ing the parameters of the Bloom filters, i.e., the size of the filter
and the number of hashes. Generally, we tested the approach
for 10 hash computations and 1024 bit filters which seem to
be a good choice for increased accuracy. Good results were
obtained when we lowered these to 9 hash functions and 512
bits, then for 7 hash functions and 256 bits some degradation
was obvious. The size of the filters clearly depends on the
length of the training trace. Selecting specific time-intervals
is critical for the detection rate. For the J1939 simulation we
had direct information on the timing of each frame while for
the CAN-FD trace (since we had no additional information)
we took a distinct approach by testing several timings for the
filters. The timings for CAN-FD frames were not hard to guess
as they were quite close to those from J1939 simulation.

B. Results on a power-train bus for commercial-vehicles

We first employ an existing J1939 CANoe simulation to
obtain experimental data. The setup consists of 6 nodes respon-
sible for basic power-train functionalities which communicate
according to J1939 - a CAN-based higher layer protocol for
commercial vehicles. The CAN messages used within the
simulation correspond to 38 cyclic IDs (with cycles between
10 ms and 1s) and several on-event frames. This is in-line with
existing real-world data, for example in [5] 39 cyclic IDs are
reported for a Toyota Camry and 55 for a Dodge RAM.

We wused an array of seven filters, ie., ¢ =
{¢1,¢2,...,07}, that correspond to time intervals
A = {0.01s,0.020s,0.050s,0.100s,0.2505,0.500s, 15}

according to the delays at which cyclic frames are sent
in the simulation. The delays are more stable than in the case
of the real-world trace that we discuss in the next section,

but still, drifts from the expected arrival time are common as
shown in Figure 15.

First, in Figure 15 (a) we illustrate two IDs with arrival
time Is with more delays (left) and less delays (right), the
differences in the arrival times are generally less than 0.1%.
Then in Figure 15 (b) we show the timings of two IDs with
arrival time of 100ms, the plot on the left side shows a more
stable arrival time while the one in the right side exhibits
more variations. Higher variations are due to an ID with lower
priority on the bus. Still, the delays are small. Finally, in Figure
15 (c) we show the timings of two IDs with a periodicity of
50ms and 10ms respectively. On the left side the arrival time
is very stable but on the right the arrival time exhibits delays
of up to 40%. Such delays are the main factor behind a false-
positive reports but can be alleviated by a better allocation of
IDs and traffic on the CAN bus (this is however out of reach
for our work).

On the recorded trace, two kinds of attacks were simulated
by injecting frames in the trace: replay attacks which consist in
injecting and identical frame and modification attacks which
consist in injecting a frame with a random data-field. The
resulting log file is then parsed by the cascade Bloom filtering
procedure which is implemented in a high-level language.
Processing the trace file in a high-level language should not
cause any concerns about the real-world implementation since
the CANoe trace is exactly what each node will record from
the CAN bus. To prove feasibility from a computational point
of view, we provide computational results for hash functions
on automotive-grade controllers at the end of this section.

We present the results in Table I. The learning pe-
riod was of 1759 frames which is around 3-4 seconds,
the length is fixed by the structure of the filters, i.e.,
A = {0.01s,0.020s,0.050s,0.100s,0.250s,0.500s, 1s}. To
cover sufficient modifications at byte-level, masks were ex-
tracted over a longer period of 25,000 frames which roughly
corresponds to 1 minute of run-time. When the attack im-
mediately follows after the genuine frame it is immediately
detected with a false-negative rate of 0%, i.e., lines (1) and
(2) from Table 1. A false-positive rate of 5-6% is present due
to the existing delays from the bus but this happens only for
IDs with lower priority. Once the replay attack is done at
a randomized delay, the false negative rate gets to 34-35%,
i.e., lines (3) and (4) from Table I. While on a first view this
may seem as poor performance in detecting the attack, this
is not necessarily so because what happens is that adversarial
frames are now replacing the genuine frames as the number
of false-positives increases. That is, while on lines (1) and
(2) from Table I we had 2908 and 6063 false-positives for
50,000 and 100,000 frames respectively, we now have 3082
and 6352 false-positives. This means that the intrusion can still
be signaled since the filter detects more frames than expected,
but it is not possible to discern between genuine and replay
frames.

