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ABSTRACT Following the numerous attacks that exploited vulnerabilities of Controller Area Networks
(CAN), intrusion detection systems have become a topic of prime importance for in-vehicle buses. Newer
in-vehicle communication layers, such as CAN-FD, despite the larger payloads which can easily integrate
cryptographic elements, need similar attention. But detecting intrusions may call for demanding algorithms
that are not computationally cheap while timely detection is necessary in order to process frames in real-
time and take the appropriate actions. In this work we evaluate the performance of several binary classifiers
on traditional in-vehicle Electronic Control Units (ECUs) and compare them to modern Android devices
which have become widespread inside cars with the adoption of Android-capable infotainment systems.
Needless to say, these modern devices benefit from higher computational and memory resources while cloud
connectivity may alleviate computational costs even further. Contrasting between traditional controllers and
Android devices has become necessary and so far there have been little efforts in this direction. To create
a realistic testbed, we use collected in-vehicle CAN bus traffic from an SUV as well as more demanding
logs from Advanced Driver-assistance Systems (ADAS) implemented on CAN-FD which we augment with
adversarial activity.

INDEX TERMS CAN Bus, Electronic Control Unit, Intrusion Detection Systems, Machine Learning

I. INTRODUCTION

Modern cars are equipped with a high number of Electronic
Control Units (ECUs) that are used to accomplish vari-
ous functions, e.g., breaking and stability control, advanced
driver assistance, comfort features, etc. Depending on the
specific market segment, i.e., economy or luxury, vehicles
may be equipped with more or less features and consequently
the number of ECUs may range from a dozen or less up to
more than a hundred. As the automotive industry is head-
ing toward new trends, such as electrification, autonomous
driving or vehicle-to-vehicle communication, we can only
expect the number of ECUs and their interconnectivity to
increase. The same is implied by recent regulations which are
pushing the vehicle industry to evolve in terms of electronics
by developing new technologies that will make the driving
experience safer and decrease the environmental pollution or
energy consumption. But as a side-effect to the increased

complexity of in-vehicle electronics and interconnectivity,
the number of attack surfaces will increase as well.

More than three decades after its introduction by BOSCH,
the Controller Area Network (CAN) is still the most com-
monly used communication protocol inside vehicles which
makes it one of the most important assets that requires
protection against malicious attacks. But the security of CAN
buses is lacking since no mechanisms were put in place at
design time and CAN offers no protection against malicious
adversaries. The potential of attacking in-vehicle networks
was demonstrated by many works, e.g., in [2], [3], [4],
which proved that vehicles are extremely vulnerable to cyber
attacks. Because of this, manufacturers need to carefully
develop and implement proper security mechanisms on forth-
coming cars, as cyber attacks can easily lead to catastrophic
situations. In addition to the preventive measures, e.g., cryp-
tographic authentication which was commonly proposed in
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(i) compact SUV (Dacia Duster) (ii) ADAS systems (iii) mid-size sedan (Hyundai Sonata [1])

FIGURE 1: Inter-frame space as recorded in the three in-vehicle traces from our experiments: the compact SUV Dacia Duster
(i) and ADAS systems (ii) collected by us and the Hyundai Sonata from [1] (iii)

the literature [5], vehicles should be capable to monitor their
subsystems and detect potential attacks. Within this scope,
Intrusion Detection Systems (IDS) offer an additional protec-
tion layer that strengthens the vehicles security architectures.

Overview of contribution. While there are many recent
works focusing on the design of in-vehicle intrusion detec-
tion systems (briefly surveyed by us in the following section),
most of these works evaluate the performance of these sys-
tems on regular computers. While this is fine for assessing
the detection rates, it is not really effective in assessing their
behavior on real-world in-vehicle ECUs. This is especially
problematic as in-vehicle controllers have to cope with real-
time delays. To get a more accurate image, in Figure 1, we
depict the delays between consecutive frames, i.e., the inter-
frame space (IFS), as recorded in the three in-vehicle traces
that we use in our experiments: the compact SUV Dacia
Duster (i), an Advanced Driver-assistance Systems (ADAS)
from a high-end sedan (ii) from which we collected data and
a Hyundai Sonata from [1] (iii) which we keep as a reference
in our experiments. Notably, in all three cases the IFS is
generally around 200 µs. But in the worst case, the IFS can
be as low as 3 recessive bits, i.e., 6 µs on a 500 kbps CAN
bus. The IDS has to cope with such small delays and be fast
enough in order to be effective for real world needs. Timing
is not the only constraint of the problem since the IDS must
also fit in the controller memory and it may also need to be
updated to learn new attacks in a similar manner to anti-virus
software, etc.

For this purpose, in our work, we test the performance
of automotive-grade controllers and compare them with
Android-based devices such as car head units, in the context
of detecting intrusions with machine-learning algorithms.
Specifically, our work accounts for the following obvious
setups that can be deployed inside a vehicle:

1) IDS deployed on the Android capable devices. This
setup is outlined in Figure 2a. There are two potential
variations. First, the IDS can be deployed on an Android
head unit which is already a common component in
modern vehicles. Besides exhibiting increased compu-
tational resources, these units are also equipped with 5G
communication which can be used for remote diagnosis
(possibly via cloud-based services, which can be used to

enhance even further the intrusion detection mechanism
inside vehicles by more demanding algorithms and large
data pools). Second, the IDS can be deployed on the
user device, e.g., a smartphone, that collects CAN bus
data by using WiFi connectivity to the OBD port as
also outlined in Figure 2a. This would allow similar
capabilities to the case of Android head units. How-
ever, there are additional advantages since users may
easily change their smartphone thus benefiting from in-
creased computational and communication capabilities
over the years (changing the Android head unit is less
convenient). Also, this may open room for third-party
software that may be published in Android application
stores and may be aquired by users similar to existing
anti-virus software. An immediate disadvantage how-
ever is that Android head units or smartphones may be-
come more easily corrupted than in-vehicle controllers.
For example, the authors of [6] performed some attack
experiments on real vehicles by repackaging Android
commercial apps. Another demonstration of possible
attacks on Android devices is made in [7], in which
an Android infotainment unit is hacked and enables
attackers to inject messages on the CAN bus. Further,
applications vulnerabilities are discussed in [8] and [9].
Another possible disadvantage in implementing IDS on
Android devices is that Android smartphones are not
directly connected to the CAN bus and wireless com-
munication may induce additional delays (fortunately,
these delays may not be so significant but this depends
on the interface used for data collection, as we show
later in the experiments). Using smartphones may also
turn into an advantage from a security perspective, since
the smartphone is not directly linked to the CAN bus and
wireless connectivity to the bus may be implemented in
a read-only fashion. Thus, a compromised phone will
not be able to cause attacks on the bus.

