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Abstract—As car sharing becomes an increasingly common
task, mediating user access rights from external servers comes
with threats regarding user’s privacy. Clearly, users can be
tracked by service mediators, e.g., cloud providers, that manage
vehicle fleets, etc. In this work we design and test a simple
solution based on oblivious transfer, a well-known and secure
cryptographic block, that allows to preserve user’s privacy when
gaining access to the vehicle. We test the feasibility of deploying
such a solution on Android capable smartphones but also account
for potential in-vehicle components, e.g., car head units,that may
be soon put to such tasks. We use Microsoft Azure as cloud
service provider and deploy a Java implementation, based on
the Bouncy Castle cryptographic library, on the server side.
Our experimental results show that Android based units are
capable of handling the required cryptographic operationsand
the implementation of the employed protocol can be done by
existing open-source support.

Index Terms—car-sharing, oblivious transfer, privacy

I. I NTRODUCTION AND MOTIVATION

Traditional car keys are not really able to perform more
demanding cryptographic functionalities, e.g., public-key op-
erations, or more complex protocols such as oblivious transfer.
In general, traditional car keys are limited to performing
basic symmetric cryptographic primitives, e.g., encryption,
that are required for challenge-response protocols. Fortunately,
the use of smartphones may help in this respect since they
are equipped with modern processors that can easily run
demanding tasks. Indeed, the use of smartphones as car keys
has been suggested in numerous recent works, e.g., [5], [19].
Even earlier than that, the use of smartphones as keys for home
and office buildings was explored in [4] and [3].

Recently, multiple lines of work have accounted for various
car access systems with advanced functionalities, many of
them involving smartphones and the cloud. For example,
cloud-to-vehicle communication is discussed in [2] and [17]
while the authors of [11] propose the use of the cloud as an
infrastructure to control car usage. Car sharing via Android
applications is also discussed in [6]. Rights sharing systems
over car functionalities are explored in [12] and [9]. Even the
use of secure multiparty protocols has been suggested in [15].
Smart-contracts over the Ethereum network for car sharing are
proposed in [1]. The work in [8] proposes a more complex
role-based car access control system.

This work was supported by a grant of Ministry of Research andInnova-
tion, CNCS-UEFISCDI, project number PN-III-P1-1.1-TE-2016-1317, within
PNCDI III (2018-2020).

In the past, there were many reported attacks on car keys,
e.g., [7], [16], [18], [20], but these are of little concern to us
since most of these attacks come from the absence of proper
cryptography, e.g., the use of poor random number generators
(RNGs), or poorly designed cryptosystems, e.g., HITAG. In
contrast to these, our solution relies on standardized, properly
designed cryptographic functions that are available in the
Android platform via open-source implementations, e.g., the
Bouncy Castle and Spongy Castle cryptographic libraries.

Fig. 1. ANTARES: interfaces for car selection (left) and control (right)

Application and goals.Figure 1 shows the interfaces of
the Antares car-sharing app that we designed for Android.
The interface allows the users to select, from the available
cars, the one that better suits their needs based on specific
characteristics or location and perform a rights-request op-
eration following the payment procedure. After a successful
procurement of rights over the car, a new application interface
can be used for controlling specific functionalities of the car.
The retrieval of the access rights to a specific car is done via
an oblivious-transfer protocol which will be described in the
following section. This allows the selection of a specific car
to be done in an anonymous manner. The payment procedure
is out-of-scope for the current work. While the payment can
be traced (if based on classical payment systems, e.g., VISA)
the car that is selected by the user will still remain anonymous
due to the oblivious-transfer protocol. Subsequently, each car
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Fig. 2. Addressed scenario in ANTARES: rights procurement from the cloud in an oblivious manner

reports its status in the cloud. If the cloud service provider
colludes with the key generation service, some privacy leakage
will occur since changes in the status of cars can be linked
to credentials that users provide to the key generation service.
In this case, the anonymity of the users is enforced as long as
multiple cars are rented during the same time-frame. For this
purpose, the user application may provide a queuing delay to
ensure that sufficient rentals occur at the same time.

II. PROTOCOL DESIGN

In this section we discuss the addressed scenario followed
by the cryptographic building blocks and our protocol design.