The case of modification attacks leads to 0% of false-
negatives since the data-field of the frame does not pass from
the Bloom filter (Bloom filters have a 100% recall rate). This
happens regardless of the random delays that are introduced in
the transmission of the frames and thus the results from line

t(s) tis)

1.0010 1.00004

1.0005 1.00002
1.0000fs o o sos, sone o a| seny sas, | ue s sen, 1.00000) mLn
09995f | . 0.99098

0.9990 0.99996

frame
02 s 40 50 w0 0 20 30 40 50 60
()
e 1)
0102 0.10004
0.101 0.10002
0.100 0.10000
0.099 0.00998
0.00006
0.008 frame frame
100 200 300 400 500 600 100 200 300 400 500 60O
(b)
t(s) tis)
0.0510 0.013f .
0.012
0.0505
0.011
0.0500 0010
0.0495 0-009
0.008
0.0400
frame frame
200 400 600 800 1000 1200 1000 2000 3000 4000 5000 6000
()

Fig. 15. Differences in frame arrival times on CANoe J1939 simulation: two
ids with arrival time 1s with more delays (left) and less delays (right) (a), two
ids with arrival time of 100ms with less delays (left) and more delays (right)
(b), two ids with small arrival time 50ms (right) and 10ms (left) (c)

frame
10000 20000 30000 40000

t(s)

frame

5000 10000 15000 20000

frame

1000 2000 3000 4000 5000 6000

1000 2000 3000

(©)

Fig. 16. Differences in frame arrival times on recorded in-vehicle traffic: two
short and irregular arrival time of 300 us (left) and 400 ws (right) (a), normal
arrival time of 25ms with some delays (left) and no delays (right), normal
arrival time of 50ms with some delays (c)

TABLE I
FILTERING SUCCESS RATES FOR THE J1939 SIMULATION (A = {0.01s, 0.020s, 0.050s, 0.100s, 0.250s, 0.500s, 1s})

Attack params. Training and testing Bloom filter params. Results
No. Attack Delayed Byte Learning ~ Masking Testing Hashes Size FPR FNR TN TP FP FN

type attack mask (frames) (frames) (frames) (k) (m) bits (frames) (frames) (frames) (frames)
(1) r no yes 1759 25000 50000 10 1024 0.05 0. 46622 70 2908
2) r no yes 1759 25000 100000 10 1024 0.06 0. 93937 1000 6063 0
3) r yes yes 1759 25000 50000 10 1024 0.06 0.34 46409 332 3082 177
(4) r yes yes 1759 25000 100000 10 1024 0.06 0.35 93583 646 6417 354
5) m no yes 1759 25000 50000 10 1024 0.05 0. 46622 470 2908 0
(6) m no yes 1759 25000 100000 10 1024 0.06 0. 93937 1000 6063 0
(7) m yes yes 1759 25000 50000 10 1024 0.05 0. 46586 509 2905 0
8) m yes yes 1759 25000 100000 10 1024 0.06 0. 93937 1000 6063 0
9) r no yes 1759 25000 100000 9 512 0.06 0. 93937 1000 6063 0
(10) m yes yes 1759 25000 100000 7 256 0.06 0.002 93937 998 6063 2

(5) to (8) are identical. The J1939 simulation scenario proved
not to be very demanding and we successfully reduced the
filters to 512 bits and 9 hash functions with no performance
degradation as can be seen in line (9) of Table I. By going
even lower to 256 bits and 7 hash functions 2 false negative
messages appeared in case of the delayed modification attack,
this is shown in line (10) of Table I.

C. Result on a real-world CAN-FD trace

The experiments conducted on a CAN-FD trace from a
real-world high-end vehicle are more demanding as we now
discuss.

In Figure 16 we depict differences in arrival times for six
distinct IDs. First in Figure 16 (a) we show data for two
IDs that are harder to manage by the filtering algorithm. In
this case the arrival time is very short at around 300 us and
variations of around 50% are common. Fortunately, these two
IDs are the only (out of the 89 IDs from the trace) that cause
such problems. Then in Figure 16 (b) and (c) we show data
for IDs with arrival time of 25ms and 50ms respectively. For
the IDs on the left side of Figure 16 (b) and (c) delays have a

similar impact on the arrival time, likely due to a very close
value of the identifiers which leads to identical priority. The
right side of Figure 16 (b) and (c) shows IDs with the same
periodicity but which are affected by delays to a lesser extent
(due to a higher priority of the ID). These delays are the main
factor behind the false positive reports of the filter, they can
be alleviated by better allocation of the traffic on the bus but
this is out of reach for our work.