2) IDS deployed on in-vehicle controllers. This is the basic
setup depicted in Figure 2b in which the IDS is deployed
in the usual way on one (or several) ECUs inside the
vehicle. The main drawback of this approach is that
in-vehicle controllers may not have extensive computa-
tional resources, nor the communication capabilities or
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outside connectivity, e.g., to garner cloud-based support.
On the positive side, in-vehicle controllers should be
harder to compromise and will exhibit a much more
controlled real-time behavior. Ideally, the IDS should be
deployed on each in-vehicle controller but this is rather
debatable due to obvious computational and memory
limitations as we discuss in the experimental section.
Clearly, in-vehicle networks are heterogeneous and we
cannot expect all devices to cope with such demands.

In the light of these scenarios, our work tries to bring a
clearer image on the advantages and disadvantages for each
of the approaches, i.e., from the more rigid, less corruptible,
in-vehicle ECUs to the more flexible, perhaps less secure,
Android platforms that may benefit from remote connectivity
and increased computational power. A summary of the brief
comparison between in-vehicle ECUs and Android units is
given in Table 1. As a collateral contribution, though not
necessary the main focus of our work, we also evaluate the ef-
ficiency of several machine-learning algorithms in detecting
intrusions. Table 2 summarizes the binary classifiers that we
use in our current work, the achieved performances will be
presented in the next sections. Our contributions are fourfold:

1) we design a two-stage IDS in which message arrival
time is used in the first stage to detect replay and DoS
attacks, then machine-learning algorithms are employed
in the second stage to detect frame manipulations caused
by fuzzing attacks,

2) we provide specific architectures for two possible de-
ployments, showing the integration of the IDS both
on Android devices (with the use of JNI) as well as
on embedded development boards (in an AUTOSAR
compliant architecture),

3) we collect CAN bus data from real-world vehicles, in-
cluding CAN-FD data from an ADAS system, augment
it with adversarial actions and evaluate twelve classi-
fiers, out of which four are deployed in our experimental
setup,

4) we provide computational results regarding the offline
and online IDS performance on Android devices, cloud
VMs and three representative automotive-grade micro-
controllers, as well as memory requirements on the latter
due to the stringent constraints on such platforms.

The rest of the paper is organized as follows. In Section II
we provide some background on CAN buses and discuss re-
lated work. Section III presents the utilized in-vehicle traces,
the devices that we used in our experiments and the adversary
model. In Section IV we present our experimental testbed.
Section V places the binary classifiers in the previously
outlined setups and evaluates their performances. Finally,
Section VI holds the conclusion of our work and section VII
contains the list of acronyms.

II. BACKGROUND AND RELATED WORK
In this section we discuss some background on CAN buses
and then we proceed to a brief survey on existing related work
for intrusion detection on CAN.

(a) IDS on Android devices

(b) IDS on in-vehicle controller

FIGURE 2: The two addressed scenarios for intrusion detec-
tion

FIGURE 3: CAN and CAN-FD Data Frame Format

A. BRIEF INTRO ON CAN BUSES
The CAN protocol specification was standardized by In-
ternational Organization for Standardization (ISO), which
released the ISO 11898 standard. Data link layer and physical
signalling are part of ISO 11898-1 document [10] while
the ISO 11898-2 document [11] is dedicated for high-speed
medium access unit. Physically, the CAN bus is designed as
a two-wire (CAN-High, CAN-Low) bus connected by two
120 Ohm resistors at the end. The CAN-High and CAN-Low
lines carry two complementary signals thus employing differ-
ential signaling. The structure of the central communication
element for CAN and its extension proposed by BOSCH, i.e.,
the CAN and CAN-FD (CAN with Flexible Data-Rate) frame
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TABLE 1: Brief comparison between Android devices and in-vehicle ECUs (technical characteristics refer to devices in our
experiments)

Pros Cons
- high memory resources: 2-16 GB RAM - easier to compromise by malicious apps

Android devices - high clock speeds 1-2 GHz - real-time behavior harder to predict: less accurate CAN timestamps
- more cores (4-8) - costly calls through JNI

- internet/cloud connectivity - possible issues with serial/CAN communication
- harder to compromise - lower clock speeds: 200-400 MHz

In-vehicle ECUs - real-time behavior - less cores (1-3)
- locally available on each ECU - lower memory resources: 1-16 MB RAM

TABLE 2: Analyzed binary classifiers

Abbreviation Python scikit-learn Function

LR LogisticRegression
LDA LinearDiscriminantAnalysis
kNN KNeighborsClassifier
NB GaussianNB

SVM LinearSVC
MLP MLPClassifier

CART DecisionTreeClassifier
AB AdaBoostClassifier
GB GradientBoostingClassifier
BC BaggingClassifier
ET ExtraTreesClassifier

RFC RandomForestClassifier

is depicted in Figure 3.
In what follows, we detail the most important parts of the

frame structure and highlight the main differences between
CAN and CAN-FD. In both cases, a dominant SOF bit and
a recessive EOF bit marks the beginning and the end of the
frame. The identifier of the frame (11 bits for standard format
or 29 bits for extended format) along the RTR bit for CAN
or RRS for CAN-FD establishes the arbitration field, which
assures the collision avoidance mechanism (lower IDs values
have a higher priority). We pay attention on the standard
format since our CAN collected traffic does not contain any
frame in the extended format.

CAN provides bit rates of up to 1 Mbit/s and encloses up
to 8 bytes in the data field while the CAN-FD enables faster
communication speeds, it usually employs from 2 to 5 Mbit/s,
but there are transceivers that support up to 8 Mbit/s, while
the data field carries of up to 64 bytes. Another relevant part
from the control field is the DLC since it reveals the number
of bytes that are carried by the CAN or CAN-FD frame. A
15-bit CRC is employed for verifying the correctness of the
frame content. Finally, the correct reception of the frame is
enabled by the receiver which overwrites a dominant value
in the ACK slot. The most recent step in CAN evolution is
CAN-XL which enables payloads up to 2048 bytes and com-
munication speeds of up to 10 Mbit/s remaining compatible
with CAN-FD for mixed networks.

B. RELATED WORK
In the recent years, an extremely large number of attacks
were reported, e.g. [12], [13], indicating that the current
security mechanisms deployed by vehicle manufacturers are

often not appropriate.
Surveys on in-vehicle network attacks and countermea-

sures can be found in several works, e.g., [14], [15], [16].
Many solutions were considered, ranging from the use of
cryptographic security up to physical layer protection [5]
and the industry was not slow in responding with security
standards that are part of the AUTomotive Open System
ARchitecture (AUTOSAR). AUTOSAR defined the Secure
Onboard Communication concept [17] which makes use of
Message Authentication Codes (MAC) and freshness values
to ensure the integrity and authenticity of the CAN messages.
A complementary layer for cryptographic security is the use
of an IDS which monitors the CAN network for malicious
traffic. Recently, IDS design is among the most commonly
debated topic and generates a considerable interest for the
research community. In this respect, several relevant works
were proposed, which we now discuss. However, most of
these studies focus only on the detection accuracy and do
not take into account the computational constraints which
are crucial in the context of automotive embedded platforms
- these constraints are the main focus in our work. In what
follows we survey more than twenty-five papers related to
the development of in-vehicle IDS, but only a small amount
of them, namely [18], [19], [20], [21] and [22] are using em-
bedded development boards. Also, a comparison between in-
vehicle controllers and Android units that are now common
in cars is missing from related works.