A. Addressed scenario

In Figure 2 we depict the addressed scenario. For simplicity
of the exposition, a more formal description of the protocolis
given only for the oblivious-transfer (OT) component in the
forthcoming section. This is the only challenging protocolpro-
cedure and we need to establish precise timing requirements
for it. The rest of the protocol procedures involve only basic
cryptographic operations which are of little concern to us,thus,
we keep the presentation that follows less formal.

We assume that car manufacturers or sellers are responsible
with the deployment of vehicles in step 1. For this, in step
(1a) the car fleet is registered to a key generation service
KGS and in step (1b) to the cloud service providerCSP.
The CSP receives all the informations on the car, including
technical specifications, pictures, etc. that are displayed in the
car sharing application and stores these in a cloud database.
TheKGS receives only a vehicle identification number which
points to a specific vehicle (this can be the VIN number which
is unique to each vehicle). The cars are deployed in step
(1c) and each car has installed in it the public keys of the
trustedKGS. We choose to separate between the cloud service
providerCSP and the key generation serviceKGS since such
decentralization precludes the cloud service provider from
gaining access to the car and also theKGS from gaining
more information on the cars, e.g., their location. If required
by implementation constraints, theCSP andKGS can run on
the same entity. Even if theCSP colludes with theKGS, the

oblivious-transfer protocol prevents them from learning which
car was rented by a userU.

Subsequently, in step (2) the userU retrieves the car data-
base from the cloud. We omit details on what the database
contains but as can be easily seen in the application interface,
the users are informed on the technical specifications of the
car. Upon selecting the car they desire, the users run an
oblivious transfer protocol with theKGS in step (3). Step (3)
is omitted for the moment since we describe it in detail in the
next subsection. Having retrieved the access credentials,i.e.,
SigKGS(attributes ,Carid) in step (3), the users access the car
in step (4). This is simply done by sending these credentials
over the Internet to the car infotainment unit. The attributes
attr contain the user rights over the car and the lifetime of the
acquisition. Upon successful access, the car updates its status
to the cloud in step (5) by simply switching its availability
flag. To avoid the same car being rented at the same time by
two distinct users (since theKGS does not know if the keys
that he released are for available cars) it is the role of the
CSP to maintain the updated list of available cars. To avoid
inconsistencies due to concurrent rentals of the same car, the
CSP has to lock the car for the duration of the oblivious-
transfer protocol between the user and theKGS.

B. The oblivious transfer step

Oblivious transfer stays at the core of our protocol design.
This building block is required such that theKGS does not
learn to which of the cars the userU has gained access.
Oblivious transfer was introduced by Rabin in [14]. In our
protocol implementation we stay to the more recent efficient
oblivious transfer protocol introduced in [13] following its
description from [10]. This protocol has its security basedon
the Decisional Diffie-Hellman problem and we implement it
on elliptic curves that provide a more compact representation.
This 1-out-of-2 protocol can be easily extended to a generic
case of 1-out-of-n oblivious transfer.

We formally present protocol details in Algorithm 1, which
is a translation of the Naor-Pinkas protocol [13] described
in [10] to the syntax of elliptical curves. We assume the
existence of publicly-known pointP of an elliptical curve,
i.e., P ∈ E(Fp), with order q (subsequently, all constants



that are used for point multiplication are part ofF
∗

q , i.e., the
set of invertible elements moduloq). The algorithm presents
the interaction between userU and the key generation service
KGS. We denote the set of cars asCari, i = 1, l (wherel is the
maximum number of cars accepted by the protocol setup) and
let in, in−1, ..., i1, i0 denote the binary expansion of their index
i. Here the bit-length of the index follows asn = ⌈log2 l⌉.
For each car a master keyKM is derived which is used to
encrypt the rights that are shared for the car. The master key
is derived as follows:KMi = KD(KM,Kleft) iff ij = 0 else
KD(KM,Kright) iff ij = 1. Here i = 1..l and j = 1..n.
This key is used to encrypt the rights for the car which are
signed by theKGS as EKMi

{SigKGS(attr,Carid)}. Note that
the KGS creates such a certificate for each car and in the
following oblivious-transfer protocol it remains unknownfor
the KGS which of the keys was retrieved by the userU. The
binary expansion of the car index, used for key derivation, is
subsequently used in the oblivious transfer protocol. Thatis,
the protocol is run for each bit of the index and userU retrieves
at each stepj = 0..n from KGS eitherKleft if ij = 0 or Kright

if ij = 1. The master keyKM is derived at each step by adding
the newly extracted key value, i.e.,KM← KD(KM, k). Inside
the for loop there is an 1-out-of-2 oblivious transfer protocol
from [13] which we refined for the syntax of elliptical curves.
We prefer elliptical curves instead of integer groupZp due to
the more compact size.