In Table II we summarize the experimental results. The
length of the trace for filter calibration is always 4208 frames,
this is due to the fixed periodicities that were taken into
account by the filters, i.e., A = {30us,25ms,50ms, 1s}. When
choosing the length of the trace for computing the message
masks it proved that using the same length as for the learning
stage results in satisfactory results only for the next few
thousand frames, then the performance degrades for the false-
positives rates. This is due to the high entropy of the genuine
frames which can be mismatch as adversarial actions due to
significant modifications. We then choose a longer trace of
25,000 packets for the mask which proved a good predictor
for the next 100,000 frames. This suggests that regular updates

G000
4000
2000
(s) L L '

-ee e 00
1
B L LR SIS LA AR VS 2 300

98 8 40 HB BIH B M HISEE M 488
- (i) - e

133 134 135 136 137 138 100 200 300 400 500 800 00

(a) (b)
D
T BN L T g A 5

Fig. 17. Graphical depiction of recorded time (left) and histogram distribution
(right) for true negatives (up) and true positives (down)

of the packet mask may be essential for lowering the false-
positives rate, we give later a brief discussion on updating the
byte masks. Since the usefulness of byte-masks was already
proved by the previous experiments, we restrict the analysis
that follows only to the case when byte-masks are used.

In rows 14 of Table II we present results for modification
attacks. When there are no delays in the adversarial frames,
i.e., forged frames are inserted next after the genuine frames,
the false-negative rate is as low as 1-2%. While the false
positive rate tops at 11-17%, only two IDs are responsible
for most of the false-positive rate. In case of delayed injection
of modified frames, the false-negative increases to 8-9% and
the false-positive rate remains the same. For replay attacks,
presented in rows 5-8 of Table II, with no delays there is
only a slight increase of the false-negative rate to 2-3%. This is
expected as in the case of replay attacks byte-masks will not be
so effective in detecting the attack. With delayed injection the
false-negative rate surges to 43-47%. Again, this should not
necessarily be interpreted in a negative sense, the problem is
that now genuine frames cannot be separated from adversarial
frames and the number of false positives increases from 17,006
to 17,383 (at 100,000 genuine frames). This happens because
adversarial frames that arrive before the genuine frames will
become a false-negative and the genuine frame will be the false
positive. Thus, the filtering algorithm will detect anomalies on
the traffic but it cannot discern between genuine frames and
adversarial frames. This points out that besides the intrusion-
detection algorithms, means of identifying genuine frames
must be in place, e.g., cryptographic authentication.

We now discuss the results in Table III for the case when
the filter size and number of computations are lowered. We
discuss performance degradation only for the best case of
modification attacks with immediate injection, for the rest of
the cases the results scale up with the corresponding detection
rates. When lowering the number of hash computations from
10 to 9 and the filter from 1024 to 512 bits, there is a visible
increase in the number of false positives to 16-17% and
false-negatives to 4—5%. While the performance degradation is
obvious, these values may still be acceptable when resources

100
LB LT N T
0

20 20 40 50 & T

(b)

D occurences

5000

4000

3000

2000

1000

ID

R wrurs | U v |
100 200 300 400 500 600 700
(d)

Fig. 18. Graphical depiction of recorded time (left) and histogram distribution
(right) for false negatives (up) and false positives (down)

are limited. Reducing to 7 hash functions and 256 bits, does
however increase the false-positive rate to 27-31% and the
false-negative rate to 17-19% which suggests that this filter
size is inappropriate for the higher data-rate of CAN-FD.

For a better understanding on how true-negatives and true-
positives values build up, in Figure 17 we give a graphical
depiction of frame arrival time for each of the IDs. For this
plot, the ID is converted from decimal representation and
ploted on the vertical axis. To avoid overloading the plot, only
the first 1000 true-positives and true-negative values are added.
The left side of the figure depicts the arrival time and the right
side the histogram distribution. It is easy to see that for true-
negatives (up) the arrival time follows a clear cyclic pattern.
For the true-positives, i.e., adversarial frames detected by the
intrusion detection mechanism, the arrival time is random and
uniformly distributed over the IDs. This is consistent with the
randomized injection attack that was tested in our scenario.

The false-negatives and false-positives are shown in Figure
18. Again, the left side of the figure depicts the arrival time
and the right side the histogram distribution. In both cases the
values are neither cyclic nor uniformly distributed. Most of
the misclassified frames tend to group around IDs that exhibit
significant drifts from the expected arrival time are both more
easy to pass as false-positives (down) and false-negatives (up).
Adversarial frames and genuine frames are more likely to be
mismatch for IDs with lower priority that are sent at a higher
rate.

Re-computing byte-masks. As proved by our experiments,
byte-masks are very effective in increasing the detection of
modified frames but they do also increase the number of
false-positives when they are used for longer periods. For this
purpose, in a real-world deployment, they may be periodically
updated. Updating a byte-mask for a particular ID will require
keeping a copy of the data-field of the most recent packet.
Once a new packet arrives, bytes that are distinct are updated
and the mask bit is set to 0. A more in-depth analysis can help
in deciding the optimal choice of byte-masks and the intervals
at which they should be updated but this is out of scope for
the current work.