In [18] an IDS based on remote frames is presented. The
authors measure the time-interval between request frames
(also known as remote frames) and response frames (also
known as data frames) and show how adversarial frames
cause offset variations that do not occur in a free attack sce-
nario. The use of Bloom filters was explored in [19] in order
to detect malicious activity on the CAN bus. The proposed
detection technique is based on a training stage that examines
the message periodicity in order to detect replay attacks and
the content for data field in order to detect injections with
random data. The authors show that the real-time classifi-
cation is time-memory efficient and obtain good detection
results. A graph-based IDS that models the CAN traffic is
considered in [23]. Other lines of works employ entropy
characteristics [24], [25] in order to distinguish between
normal or abnormal CAN bus activity. Other approaches
include the use of Markov Model [26], decision trees [27] or
finite-state automatons [28]. A number of studies found that
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hardware measurements can be used for intrusion detection.
This accounts for the use of voltage thresholds [29], clock-
skews [20] or signal characteristics [30].

Significant attention is also given to machine learning
based approaches. A hierarchical taxonomy on these method-
ologies can be found in [31]. The authors from [32] provide
a comparative view regarding the use of machine learning
approaches for CAN IDSs. For example, in [33], the au-
thors evaluate the performance of the K-Nearest Neighbour
and Support Vector Machine algorithms against Denial of
Service (DoS) and fuzzy attacks. The results obtained by
them exhibit a good detection accuracy of over 90%. A
potential weakness of the work in [33] is not considering
CAN messages frequency in the training phase (note that
CAN bus traffic is always periodic) which leads to the
inability of detecting replay attacks. In [34], a deep neural
network is employed experiments are performed on CAN
traffic generated with a software tool, i.e. OCTANE [35]
but not on real-world datasets. A recurrent neural network
is employed in [36] where the authors prove the efficiency
of the proposed method in detecting malicious frames on the
CAN bus. The idea to convert the CAN frames into images
in order to build a neural network based IDS was explored
by [37]. A specification-based IDS using supervised learning
and CAN timing is presented in [38]. The authors of [39]
proposed a self-supervised method for intrusion detection
which relies on the use of noised pseudo normal data. The
detection system uses two deep-learning models, one is used
to generate pseudo normal traffic data and the other one
is used to detect anomalies. To detect variant attacks, the
authors of [40] proposed an intrusion detection system based
on the domain adversarial training of neural networks. An
intrusion prevention system that detects and discards attack
frames on CAN is presented in [21]. The proposed mech-
anism was implemented and validated on a Raspberry Pi,
using the one-class support vector machine and the isolation
forest algorithms for intrusion detection. The authors of [22]
present a method to detect DoS attacks using the similarity
of sliding windows. This method improves prior approaches
that detect DoS attacks based on the entropy in a sliding
window. For a broader image, recent surveys on intrusion
detection mechanisms for vehicular networks can be found
in [41] and [42].

III. EXPERIMENTAL TRACES, DEVICES AND
ADVERSARY MODEL
In this section we describe the in-vehicle traces and experi-
mental devices that we use in our evaluation. Also, we discuss
the adversarial behavior that our intrusion detection system
accounts for.

A. COLLECTED IN-VEHICLE TRACES
In our analysis we used two real-world datasets collected by
us and a data-set from [1] which we use as a reference.

The collection of the CAN dataset from the cars was
performed using a Vector VN1630 USB-to-CAN interface.

FIGURE 4: Dacia Duster SUV from our experiments

We have implemented a Windows application using Vector
XL Driver Library to interface with the VN1630 hardware.
For the first CAN trace, we connected the VN1630 to the
Dacia Duster in-vehicle OBD port and extracted the CAN
bus traffic. Our second dataset was extracted directly from
a private CAN bus on which automotive radar ECUs were
connected, i.e., ADAS systems (Advanced Driver-Assistance
Systems). Using data from such a system is relevant since
future autonomous vehicles will directly depend on it, not
to mention the increased help these system have to offer to
regular drivers.

The CAN logging procedure is graphically depicted in
Figure 9a. Several details on these datasets are summarized
as follows:

1) the first data set comes from a Dacia Duster (Figure 4)
which is a compact sport utility vehicle (SUV) which we
see as representative for mid-range cars. The collected
data is more limited in terms of the number of IDs, only
12 IDs are visible on the OBD port, but it is almost
identical to the rest in terms of delays and entropy.

2) the second dataset comes from a high throughput CAN-
FD network that accommodates ADAS systems, e.g.,
vehicle radars used to detect vehicles and pedestrians.
This type of traffic is representative for mid to high-end
cars that posses modern equipment needed for complex
tasks such as autonomous driving. This dataset is more
complex containing more than 80 IDs and frames of up
to 512 bits. The communication layer is the newer CAN-
FD.

We also use the dataset from [1] which was recorded in a
Hyundai Sonata and we keep it as a reference to compare our
results with existing works. The trace contains 27 IDs making
it more similar to our first dataset and less complex than the
second.

A few words on the traces based on the depictions from
Figure 5 are necessary. This figure depicts some statistics for
one ID in each trace. We notice that in all traces the content
of the datafield shows clear patterns which would make it
easy to detect certain attacks, e.g., randomized injection. For
the first trace, there is also a limited set of identifiers which
show more randomized patterns. The shortest cycle time for
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(i) CAN frames (compact SUV, Dacia Duster)

(ii) CAN-FD frames (ADAS systems)

(iii) CAN frames (Hyundai Sonata [1])

FIGURE 5: Example for the values of the data-field (left),
cycle time (right-up) and histogram distribution of the cycle
time (right-down) for an ID collected in the compact SUV
Dacia Duster (i), ADAS systems (ii) and the Hyundai Sonata
from [1] (iii)

the IDs is at 10 ms in all traces. Interestingly, in the first
trace the ID at 10 ms has a bimodal distribution of the arrival
time. The variations however are generally of 1-2 ms at most
in all traces. The CAN-FD trace, while carrying larger data
payloads, does not exhibit more variability than the regular
CAN traces. This suggests that the same mechanism for
detecting intrusions will hold for all traces.

B. DEVICES FROM OUR SETUP
The first category of devices that we used in our setup
comprises the Android-based devices. We used a PNI A8020
head unit whose production started in 2017 and a more recent
one, Erisin ES8791V, released in 2019. Due to their high

FIGURE 6: The two stage intrusion detection algorithm in
our work

usage and capabilities, smartphones were also considered in
our setup. Consequently, we chose to work with a Samsung
A6, a Samsung S8 and a Samsung Note10+. In addition to
smartphones, we also included a tablet in our work, namely
the Samsung Galaxy Tab S7.