Algorithm 1: Oblivious transfer based on Naor-Pinkas
protocol [13], [10] in the syntax of elliptic curves
Result: Key for car i = inin−1...i0
initialization;
for l = 0 to n do

1.1 U : a, b, r ←R F
∗

q ;
if il = 0 then

1.2 U: send(aP, bP, abP, rP ) ;
else

1.2 U: send(aP, bP, rP, abP ) ;
end
2.1 KGS: receive(X,Y, Z, T ) ;
2.2 KGS: u0, u1, v0, v1 ←R F

∗

q ;
2.3 KGS: w0 ← u0X + v0P , w1 ← u1X + v1P ;
2.4 KGS: k0 ← u0Z + v0Y , k1 ← u1T + v1Y ;
2.5 KGS: c0 ← k0 ⊕ Kleft, c1 ← k1 ⊕ Kright ;
2.6 KGS: send(w0, c0, w1, c1) ;
3.1 U: receive(w0, c0, w1, c1) ;
if il = 0 then

3.2 U: k ← bw0, Kleft ← k0 ⊕ c0 ;
else

3.2 U: k ← bw1, Kright ← k1 ⊕ c1 ;
end
3.3 U: KM← KD(KM, k);

end

III. E XPERIMENTS AND RESULTS

This section presents results on rights procurement proce-
dures and access to the in-vehicle components in the proposed
setup.

A. Rights procurement via the cloud

For the cloud-based implementation, we used the Microsoft
Azure Cloud Services. The cars are stored in a SQL database
in the Cloud. To view the available cars from the SQL
database, we developed an Android application. We use a
Web App Service for the mobile application on Android and
specify a connection string to the SQL database. .NET was
used to develop the server side, i.e., the back-end, of the
mobile application. The Web App Service is a MVC (Model-
View-Controller) implemented in .NET which also generates
the structure of the table and updates it. When deploying the
back-end application in Azure, a table containing car records
is automatically generated based on the MVC in the SQL
database. The connection between the Android application
and the SQL database was done based on the URL of our
Web App Service. The Android application that runs on user
smartphones allows users to view available cars and to reserve
them. When a car is booked the table is updated by another
Android application that runs on every car head unit (an
ERISIN infotainment unit). Since each car must update only
its own data, we use the Row Level Security functionality
of SQL which enables access from the car head unit only
to the specific line dedicated to it in the database. The key
extraction via the oblivious-transfer protocol is implemented
in Java with the help of the Spongy Castle1 (for the Android
devices) and Bouncy Castle2 (for the Java server side on
Azure) cryptographic libraries.

Computational times for the steps of the 1-out-of-2 oblivi-
ous transfer on several curves (160, 192 and 256 bit) are shown
in Table I for Android devices and Table II for servers. The
computational time is only up to around 20 milliseconds for
servers and up to a few hundred milliseconds for smartphones.
To extend to a 1-out-of-n oblivious transfer, these should be
multiplied by⌈log

2
(n)⌉ which leads only to a modest growth.

Figure 3 gives a graphical depiction for the computational time
of the protocol steps on smartphones and the head unit.