TABLE 11
FILTERING SUCCESS RATES FOR FRAME MODIFICATION AND REPLAY ATTACKS ON A CAN-FD TRACE (A = {30us, 25ms, 50ms, 1s})

Attack params. Training and testing Bloom filter params. Results
No. Attack Delayed Byte Learning ~ Masking Testing Hashes Size FPR FNR TN TP FP FN
type attack mask (frames) (frames) (frames) k) (m) bits (frames) (frames) (frames) (frames)

[6)) m no yes 4208 25000 50000 10 1024 0.11 0.01 43574 479 5938 9

?2) m no yes 4208 25000 100000 10 1024 0.17 0.02 82996 975 17004 25
3) m yes yes 4208 25000 50000 10 1024 0.12 0.09 43548 431 5974 47
4) m yes yes 4208 25000 100000 10 1024 0.17 0.08 82942 911 17058 89
[€) r no yes 4208 25000 50000 10 1024 0.11 0.02 43573 475 5939 13
(6) r no yes 4208 25000 100000 10 1024 0.17 0.03 82994 970 17006 30
(7 r yes yes 4208 25000 50000 10 1024 0.12 047 43375 249 6147 229
8) r yes yes 4208 25000 100000 10 1024 0.17 0.43 82617 570 17383 430

TABLE III

FILTERING SUCCESS RATES WITH REDUCED NUMBER OF HASHES AND FILTER SIZE ON A CAN-FD TRACE (A = {30us, 25ms, 50ms, 1s})

Attack params. Training and testing Bloom filter params. Results
No. Attack Delayed Byte Learning ~ Masking Testing Hashes Size FPR FNR TN TP FP FN
type attack mask (frames) (frames) (frames) (k) (m) bits (frames) (frames) (frames) (frames)
[63) m no yes 4208 25000 50000 9 512 0.16 0.04 41418 464 8094 24
?2) m no yes 4208 25000 100000 9 512 0.20 0.05 79048 950 20952 50
3) m no yes 4208 25000 50000 7 256 0.27 0.17 35881 401 13631 87
4) m no yes 4208 25000 100000 7 256 0.31 0.19 68773 807 31227 193

D. Computational results

The analysis from the previous section clarifies the per-
formance of the proposed intrusion-detection mechanism. For
deployment in a real-world vehicle, computational constraints
are the main limitation. Memory requirements are not high at
one bit for each byte of an ID, which given a frame length
of at most 512 bits for CAN-FD results in at most 64 bits
for each ID plus the ID itself. As already stated, previous
work in [5] accounted for at most 55 IDs on the network,
the high-end vehicle trace that we analyzed had 89 IDs and
CAN-FD frames. But even for this extreme case, only a few
of the IDs carried the 64 bytes allowed by the standard and
the 89 IDs sum up to 2920 bytes. Since each byte requires 1
bit, it leads to around 365 bytes for the masks which should
cause no memory issues. In what follows we clarify that from a
computational point of view it is feasible to implement Bloom
filters on automotive-grade microcontrollers.

To achieve this, we evaluated the computational perfor-
mance of three representative 32-bit platforms from the au-
tomotive domain. On each of them we provide measurements
for the time needed for the message to pass the Bloom
filtering algorithms. For two of the selected platforms, namely
the NXP MPC5606B and AURIX TC297, we used existing
development boards while for the Renesas RH850/E1x-FCC1
the tests were done using a simulator. Figure 19 depicts
our experimental setup which includes the J1939 CANoe
simulation, the Freescale/NXP MPC5606B and the Infineon
TC297 development boards.

Table IV summarizes the results obtained for the various
tested scenarios. Separate variants of the filter algorithm based
on the MD5 and the MurMur hash functions were used. While
MDS5 offers only weak cryptographic security, we emphasize
that its weaknesses (i.e., collision attacks) are not relevant
for Bloom filtering. MurMur [1] is not a cryptographic hash
and it is insecure from a cryptographic perspective, but it is
commonly used for non-cryptographic applications in various

platforms. To avoid any suspicions we tested several traces
with both MD5 and MurMur and there was no difference of
the false-positive and false-negative reports.

Similar to the analysis in the previous section, three variants
of Bloom filters were tested using a filter size of 256, 512 and
1024 bits along with the application of the corresponding hash
for 7, 8 and 9 times respectively. For each of these variants we
applied messages with payloads of 8, 16, 32 and 64 bytes as
inputs and measured the time needed to evaluate the filter on
the message. We depict the time required both for checking
that a message has already passed through the filter column
(i.e., the Check column in Table IV) and the time needed to
add the message to the filter (i.e. the Set column in Table
IV). The Check operation corresponds to computing the filter
function ¢ over id-message pair and the BitAnd operations
from Algorithms 1 and 2, e.g., @y = BitAnd(¢,re, ¢(data)).
Similarly, the Set operation corresponds to computing the filter
function ¢ over the id-message pair and the BitOr operations
from Algorithms 1 and 2, e.g., ¢ < BitOr(piuq, ¢(data)).
Note that the Check algorithm is probabilistic and the running
time for a message that is recognized by the filter is the same
as for Set while for a message that is not recognized the time
may vary from a single hash computation (more likely) to
all the required hash computations (a less likely situation).
The time for the Set function is deterministic since always
the same number of hashes is computed. Of course, the run-
time of the Set function depends on the size of the input which
differs according to the size of the frame. Two additional bytes,
representing the message ID, are always added to the message
payload.