The second category of devices that we worked with
consists of automotive-grade microcontrollers. We used from
Infineon two devices from the Aurix 32-bit microcontrollers
family which are meant especially for automotive and in-
dustrial applications. The first microcontroller is a TC224,
belonging to the 1st generation of AURIX, while the other
microcontroller is a Tricore TC397, which is part of the 2nd
generation of AURIX. From the low-end sector, we chose an
S12XEP microcontroller which is part of S12XE family that
provides 16-bit arhitecture microcontrollers having Hybrid
Electric Vehicle (HEV), Tire Pressure Monitoring Systems
(TPMS) or Motorcycle Engine Control Unit (ECU) as target
applications in the automotive sector. All devices that we
used in our experiments and their specifications are listed in
Table 3.

C. ADVERSARY MODEL
The following three types of attacks have been commonly
considered against CAN nodes. Fuzzing attacks in which an
attacker modifies the data-field of the genuine CAN frames
and transmits the malicious frames on the bus. The injected
data field is filled with random values. Replay attacks in
which genuine CAN frames are intercepted by an attacker
and retransmitted on the bus at a later time. In this scenario,
as malicious frames and genuine frames are identical, the

6 VOLUME , 2020



TABLE 3: In-vehicle devices used in our evaluation

Device Prod.
Year Android CPU Memory Connectivity

A
nd

ro
id

de
vi

ce
s

Head Unit PNI A8020 2017 7.1 Quad-core 1.63 GHz Cortex A7 8 GB, 1 GB RAM WiFi, Bluetooth, USB
Head Unit Erisin ES8791V 2019 10.0 Rockchips PX5 1512 MHz Cortex A53 64 GB, 4 GB RAM WiFi, Bluetooth, USB

Samsung A6 2018 8.0 Octa-core 1.6 GHz Cortex-A53 32 GB, 3 GB RAM WiFi, Bluetooth, NFC, USB

Samsung S8 2017 7.0 Octa-core (4x2.3 GHz Mongoose M2
& 4x1.7 GHz Cortex-A53) 64 GB, 4 GB RAM WiFi, Bluetooth, NFC, USB

Samsung Note10+ 2017 9.0
Octa-core (2x2.73 GHz Mongoose M4
2x2.4 GHz Cortex-A75 & 4x1.9 GHz

Cortex-A55)
256 GB, 12 GB RAM WiFi, Bluetooth, NFC, USB

Samsung Galaxy Tab S7 2020 8.0
Octa-core (1x3.09 GHz Kryo 585 &
3x2.42 GHz Kryo 585 & 4x1.8 GHz

Kryo 585)
256 GB, 8 GB RAM WiFi, Bluetooth, USB

E
C

U
s

Infineon Tricore TC224 2015 N/A Single-core 133 MHz TriCore 1 MB, 96 KB RAM CAN 2.0, CAN-FD, Flexray,
Ethernet, etc.

Infineon Tricore TC397 2018 N/A Hexa-core 300 MHz TriCore 16 MB, 2528 KB RAM CAN 2.0, CAN-FD, Flexray,
Ethernet, etc.

S12XE 2006 N/A Single-core 50 MHz S12X 1 MB, 64 KB RAM CAN 2.0, LIN, SPI

only visible aspect on the bus is an increased frequency of
frames with the corresponding IDs which eventually leads
to a different inter-frame delay for the respective ID. And
finally, flooding attacks in which CAN frames with low
valued IDs (that are not part of the dataset) and random data
are injected on the CAN bus, causing a Denial of Service
(DoS).

From these three types of attack, the most involving for
the machine learning algorithms is the fuzzing attack since
it requires analysis of the complete frame. As for DoS and
replay attacks, these may be detected by a simple inspection
of the arrival time and frame rate on the bus. Notably, in
most cars the bus is kept at around 50% busload or less
and all frames have fixed periodicity. When the frame rate
exceeds the expected threshold a DoS or replay attacks can
be signaled without the need of more expensive machine
learning algorithms. This is suggested in Figure 6 which
presents the two-stage intrusion detection mechanism that we
envision. The first stage simply checks for known IDs and the
correctness of the arrival time, possibly by performing some
additional skew corrections to avoid synchronization issues,
and only then the second stage enters to detect anomalies
based on the machine learning classifiers. Consequently, we
use the CAN IDs and timestamps as features in the first stage
and the CAN IDs and data fields as features for the binary
classifiers employed in the second stage. Figure 7 suggests
the feature extraction from a CAN frame and the allocation
of the features to the two-stage IDS.

In addition to our own datasets, we also executed our
algorithms on datasets from related work [1] to validate them
and have a common denominator with other related works,
e.g. [36], [43]. In this way, a more accurate comparison
of the results is possible. Although essentially the same
types of attacks that we previously mentioned are evaluated,
there are small differences in how they are implemented
or named. For this, we first clarify how the attacks used
in [1] differ. Han et. al. focused on three types of attacks:
flooding, fuzzy, and malfunction. The first type of attack
consists of injecting messages with ID 0x00, which based

FIGURE 7: Feature extraction for the two-stage IDS

on the CAN specification, is the ID with the highest priority.
The consequence of this attack is a DoS, i.e., the malicious
ECU will occupy the resources allocated to the CAN bus,
limiting the communication among the other ECUs. The data
field of the injected messages is always set to zero. Departing
from [1], in our work, the flooding attack consists of frames
with IDs whose values are less than the genuine ID with the
lowest value from the dataset and the data field is filled with
random values. The effect is similar, although the attack is
more difficult to detect and more realistic since, with our
adversary model, a DoS is not caused by ID 0x00 alone. The
second type of attack, i.e. fuzzy attack, consists of sending
frames with random IDs and data. This type of attack will
be much easier to detect than ours since most of the random
IDs will not be part of the legitimate trace (for this, machine
learning algorithms are not needed since unknown IDs are
easy to detect by a look-up-table). Since this attack will be
immediately detected by filtering, we do not reproduce it in
our dataset as it will be trivial to detect by the first stage of the
intrusion detecting mechanism which checks that IDs belong
to genuine ECUs. Note that in real-world scenarios, the IDs
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FIGURE 8: CANoe simulation setup

are indeed known by manufacturers at the time of designing
the in-vehicle components. The third and last attack, i.e.
malfunction attack, is described by the authors of [1] as the
attack in which a malicious ECU injects frames with IDs,
which are part of the ID list for the respective network, and
random data. This type of attack is similar with our fuzzing
attack.

IV. SETUP FOR THE EXPERIMENTS
In this section we present the setup that we use for the
synthetic analysis (off-line) of the attack traces as well as
for the on-line analysis with physical devices plugged to the
CAN bus to perform the attack detection in real-time.

A. SETUP FOR OFF-LINE ANALYSIS
To make the attacks realistic, we use the CANoe environment
to mount attacks on the frames from the genuine datasets.
This working scenario has also been considered by other
works, e.g. [44]. For this, we configured inside the environ-
ment a CAN node to replay the genuine dataset and another
node to inject malicious frames. While the first node is a
predefined replay block, for the second node we implemented
the logic of the previously mentioned three attacks in CAPL
(Communication Access Programming Language). Our CA-
Noe simulation setup is depicted in Figure 8 and the attacks
injection procedure in Figure 9b. The resulting traces, which
include both genuine and attack frames, were used as inputs
for the IDS algorithms in the training and testing phase. The
existing datasets from [1] are taken for comparison in the
format provided by the authors and was not run by us inside
the CANoe environment.