Next we tested the performance in case of running the entire
protocol between a smartphone and the server and how the
server can handle clients on multiple threads. Figure 4 shows
the computation time when running 1-60 threads for client
computation on the Azure virtual machine. One of our Azure
subscription had only 1 vCPU, the performance will obviously
increase with the number of cores. This can be easily seen for
the second virtual machine which has 2 vCPU. Finally, Figure
5 shows the predicted variation of computational time with the
number of clients and cores. Even for a poor 1 vCPU server,
200 clients can be served by the oblivious transfer protocol
in a matter of minutes (for a largen = 20). Table III shows
comparative results for 1 and 20 client threads on the two types
of virtual machines. Since the second one has two vCPUs it
is expected that the runtime is almost half for multiple client
threads. There are no improvements for a single thread since
the server cryptographic operations are not parallelized,a few

1https://rtyley.github.io/spongycastle/
2https://www.bouncycastle.org/



TABLE I
COMPUTATIONAL TIME FOR THE 1-OUT-OF-2 OT ON ANDROID DEVICES

secp160r1 secp192r1 secp256r1
Steps 1.1-1.2 3.2 1.1-1.2 3.2 1.1-1.2 3.2

Samsung J5 31ms 5ms 43ms 8ms 66ms 11ms

Samsung S7 85ms 7ms 81ms 7ms 103ms 9ms

Allview 77ms 11ms 117ms 12ms 159ms 31ms

One Plus 7 Pro 6ms 0.8ms 9ms 1.2ms 9ms 1.2ms

ERISIN 55ms 10ms 70ms 10ms 116ms 19ms

TABLE II
COMPUTATIONAL TIME FOR THE 1-OUT-OF-2 OT ON SERVER

secp160r1 secp192r1 secp256r1
Steps 2.1-2.6 2.1-2.6 2.1-2.6

Azure VM Standard B1s 19ms 21ms 20ms

Azure VM Standard F2sv2 16ms 16ms 16ms

hundred milliseconds are not restrictive in any sense however.
Finally, Table IV gives the runtime of the protocol when run
between each of the smartphones and the Azure server. The
runtime is depicted for a maximumn = 20 which allows
oblivious selection from more than 1 million distinct keys,
i.e., 220. We choose this value forn only as an upper bound,
in a realistic scenario the value ofn would be much smaller,
e.g.,n = 10 would allow the user to anonymously select from
more than one thousand cars.
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Fig. 3. Computational time for the first (left) and second protocol steps (right)
of the 1-out-of-2 oblivious transfer protocol
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Fig. 4. Computational time for 1-60 client threads on an B1 Azure machine
(left) and on an F2 Azure machine (right) forn = 20

B. Access to in-vehicle modules in the experimental setup

For a more realistic scenario, we further used the experimen-
tal setup of the CSEAMAN Project, i.e., a project related to the
security of in-vehicle systems, to test remote connectvityto in-
vehicle units. The setup consists of several automotive off-the-
shelf parts and development boards equipped with automotive

TABLE III
COMPUTATIONAL TIME FOR THE 1-OUT-OF-N OT PROTOCOL FOR SERVER

IN CASE OF MULTITHREADING (SECP256R1CURVE)

Client threads 20 20 40 60
n 1 20 20 20

Azure VM Standard B1s 325ms 2132ms 3618ms 5239ms

Azure VM Standard F2sv2 318ms 1528ms 2506ms 3600ms

TABLE IV
PROTOCOL RUNTIME BETWEEN PHONES ANDAZURE SERVER

secp160r1 secp192r1 secp256r1
n J5 S7 J5 S7 J5 S7

4 476ms 554ms 501ms 528ms 594ms 782ms

8 971ms 1221ms 1178ms 1342ms 1216ms 2007ms

10 1176ms 1472ms 1246ms 1598ms 1413ms 2405ms

12 1515ms 1807ms 1489ms 1861ms 1639ms 2877ms

16 2041ms 2343ms 2056ms 2545ms 2185ms 3864ms

20 2525ms 3032ms 2583ms 3043ms 2810ms 4965ms

Fig. 5. Expected runtime for the 1-out-of-n protocol with the number of
clients and CPUs in the cloud (n=20)

grade microcontrollers. The experimental setup interconnects
those items by using LIN (Local Interconnect Network),
FlexRay, low-speed and high-speed CAN (Controller Area
Network) buses. ECUs inside vehicles are clustered into sev-
eral networks based on their functionality. Primarily theyare
grouped in the following domains: Body, Infotainment and
Telematics, Chassis and Powertrain. The experimental setup
was designed to use the same grouping of components.