When using MDS5, the execution time for the filter appli-
cation is less than the transmission of an 8 byte CAN frame
at 500kbps with the exception of MPC5606B which exceeds
this for almost all tested variants. In the case of MurMur most
of the results on the three platforms fit in the aforementioned
interval. However, there are still several cases in which the
MPC5606B platform exceeds the frame transmission time

TABLE IV
FILTER RUN-TIME ON THREE AUTOMOTIVE PLATFORMS: FREESCALE/NXP MPC5606B, INFINEON TC297, RENESSAS RH850/E1x-FCC1

MD5 MurMur
Platform Filter size Hashes 64 bytes 32 bytes 16 bytes 8 bytes 64 bytes 32 bytes 16 bytes 8 bytes
Check Set Check Set Check Set Check Set Check Set Check Set Check Set Check Set
W) ws) | @) @) | @) @) | @) @) || @w) @) | @) @) | @) ws) | (@) (us)
256 7 357.2 2466 1220 1426 1422 1426 208.2 1426 4717 294.4 | 59.72 1952 | 1045 1453 | 37.98 120.3
MPC5606B 512 9 3168 3168 1220 1832 1827 1832 208.2 1832 378.8 376.6 | 59.72 249.2 | 2549 185.0 | 37.99 1529
1024 10 357.2 3520 4104 2034 208.2 2034 814.8 2034 47.17 418.0 | 59.72 276.2 | 2549 2049 | 37.99 169.2
256 7 10.53 73.74 | 3533 41.20 | 41.22 41.20 5.90 41.20 3.100 21.74 | 3.630 1290 | 5.760 8.040 | 1.670 5.740
TC297 512 9 94.80 94.80 | 3531 5295 | 52.95 52.95 5.88 52.95 27.97 27.93 | 3.618 16.18 | 1.158 10.30 | 1.660 7.360
1024 10 10.53 105.3 11.78 58.83 5.88 58.83 | 23.55 58.83 3.116 31.03 | 3.616 17.97 | 1.157 11.43 1.660 8.160
256 7 13.00 86.55 | 4545 52.96 | 52.93 52.96 | 7.731 49.85 1.993 12.99 | 2.475 8.259 | 4.228 5.906 | 1.446 4.753
RH850/E1x-FCC1 512 9 111.0 111.1 4544 67.86 | 67.79 67.86 | 7.731 63.87 16.58 16.65 | 2.475 10.54 | 0.981 7.534 | 1.443 6.050
1024 10 12.99 123.3 15.65 75.28 | 8.200 75.28 | 30.54 75.28 1.990 18.43 | 2.468 11.67 | 0.978 8.290 | 1.456 6.615
5(s) a(s)
" M w ‘ T 0l ‘ i
I} | | | |
0.006! ‘ “‘ “m ‘M H | “ oooox‘\ “ i “‘
‘ “ ‘ | ‘ ‘ I I 00006/l | I I I
0.001; ‘ | ‘ I i (.
WO W
000 “ ‘ ‘ ‘ ‘ | ‘ 0.0002, fl L fI Il
i 1 111
o (‘x 50 100 150 200 Figtame 00005 130 500 350 cod" e

19.

Fig.
Freescale/NXP MPC5606B and Infineon TC297 developmentd boards)

Experimental setup (J1939 CANoe simulation along the

by up to 200us which would be almost enough to send a
second 8 byte CAN frame. This difference in performance
is expected since the MPC5606B was clocked at 64MHz in
our tests, as it does not support higher frequencies, while the
TC297 and RH850/E1x-FCC1 were clocked at 300MHz and
320MHz respectively. We now discuss the relation between
computational time and inter-frame delays in each of the two
scenarios that were previously evaluated.