B. SETUP FOR ON-LINE ANALYSIS
For the on-line analysis we aimed to connect the Android
units to the CAN bus in order to monitor the CAN bus traffic.
We investigated two options to achieve this with the Android
head unit and with Android smartphones respectively.

We first used an USB to CAN adapter to connect the An-
droid head unit to the CAN bus. The USB to CAN adapter1

1https://www.seeedstudio.com/USB-CAN-Analyzer-p-2888.html

is commercialized by Seeed Technology and supports both
CAN 2.0A and CAN 2.0B with baudrates ranging from 5
kbit/s to 1 Mbit/s. A software application is available for
Windows and Linux which may be used to work with the
adapter. In addition, a document that describes the UART
protocol and the way in which the device can be configured
and controlled is available on Github2. Therefore, as our
target was to use it on the Android head unit, we implemented
our own control code in Android Studio. To enable the UART
communication on Android, we have used a library also
hosted on Github [45].

As a second option, we used a Raspberry Pi module to
wirelessly route the CAN messages to the Android head unit.
This is the scenario in which the Raspberry Pi is connected
to the CAN bus using the OBD port and forwards all the
CAN messages from the bus to the head unit or smartphone
via WiFi. The Raspberry Pi device does not feature an
embedded CAN transceiver, therefore we needed to use an
external one. We chose to work with MCP2518FD click
board3 from MikroElektronika which provides a complete
CAN and CAN-FD solution. The board is equipped with the
MCP2518FD CAN controller, which has SPI interface, and
the ATA6563 transceiver. Both integrated circuits are pro-
duced by Microchip. The MCP2518FD click board ensures
CAN communication speeds up to 5 Mbps and can run in one
of the followings operating modes: normal CAN 2.0, normal
CAN FD, restricted operation, sleep, listen only, internal and
external loop back modes and configuration. The CAN click
board is connected to the Raspberry Pi via the Pi 3 Click
shield, which is designed by MikroElektronika to support a
wide range of click boards.

For both scenarios we used the CANoe environment and a
VN1630 hardware to replay the attack traces on the CAN bus.
The replay procedure is ilustrated in Figure 9c. The frames
were monitored, processed and classified in genuine or attack
frames by the Android smartphone in one scenario or by the
head unit in the other scenario. The results are discussed in
the next section.

Our experimental setup with all components that we used
to deploy the two scenarios is presented in Figure 10. We
used a Mastech power supply for the PNI head unit, a laptop
to run CANoe Application, a VN1630 hardware to connect
the laptop to the CAN bus, a CAN decoder to enable the
head unit to communicate on the CAN bus, a Raspberry Pi
to route the CAN traffic from the CAN bus to the smarthone
and eventually the Samsung A6 and PNI head unit which ran
the IDS procedures.

The four classifiers that we later used in our on-line
analysis, i.e. AB, CART, ET and RFC, were trained in
Python and the generated code was converted to C code
using sklearn-porter library [46], so that it becomes easy to
adapt and use for Android devices and microcontrollers. On
the Android devices, we used the Native Development Kit

2https://github.com/SeeedDocument/USB-CAN-Analyzer
3https://www.mikroe.com/mcp2518fd-click
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(a) Traffic collection

(b) Attack frames injection

(c) Trace replay

FIGURE 9: The three stages employed in our testing

FIGURE 10: Experimental setup

(NDK) which allows developers to use C and C++ code with
Android applications. Therefore, we compiled the C code of
the classifiers into a native library which was then included
in our Android Application Package (APK). The connec-
tion between the Java code and C code is made using the
Java Native Interface (JNI) framework. We built an Android
application which receives CAN messages via WiFi (from
Raspberry Pi) or USB (from CAN decoder) and using JNI
calls accesses the four machine learning (ML) algorithms and
classfies the received CAN messages into genuine or attack
frames. Figure 11 depicts the classic Android architecture
extended with the modules that we developed (highlighted
with yellow).

With small adaptations, the C code was usable for all
microcontrollers, with few exceptions where the compiled
code of some algorithms did not fit into available memory of
devices. From our perspective, in classic AUTOSAR ECUs,
the machine learning algorithms should be developed as AU-
TOSAR software components, being part of the Application
Layer. The AUTOSAR community already released some
specifications regarding vehicle onboard IDS [47], [48]. Ac-
cording to the AUTOSAR requirements [48], an onboard IDS
consists of Security Sensors, Security Event Memory (Sem),

FIGURE 11: Android architecture including IDS modules

Intrusion Detection System Manager (IdsM) and Intrusion
Detection System Reporter (IdsR). Briefly, security sensors
are modules used to detect security events which are then
reported to IdsM. The IdsM is a module which manages
the received security events by passing them through a filter
chain. If the events pass all filters, they will be classified
as Qualified Security Events (QEVs). These events can be
locally stored in the Security Event Memory or transmitted
to the IdsR which collects the QEVs from multiple ECUs
and can provide the data to Security Operation Centers for
further processing. Currently there is no specification for
IdsR provided by AUTOSAR. In our case, we consider that
our intrusion detection mechanism should be categorized as
an advance security sensor and its deployment should be
done on the application layer of the AUTOSAR architecture.
This is suggested in Figure 12. The ML module would
receive CAN frames from the communication (COM) stack
and would report security events to IdsM if intrusions are
detected.
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FIGURE 12: AUTOSAR architecture including CAN IDS
modules

V. EXPERIMENTAL RESULTS
In this section we discuss experimental results both from the
off-line and on-line analysis. We also focus on computational
and memory requirements and particularly highlight the im-
portance of delays.

A. OFF-LINE EVALUATION
In order to compare the performance of the binary classifier
candidates and decide which of them is suitable to be embed-
ded in a vehicular CAN bus IDS, we used regular metrics for
machine-learning algorithms.

Each CAN frame that is classified in genuine or intrusion
frame by the machine learning algorithms is categorized into
one of the following four groups based on the correctness of
the classification:

• TP – "true positive", when an intrusion frame is cor-
rectly classified as intrusion;

• FP – "false positive", when a genuine frame is incor-
rectly classified as intrusion;

• TN – "true negative", when a genuine frames is correctly
classified as genuine;

• FN – "false negative", when an intrusion frame is incor-
rectly classified as genuine;

Some of the most common performance metrics used in
machine learning classification are the accuracy, precision,
recall and specificity. The first one, also called positive pre-
dictive value, is the fraction of intrusion frames correctly
classified as intrusions among all the frames reported as
intrusions:

precision =
TP

TP + FP

The recall is defined as the overall number of true intrusion
frames divided by the overall number of frames classified as
intrusions:

recall =
TP

TP + FN

Specificity, also called true negative rate, indicates the
proportion of genuine frames that are correctly reported as