The main experimental setup components are an accelera-
tion pedal on high-speed CAN, an instrument cluster on low-
speed CAN, a RLS-Rain Light Sensor on LIN and develop-
ment boards using the NXP S12DG128 and MC9S12XF512
controllers. All the networks are interconnected by employing
a gateway with intrusion detection functionality. This is imple-
mented by using a NXP S12DG128 microcontroller. Beside
the gateway functionality this also implements some BCM
(Body Control Module) functions to control the low beam
headlights, rear lights, front and rear turn signal lights.

We encountered problems in writing data from the info-
tainment unit that we used directly to the CAN bus (despite
the fact that the unit is capable of CAN communication). As a



temporary patch, we used a Raspberry Pi 3 development board
as a Wi-Fi bridge between the Infotainment unit and the CAN
bus. We chose this board due to its ability to run Linux which
allows us to use a multitude of available libraries. Because
the Raspberry Pi 3 microprocessor, the ARM Cortex A53,
does not include an CAN controller an external SPI connected
board with Microchip MCP2515 CAN controller and NXP
TJA1050 CAN transceiver was added to the setup. The CAN
communication is supported in LINUX by using SocketCAN
API which provides also a set of drivers for the CAN interface.
In out setup Raspberry is connected to the BCM using a high
speed CAN network.

Two applications were developed. The first application is
used to run a simulation environment providing the infor-
mation needed by the devices to bypass the startup phase
and to enter into normal functioning mode. The application
is used to monitor and control different experimental stand
functionalities. It provides an interface for enabling/disabling
the instrument cluster warning lamps and indicators and for
modifying the values displayed on the gauges. The simulation
environment and the control and monitoring panels developed
for the CSEAMAN project where implemented by using Vec-
tor’s CANoe software. This new implementation was desired
because we wanted to have an alternative where no commercial
software is used allowing us to continue the development
of the experimental setup without the need of commercial
software. The second application allows remote monitoring
and control of basic functionalities. It allows the user to be
informed about the status of following warning lights and
indicators from the cluster: ABS/ESP system fault, parking
brake, low fuel, battery/alternator warning, low tire pressure,
front and rear lights. In case when the car is turned off, the
BCM does not respond to requests from Raspberry so the
last acquired values will be sent to the user. If the vehicle is
stationary the mobile app can be used to control the low beam
headlights, rear lights, front and rear turn signal lights,and the
hazard lights, etc.

IV. CONCLUSION

Our work explores a solution for gaining access to vehi-
cles in an oblivious manner. In this way the key-generation
service remains un-aware on the specific car for which it
released access to the user. The experiments prove that the
required cryptographic functionalities can be easily executed
by modern Android devices, i.e., smartphones and vehicle
head units, as computational requirements are in the order of
hundred milliseconds for the oblivious-transfer block. Such
solutions are promising for assuring user’s privacy in car
sharing scenarios that are very common nowadays. Even with
the modest performance of our current Azure subscription,
limited to one vCPU, the server side could easily handle
connections from several clients each second. The current
work was intended only as proof-of-concept to verify that more
demanding cryptographic blocks, e.g., oblivious transfer, are
feasible for this scenario, a more complete implementationof

the protocol that conforms to real-world needs, may be subject
to future work.
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[12] T. Kasper, A. Kühn, D. Oswald, C. Zenger, and C. Paar. Rights
management with nfc smartphones and electronic id cards: A proof of
concept for modern car sharing. InRadio Frequency Identification, pages
34–53. Springer Berlin Heidelberg, 2013.

[13] M. Naor and B. Pinkas. Efficient oblivious transfer protocols. In
Proceedings of the twelfth annual ACM-SIAM symposium on Discrete
algorithms, pages 448–457. Society for Industrial and Applied Mathe-
matics, 2001.

[14] M. O. Rabin. How to exchange secrets with oblivious transfer. 1981.
[15] I. Symeonidis, A. Aly, M. A. Mustafa, B. Mennink, S. Dhooghe, and

B. Preneel. Sepcar: A secure and privacy-enhancing protocol for car
access provision. InEuropean Symposium on Research in Computer
Security, pages 475–493. Springer, 2017.

[16] S. Tillich and M. Wójcik. Security analysis of an open car immobilizer
protocol stack. InTrusted Systems, pages 83–94. Springer, 2012.
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