By running this CANoe J1939 simulation we obtained an
average of less than 500 messages/second, which leads to an
average of 2ms of processing time for each message. This
is enough time for a high-end controller, e.g., TC297 or
RH850/E1x-FCC1. We note however that burst periods occur
on the bus as well. Figure 20 depicts delays between packets
as recorded in our simulation. On the left side regular delays
can be seen to peak at 8ms. Burst periods depicted on the
right side have delays of less than 200us but occur rarely, i.e.,
they account for less than 5% of the traffic, while the mini-
mum recorded delay is at 144us. Consequently, for practical
reasons, a filter that requires less than 100us of processing
time per message is recommended. Our experimental results
show that this is achievable with the TC297 and RH850/E1x-
FCCI controllers but not with the MPC5606B. Still, our view
is rather pessimistic since we address the entire traffic on the
bus while typically an ECU only receives part of the traffic
(due to existing filtering mechanism on CAN). Consequently,

Fig. 20. Regular delays between frames (left) and a burst period (right) from
the CANoe J1939 simulation

5(s s
) 0.00f0"
0.010 I |
0.0008
0.008 ‘ ‘ | ‘
0.006 | | 0.0006 ‘
| | |
| 0.0004
0.004 ‘ ‘ ullll
0.002] | ‘ "‘ [‘\ 0.0002 Wil
| f
| | il 9 [— 0 -ame
S0 100 10 200 20 e Mg o o 160 180 200
Fig. 21. Regular delays between frames (left) and a burst period (right) from

the real-world CAN bus trace

for ECUs that cannot cope with the computational demands,
filtering only part of the traffic may be an alternative.

Figure 21 shows the delays on the CAN-FD trace. Not
surprising, the delays are in general by one order of magnitude
smaller. Variations in the inter-frame delays are higher as can
be seen in the plot for 300 consecutive frames on the left
side of the figure. Also, the variation of the delays during the
burst period is less uniform as can be seen on the detailed plot
from the right side. The mean and median delays are between
200-500 ps with the minimum recorded delay at 49us. This
generally recommends the use of the non-cryptographic hash
MurMur since the cost of MDS5, while still feasible, is close
to the limit. Again, this evaluation is for the entire trace and it
is not expected that an ECU will be responsible for working
with the entire traffic from the bus.

V. CONCLUSION

Bloom filters are known to provide a memory efficient
mechanism for membership testing. In this work we showed
their effectiveness in separating packets on the CAN bus based
on their periodicity and content of the data field. Indeed, the
timing for the injection of adversarial frames is critical for the
false-negative rate of the filtering mechanism. In this respect
byte-masks, which allow testing for the content of the frame,
are more effective in detecting modified frames. In the worst
case, when an adversary can replay frames in the optimal time-
frame, duplicate frames will be detected and even if there

is no mechanism to distinguish between genuine frames and
adversarial frames an intrusion can be signalled.

We hope that our work opens road for a new applicative area
of Bloom filters: automotive grade networks, in particular the
CAN-bus but newer technologies such as FlexRay or BroadR-
Reach offer identical setups. While a full scale implementation
and further improvements are subject of future work for us,
by this research we made the first steps for the adoption of
such mechanisms on automotive buses which are crucially
demanding security.

Acknowledgement. This work was supported by a grant of
the Romanian National Authority for Scientific Research and
Innovation, CNCS-UEFISCDI, project number PN-II-RU-TE-
2014-4-1501 (2015-2017). We thank Eng. Tudor Andreica and
Eng. Bogdan Nuna from HELLA Timisoara for providing the
real-world CAN-FD traces that were used in our experimental
analysis. We are grateful to the anonymous reviewers for their
comments which have helped us to improve our work.

[1]
[2]

[4]

[5]
[6]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

REFERENCES

A. Appleby. Murmurhash.
com/site/murmurhash, 2008.

B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM, 13(7):422-426, 1970.

S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham,
S. Savage, K. Koscher, A. Czeskis, F. Roesner, T. Kohno, et al.
Comprehensive experimental analyses of automotive attack surfaces. In
USENIX Security Symposium. San Francisco, 2011.

K.-T. Cho and K. G. Shin. Error handling of in-vehicle networks makes
them vulnerable. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, pages 1044-1055. ACM,
2016.

K.-T. Cho and K. G. Shin. Fingerprinting electronic control units for
vehicle intrusion detection. In 25th USENIX Security Symposium, 2016.
W. Choi, H. J. Jo, S. Woo, J. Y. Chun, J. Park, and D. H. Lee.
Identifying ecus using inimitable characteristics of signals in controller
area networks. I[EEE Trans. Vehicular Technology, 67(6):4757-4770,
2018.

W. Choi, K. Joo, H. J. Jo, M. C. Park, and D. H. Lee. Voltageids: Low-
level communication characteristics for automotive intrusion detection
system. IEEE Transactions on Information Forensics and Security, 2018.
S. Dario, M. Mirco, and C. Michele. Detecting attacks to internal vehicle
networks through hamming distance. In IEEE 2017 AEIT International
Annual Conference-Infrastructures for Energy and ICT (AEIT 2017),
2017.