(i) original trace

(ii) WiFi bridge (iii) CAN decoder

(iv) drifts on WiFi bridge (v) drifts on CAN decoder

(vi) drifts histogram on WiFi
bridge

(vii) drifts histogram on CAN
decoder

FIGURE 13: Frame cycle time as recorded on: (i) original
attack trace, (ii) WiFi bridge, (iii) CAN decoder, (iv) drifts on
WiFi bridge, (v) drifts on CAN decoder, (vi) drifts histogram
on WiFi bridge and (vii) drifts histogram on CAN decoder

genuine. Therefore, the definition of specificity is formalized
as:

specificity =
TN

TN + FP

The accuracy score is a metric that defines the ratio of
correctly classified frames to the total number of frames
processed by the machine learning algorithms:

accuracy =
TP + TN

TP + TN + FP + FN

We first ran our machine learning algorithms on the Sur-
vival Analysis datasets from [1]. These datasets were logged
from three different vehicles, i.e. Hyundai YF Sonata, KIA
Soul, and CHEVROLET Spark. Then, the authors of [1]
created for each vehicle three different traces, each of them
containing one of the three attacks that they defined in their
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work, i.e. flooding, fuzzy and malfunction attack. In our off-
line analysis, we evaluated the datasets which contained the
fuzzing and malfunction attacks on the Hyundai Sonata CAN
traffic. Both datasets contain approximately 60 seconds of
CAN traffic. We trained the algorithms on the CAN frames
from the first half of the datasets (≈30 seconds) while the
second half of the datasets was used for the evaluation phase.

The results are presented in Table 4 and Table 5. The per-
formance of the algorithms was almost perfect in detecting
fuzzing attacks. The recall was the only metric whose value
was 0.99 for half of the classifiers, while the other metrics
values were 1.00 for all classifiers. In case of malfunction
attacks, the results decreased a bit, especially in precision.
However, the overall performance is still pretty good, i.e.
accuracy and specificity between 0.97 and 0.98, precision of
0.92 for the most classifiers, while the recall was perfect for
all algorithms. When compared to the results obtained in [36]
on the Hyundai Sonata datasets, we achieved similar scores
in terms of accuracy and recall (with differences of at most
0.01) for fuzzing attacks. In case of malfunction attacks, we
achieved the same recall score, i.e. 1.00, but a lower accuracy
(i.e. with 0.02 lower in case of the most algorithms and with
0.03 lower in case of LDA) compared to the results obtained
in [36]. Next, we ran our algorithms on the datasets that we
collected in our work. We only considered the fuzzing attack
for the off-line analysis, since machine learning algorithms
are part of stage 2 of our IDS. The other attacks, flooding
and replay, are handled in the 1st stage of our IDS and were
considered in the on-line evaluation that will be presented
later. From the Duster dataset, we used the first 20% of the
frames (i.e. the first 60 seconds from the trace) for training
the classifiers and the rest of the frames (≈240 seconds) were
considered in the evaluation phase. In case of the ADAS
Systems dataset, we trained the algorithms on the first half
of the traffic (≈150 seconds) while the second half of the
traffic was included in the evaluation set. The performance
results for Duster dataset are listed in Table 6. The accuracy
is more than 0.95 for all classifiers, except GB and BC, which
have an accuracy of 0.89. These two algorithms performed
poor also in terms of precision, with a score of 0.64, but
they also ranked last in terms of specificity. The rest of the
ten algorithms ranged between 0.89 and 0.96 in precision
and between 0.97 and 0.99 in specificity. The last dataset
that we assessed was the ADAS Systems dataset which
contains CAN-FD traffic. The results are presented in Table
7. Perhaps not surprising, as this dataset is the most complex
from the ones that we evaluated, the classifiers recorded the
lowest performance results on this trace. Except for the NB,
which did not performed well on this dataset, for the rest of
the algorithms the accuracy varied between 0.89 and 0.98,
precision between 0.72 and 0.97 and specificity between 0.87
and 0.99.

The results from the off-line analysis prove better than the
ones obtained in the on-line analysis and this is due to the
fact that in the on-line evaluation variations of the timestamps
are possible due to frame overlaps on the bus. This points

out that the off-line analysis presented in most papers may
provide more optimistic results compared to the real-world
evaluation.

B. ON-LINE EVALUATION
One specific problem in the on-line evaluation is that the
devices which we used for recording CAN bus traffic, have
their own imperfections which influenced the performance of
the IDS. We note that the timestamps of the frames may have
slight variations according to the device. In particular, the
Raspberry Pi that we used over the WiFi bridge performed
excellent, offering almost identical timestamps to that from
the VN1630. The CAN decoder however did not perform
very well, giving poor accuracy for the recorded timestamps.

Figure 13 first shows frame cycle time as recorded on (i)
original attack trace, (ii) WiFi bridge, (iii) CAN decoder,
then it depicts (iv) drifts on WiFi bridge, (v) drifts on CAN
decoder, (vi) drifts histogram on WiFi bridge and (vii) drifts
histogram on CAN decoder. The depiction is for a frame with
a cycle time of 10ms, in part (i) of the figure the legitimate
frames are depicted in blue and attack frames are in red
(this is a fuzzing attack where attack frames with random
content arrive at random time interval). It is obvious that the
WiFi bridge records almost identical timestamps compared
to the original attack trace. There are only several drifts
of 10 ms when the classification algorithm confused one
legitimate frame with an attack frame and thus the legitimate
frame is missing in that time slot. For the CAN decoder the
timestamps are no longer accurate, the histogram in part (vii)
of the figure shows that drifts of up to 2 ms are common.
These drifts of around 20% of the 10 ms frame cycle time
may lead to false positives in case of legitimate frames.
This suggests that the CAN decoder with the employed
Android drivers from our experiments is not a very good
tool for implementing an IDS, a reason for which we used
a Raspberry Pi as a WiFi bridge between the CAN bus and
the Android devices. As shown in Figure 13 (ii) the delays
over WiFi bridge are nearly identical to the original trace.

We ran the on-line evaluation using the first IDS scenario
with WiFi Bridge and a smartphone, using both the Duster
and ADAS systems datasets. For this, we connected the
Samsung A6 and the Raspberry Pi over WiFi. To ensure
security, a WPA2 (WiFi Protected Access II) connection was
used, which encrypts all packets with AES (Advanced En-
cryption Standard). The delays caused by the WiFi network,
i.e., by encrypting the traffic and retransmitting it, were too
small to affect the real-time performance. We evaluated four
algorithms, i.e., AB, CART, ET and RFC, on two types of
attacks (fuzzing and replay). We chose to work with these
four classifiers, since it was at hand to generate C code for
them using the sklearn-porter library. In the on-line evalua-
tion, we ran both stages of the proposed intrusion detection
algorithm, described in section III-C. Since the IDS has two
stages, we have to redefine the true and false positives as
TP = TP1 +TP2 and FP = FP1 +FP2 respectively since
a frame will be classified as an intrusion if it is marked so
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TABLE 4: Survival Analysis Dataset (HYUNDAI YF Sonata) -
Fuzzing attack

Algorithm Accuracy Precision Recall Specificity

LR 1.00 1.00 0.99 1.00
LDA 1.00 1.00 0.99 1.00
KNN 1.00 1.00 0.99 1.00
NB 1.00 1.00 0.99 1.00

SVM 1.00 1.00 0.99 1.00
MLP 1.00 1.00 1.00 1.00

CART 1.00 1.00 1.00 1.00
AB 1.00 1.00 0.99 1.00
GB 1.00 1.00 1.00 1.00
BC 1.00 1.00 1.00 1.00
ET 1.00 1.00 1.00 1.00

RFC 1.00 1.00 1.00 1.00

TABLE 5: Survival Analysis Dataset (HYUNDAI YF Sonata) -
Malfunction attack

Algorithm Accuracy Precision Recall Specificity

LR 0.98 0.92 1.00 0.98
LDA 0.97 0.87 1.00 0.97
KNN 0.98 0.92 1.00 0.98
NB 0.98 0.92 1.00 0.98

SVM 0.98 0.89 1.00 0.97
MLP 0.98 0.92 1.00 0.98

CART 0.98 0.92 1.00 0.98
AB 0.98 0.92 1.00 0.98
GB 0.98 0.92 1.00 0.98
BC 0.98 0.92 1.00 0.98
ET 0.98 0.92 1.00 0.98

RFC 0.98 0.92 1.00 0.98

TABLE 6: Duster dataset - Fuzzing attack

Algorithm Accuracy Precision Recall Specificity

LR 0.98 0.95 0.94 0.99
LDA 0.95 0.89 0.86 0.97
KNN 0.99 0.96 1.00 0.99
NB 0.96 0.90 0.93 0.97

SVM 0.98 0.96 0.92 0.99
MLP 0.99 0.95 1.00 0.99

CART 0.99 0.96 1.00 0.99
AB 0.99 0.96 1.00 0.99
GB 0.89 0.64 1.00 0.86
BC 0.89 0.64 1.00 0.86
ET 0.99 0.96 1.00 0.99

RFC 0.99 0.96 1.00 0.99

TABLE 7: ADAS systems dataset - Fuzzing attack

Algorithm Accuracy Precision Recall Specificity

LR 0.94 0.89 0.90 0.96
LDA 0.96 0.96 0.89 0.99
KNN 0.97 0.97 0.93 0.99
NB 0.77 0.55 0.81 0.76

SVM 0.94 0.89 0.89 0.96
MLP 0.98 0.96 0.97 0.99

CART 0.90 0.73 0.97 0.87
AB 0.98 0.95 0.97 0.98
GB 0.96 0.90 0.97 0.96
BC 0.89 0.72 0.97 0.87
ET 0.97 0.91 0.97 0.97

RFC 0.97 0.92 0.97 0.97

by any of the two IDS stages. The true and false negatives
will be the true and false negatives that pass the second stage
which means that none of the two stages reported them as
intrusions thus TN = TN2 and FN = FN2 respectively.

The results obtained on the Duster dataset are presented
in Table 8 and the results on the ADAS systems dataset in
Table 9. In case of Duster datasets, the detection performance
of the four algorithms was almost identical, i.e. accuracy of
0.89, precision of 0.64, recall of 1 and specificity of 0.86
in detecting fuzzing attacks. The detection of replay and
flooding attacks is made only in stage 1, so it’s independent
of what algorithms are used in stage 2. Flooding attacks
are trivial to detect with the proposed approach since the
legitimate IDs of the network are known (this is always the
case in the automotive industry). For the replay attacks, the
IDS performed a score of 0.78 in terms of accuracy, 0.44 and
0.45 in terms of precision and recall, and 0.86 in terms of
specificity. The performance results are better in case of the
ADAS systems datasets, the accuracy ranges from 0.88 to
0.97, precision from 0.64 to 0.89, recall from 0.96 to 0.97
and specificity from 0.86 to 0.97. The replay attacks were
detected with an accuracy of 0.90, a precision of 0.89, a recall
of 0.57 and a specificity of 0.98.

C. COMPUTATIONAL RESULTS

In addition to the detection performance evaluation, we also
assessed the proposed IDS mechanism in terms of runtime
speed and memory requirements on several Android de-
vices and three automotive-grade microcontrollers. It is well

known that controllers employed nowadays as automotive
ECUs have limited computational power and memory. On
the other hand, ECUs communicate in real time inside the
in-vehicle network, so the IDS algorithms have to be very
efficient in terms of execution speed. Computational time and
memory requirements are the main challenges in adopting
IDS solutions in the automotive world.

The first stage of our proposed IDS mechanism, which
simply evaluates the arrival time and frame rate, is of no
concerns in terms of execution speed or memory consump-
tion. Therefore we focus our evaluation on the four selected
machine learning algorithms. We ran the algorithms on six
Android devices, i.e. two Android based head units, three
smartphones and one tablet. For these devices we evaluated
the execution speed, since all our devices are equipped with
at least 8 GB of ROM memory, so there are no problems
regarding the needed memory to employ machine learning
algorithms. The results for the head units are listed in Tables
10 and 11. The results for each classifier contains the average
time in microseconds that is needed to classify a CAN frame
(Duster trace) and a CAN-FD frame (ADAS Systems trace).
In order to compute the average time, we ran each classifier
on one thousand messages that include both genuine and
attack messages. As explained in section IV-B, within our
Android application we had to perform JNI calls in order to
access the ML algorithms. Obviously, each JNI call requires
an additional execution time. Therefore, each message which
is received in the application layer of the Android architec-
ture and has to be classified would require a JNI call. The
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TABLE 8: Duster dataset - Fuzzing and replay (WiFi Bridge)

Att. type Algorithm Accuracy TN FP FN TP Precision Recall Specificity

fuzzing

AB 0.89 93757 15520 9 27274 0.64 1.00 0.86
CART 0.89 93757 15520 27 27256 0.64 1.00 0.86

ET 0.89 93757 15520 0 27283 0.64 1.00 0.86
RFC 0.89 93757 15520 1 27282 0.64 1.00 0.86

replay - 0.78 93757 15520 14939 12344 0.44 0.45 0.86

TABLE 9: ADAS systems dataset - Fuzzing and replay (WiFi Bridge)

Att. type Algorithm Accuracy TN FP FN TP Precision Recall Specificity

fuzzing

AB 0.97 152634 4628 1386 37994 0.89 0.96 0.97
CART 0.88 135256 22006 1066 38314 0.64 0.97 0.86

ET 0.96 150328 6934 1193 38187 0.85 0.97 0.96
RFC 0.96 150480 6782 1205 38175 0.85 0.97 0.96

replay - 0.90 154404 2858 16844 22536 0.89 0.57 0.98

TABLE 10: Infotainment Units - computational time for IDS
algorithms [µs] - multiple JNI calls

Device Algorithm Duster (CAN) ADAS systems
(CAN-FD)

PNI A8020

AB 102.87 107.12
CART 11.47 17.93

ET 16.07 35.77
RFC 14.39 29.78

Erisin ES8791V

AB 78.87 84.01
CART 6.20 9.22

ET 8.95 16.04
RFC 7.90 13.97

TABLE 11: Infotainment Units - computational time for IDS
algorithms [µs] - one JNI call