C. E. Everett and D. McCoy. Octane (open car testbed and network
experiments): Bringing cyber-physical security research to researchers
and students. In CSET, Presented as part of the 6th Workshop on Cyber
Security Experimentation and Test. USENIX, 2013.

H. Giannopoulos, A. M. Wyglinski, and J. Chapman. Securing vehicular
controller area networks: An approach to active bus-level countermea-
sures. [EEE Vehicular Technology Magazine, 12(4):60-68, 2017.

B. Groza, P.-S. Murvay, A. Van Herrewege, and 1. Verbauwhede. LiBrA-
CAN: a lightweight broadcast authentication protocol for controller area
networks. In 77th International Conference on Cryptology and Network
Security, CANS 2012, Springer-Verlag, LNCS, 2012.

B. Groza and S. Murvay. Efficient protocols for secure broadcast in
controller area networks. IEEE Transactions on Industrial Informatics,
9(4):2034-2042, 2013.

O. Hartkopp, C. Reuber, and R. Schilling. MaCAN-message authenti-
cated CAN. In /0th Int. Conf. on Embedded Security in Cars (ESCAR
2012), 2012.

T. Hoppe, S. Kiltz, and J. Dittmann. Applying intrusion detection
to automotive it-early insights and remaining challenges. Journal of
Information Assurance and Security (JIAS), 4(6):226-235, 2009.

T. Hoppe, S. Kiltz, and J. Dittmann. Security threats to automotive can
networks—practical examples and selected short-term countermeasures.
Reliability Engineering & System Safety, 96(1):11-25, 2011.

URL https://sites. google.

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

(33]

[34]

[35]

[36]

[37]

(38]

S. Jain and J. Guajardo. Physical layer group key agreement for
automotive controller area networks. In Conference on Cryptographic
Hardware and Embedded Systems, 2016.

M.-J. Kang and J.-W. Kang. Intrusion detection system using deep neural
network for in-vehicle network security. PloS one, 11(6):e0155781,
2016.

M.-J. Kang and J.-W. Kang. A novel intrusion detection method using
deep neural network for in-vehicle network security. In Vehicular
Technology Conference (VIC Spring), 2016 IEEE 83rd, pages 1-5.
IEEE, 2016.

K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham, et al. Experimental
security analysis of a modern automobile. In Security and Privacy (SP),
2010 IEEE Symposium on, pages 447-462. IEEE, 2010.

R. Kurachi, Y. Matsubara, H. Takada, N. Adachi, Y. Miyashita, and
S. Horihata. CaCAN - centralized authentication system in CAN
(controller area network). In 14th Int. Conf. on Embedded Security
in Cars (ESCAR 2014), 2014.

H. Lee, S. H. Jeong, and H. K. Kim. Otids: A novel intrusion detection
system for in-vehicle network by using remote frame. In Procedings of
PST (Privacy, Security and Trust), 2017.

H. Lee and A. Nakao. Improving Bloom filter forwarding architectures.
IEEE Communications Letters, 10(18):1715-1718, 2014.

H. Li, L. Zhao, M. Juliato, S. Ahmed, M. R. Sastry, and L. L. Yang.
Poster: Intrusion detection system for in-vehicle networks using sensor
correlation and integration. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pages 2531—
2533. ACM, 2017.

H. Lim, J. Lee, and C. Yim. Complement Bloom filter for identifying
true positiveness of a Bloom filter. [EEE Communications Letters,
19(11):1905-1908, 2015.

C.-W. Lin, Q. Zhu, C. Phung, and A. Sangiovanni-Vincentelli. Security-
aware mapping for CAN-based real-time distributed automotive systems.
In 2013 IEEE/ACM International Conference on Computer-Aided De-
sign (ICCAD), pages 115-121. IEEE, 2013.

C.-W. Lin, Q. Zhu, and A. Sangiovanni-Vincentelli. Security-aware
modeling and efficient mapping for CAN-based real-time distributed
automotive systems. IEEE Embedded Systems Letters, 7(1):11-14, 2015.
M. Marchetti, D. Stabili, A. Guido, and M. Colajanni. Evaluation of
anomaly detection for in-vehicle networks through information-theoretic
algorithms. In Research and Technologies for Society and Industry
Leveraging a better tomorrow (RTSI), pages 1-6. IEEE, 2016.

T. Matsumoto, M. Hata, M. Tanabe, K. Yoshioka, and K. Oishi. A
method of preventing unauthorized data transmission in controller area
network. In Vehicular Technology Conference (VIC Spring), 2012 IEEE
75th, pages 1-5. IEEE, 2012.

C. Miller and C. Valasek. A survey of remote automotive attack surfaces.
Black Hat USA, 2014.

M. R. Moore, R. A. Bridges, F. L. Combs, M. S. Starr, and S. J. Prowell.
Modeling inter-signal arrival times for accurate detection of can bus
signal injection attacks: a data-driven approach to in-vehicle intrusion
detection. In Proceedings of the 12th Annual Conference on Cyber and
Information Security Research, page 11. ACM, 2017.

A. Mueller and T. Lothspeich. Plug-and-secure communication for CAN.
CAN Newsletter, pages 10-14, 2015.

P-S. Murvay and B. Groza. Source identification using signal charac-
teristics in controller area networks. [EEE Signal Processing Letters,
21(4):395-399, 2014.

M. Miiter and N. Asaj. Entropy-based anomaly detection for in-vehicle
networks. In Intelligent Vehicles Symposium (IV), 2011 IEEE, pages
1110-1115. IEEE, 2011.

M. Miiter, A. Groll, and F. C. Freiling. A structured approach to
anomaly detection for in-vehicle networks. In Information Assurance
and Security (IAS), 2010 Sixth International Conference on, pages 92—
98. IEEE, 2010.

S. N. Narayanan, S. Mittal, and A. Joshi. Obd_securealert: An anomaly
detection system for vehicles. In Smart Computing (SMARTCOMP),
2016 IEEE International Conference on, pages 1-6. IEEE, 2016.

A.-I. Radu and F. D. Garcia. Leia: A lightweight authentication protocol
for can. In 21st European Symposium on Research in Computer Security,
ESORICS, pages 283-300. Springer, 2016.

S. U. Sagong, X. Ying, A. Clark, L. Bushnell, and R. Poovendran.
Cloaking the clock: emulating clock skew in controller area networks. In
Proceedings of the 9th ACM/IEEE International Conference on Cyber-
Physical Systems, pages 32-42. IEEE Press, 2018.

H. M. Song, H. R. Kim, and H. K. Kim. Intrusion detection system based
on the analysis of time intervals of can messages for in-vehicle network.

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

In Information Networking (ICOIN), 2016 International Conference on,
pages 63-68. IEEE, 2016.

O. Stan, Y. Elovici, A. Shabtai, G. Shugol, R. Tikochinski, and S. Kur.
Protecting military avionics platforms from attacks on mil-std-1553
communication bus. arXiv preprint arXiv:1707.05032, 2017.

I. Studnia, E. Alata, V. Nicomette, M. Kaaniche, and Y. Laarouchi. A
language-based intrusion detection approach for automotive embedded
networks. International Journal of Embedded Systems, 10(1):1-12,
2018.

A. Taylor, S. Leblanc, and N. Japkowicz. Anomaly detection in auto-
mobile control network data with long short-term memory networks. In
Data Science and Advanced Analytics (DSAA), 2016 IEEE International
Conference on, pages 130-139. IEEE, 2016.

A. Theissler. Detecting known and unknown faults in automotive
systems using ensemble-based anomaly detection. Knowledge-Based
Systems, 123:163-173, 2017.

D. Tian, Y. Li, Y. Wang, X. Duan, C. Wang, W. Wang, R. Hui, and
P. Guo. An intrusion detection system based on machine learning
for can-bus. In International Conference on Industrial Networks and
Intelligent Systems, pages 285-294. Springer, 2017.

Q. Wang and S. Sawhney. Vecure: A practical security framework to
protect the can bus of vehicles. In Internet of Things (I0T), 2014
International Conference on the, pages 13—18. IEEE, 2014.

A. Wasicek and A. Weimerskirch. Recognizing manipulated electronic
control units. Technical report, SAE Technical Paper, 2015.

S. Woo, H. J. Jo, I. S. Kim, and D. H. Lee. A Practical Security
Architecture for In-Vehicle CAN-FD. [EEE Trans. Intell. Transp. Syst.,
17(8):2248-2261, Aug 2016.

Bogdan Groza is an associate professor at Po-
litehnica University of Timisoara (UPT). He received
his Dipl.Ing. and Ph.D. degree from UPT in 2004
and 2008 respectively. In 2016 he successfully de-
fended his habilitation thesis having as core subject
the design of cryptographic security for automotive
embedded devices and networks. He has been ac-
tively involved inside UPT with the development of
laboratories by Continental Automotive and Vector
Informatik, two world-class manufacturers of auto-
motive software. He currently leads the CSEAMAN

project, a 2 years research program (2015-2017) in the area of automotive
security.

Pal-Stefan Murvay is an assistant professor at
Politehnica University of Timisoara (UPT). He grad-
uated his B.Sc and M.Sc studies in 2008 and 2010
respectively and received his Ph.D. degree in 2014,
all from UPT. He has a 10-year background as
a software developer in the automotive industry.
His current research interests are in the area of
automotive security and works as a postdoctoral
researcher in the CSEAMAN project.