Device Algorithm Duster (CAN) ADAS systems
(CAN-FD)

PNI A8020

AB 85.04 85.89
CART 0.59 2.12

ET 3.82 10.67
RFC 2.21 7.90

Erisin ES8791V

AB 71.67 70.47
CART 0.47 1.55

ET 2.22 6.57
RFC 1.63 4.97

TABLE 12: Android devices - computational time for IDS
algorithms [µs] - multiple JNI calls

Device Algorithm Duster (CAN) ADAS systems
(CAN-FD)

Samsung A6

AB 60.25 62.69
CART 5.76 8.02

ET 7.97 13.56
RFC 7.09 11.99

Samsung S8

AB 42.40 44.19
CART 5.44 5.96

ET 6.72 12.90
RFC 7.10 10.90

Samsung Note10+

AB 15.07 16.07
CART 1.42 2.06

ET 1.97 3.92
RFC 1.76 3.25

Samsung Tab S7

AB 7.98 8.58
CART 0.77 1.27

ET 1.24 2.38
RFC 1.02 1.94

TABLE 13: Android devices - computational time for IDS
algorithms [µs] - one JNI call

Device Algorithm Duster (CAN) ADAS systems
(CAN-FD)

Samsung A6

AB 53.12 54.57
CART 0.37 1.27

ET 1.78 5.09
RFC 1.31 3.90

Samsung S8

AB 37.91 39.39
CART 0.36 1.25

ET 1.84 6.71
RFC 1.15 4.92

Samsung Note10+

AB 13.91 13.91
CART 0.09 0.30

ET 0.35 1.35
RFC 0.27 0.99

Samsung Tab S7

AB 7.03 6.90
CART 0.07 0.29

ET 0.34 0.94
RFC 0.26 0.8

TABLE 14: Azure virtual machines

VM Size OS Family CPU vCPUs Memory

Standard B2ms Linux (ubuntu 18.04) General purpose Intel Xeon Platinum 8171M 2.10 GHz 2 8 GB RAM
Standard F2s_v2 Compute optimized Intel Xeon Platinum 8272CL 2.59 GHz 2 4 GB RAM
Standard B2ms Windows Server General purpose Intel Xeon Platinum 8171M 2.10 GHz 2 8 GB RAM

Standard F2s_v2 Compute optimized Intel Xeon Platinum 8272CL 2.59 GHz 2 4 GB RAM

results from Table 10 reflect this situation. We performed a
JNI call for each of the one thousand evaluated messages. On
the head units, CART, ET and RFC are executed between
6.20 and 16.07 µs when classifying regular CAN frames
and between 9.22 and 35.77 µs when classifying CAN-FD

frames. It seems that for AB the generated code for CAN-
FD frames is very similar to the regular CAN frames, con-
sequently the execution time varies by a few micro-seconds.
The AB classifier requires up to 107.12 µs to be executed
on the PNI head unit and up to 84.01 µs to be executed on
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FIGURE 14: Computational results on Android (multiple JNI calls) and cloud VMs for the four ML classifiers

TABLE 15: Cloud VMs - computational time for IDS algo-
rithms [µs]

VM OS Algorithm Duster (CAN) ADAS systems
(CAN-FD)

Standard
B2ms

Linux

AB 7.16 7.20
CART 0.02 0.03

ET 0.20 0.49
RFC 0.15 0.28

Windows

AB 10.31 10.14
CART 0.03 0.03

ET 0.21 0.56
RFC 0.12 0.27

Standard
F2s_v2S

Linux

AB 5.43 5.37
CART 0.02 0.02

ET 0.14 0.37
RFC 0.11 0.21

Windows

AB 7.49 7.65
CART 0.02 0.02

ET 0.15 0.40
RFC 0.09 0.19

the Erisin head unit, which proves to be faster. We consider
that the communication procedure (via WiFi or USB) may
also be implemented on the native level, enabling the CAN
messages to be received directly at this level, and finally
avoid multiple JNI calls. This approach would decrease the
overall execution time per message. With this in mind, we
also measured the execution time with only one JNI call. For

this, we hardcoded the evaluated messages in a C file which
we compiled with the application so that we can ran the
algorithms on all messages at the native layer. Consequently,
we reduced the numbers of JNI calls to one. These results
are presented in Table 11. With only one JNI call, the time
decreases significantly for all algorithms on both head units.
On Duster dataset, the required execution time of CART, ET
and RFC ranges between 0.47 µs and 3.82 µs and between
1.55 µs and 10.67 µs in case of the ADAS Systems dataset.
AB is executed in less than 86 µs on the PNI head unit and in
less than 72 µs on the Erisin head unit.

We further did the same evaluations on the Android smart-
phones and tablet. The results are presented in Tables 12
and 13. Table 12 contains the execution times evaluated with
multiple JNI calls, while Table 13 lists the execution time
results with one JNI call. The smartphones and the tablet
prove to be somewhat faster than the head units. According to
the results, the fastest algorithm is CART, which required an
execution time in the ranges of 0.77 µs (on Samsung Galaxy
Tab S7) to 5.76 µs (on Samsung A6) when classifying frames
from the Duster dataset. As expected, the time is higher for
the CAN-FD frames (ADAS Systems dataset), ranging from
1.27 µs (on Samsung Galaxy Tab S7) to 8.02 µs (on Samsung
A6). The algorithm which requires the highest execution time
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TABLE 16: Automotive grade controllers - computational time and memory consumption for IDS algorithms

Microcontroller Algorithm Duster (CAN)
[µs] Code flash [kB] ADAS systems

(CAN-FD) [µs] Code flash [kB]

Tricore TC224

AB 5320 5.8417 5466 5.8144
CART 0.59 0.7519 1.14 103.7226

ET 5.60 10.5117 n/a 1573.6210
RFC 3.20 3.8496 11.6 476.4375

Tricore TC397

AB 112.7475 4.9062 113.1530 4.9902
CART 0.7075 1.3203 1.0321 136.6621

ET 5.5111 16.5292 11.4667 2005.2207
RFC 3.9546 6.5976 8.9753 634.6835

S12

AB 1570000 7.8300 1600000 7.8232
CART 4300 2.0263 n/a 203.767

ET 37900 28.07 n/a code too large
RFC 3880 6.5068 n/a 511.9375

FIGURE 15: Computational results on Android (m-multiple/o-one JNI call(s)) and cloud VMs vs. ECUs for the CART classifier

is AB, which classifies CAN frames in ≈8 µs on the most
powerful device and in ≈60 µs on the slowest device. The
required execution time for ET and RFC lies between CART
and AB, with values between 1.02 µs and 13.56 µs. With only
one JNI call, CART, ET and RFC are executed in less than 2
µs by all devices in case of Duster dataset frames, and in less
than 6.71 µs in case of the ADAS Systems dataset frames.
AB is executed between 6.90 µs and 54.57 µs in case of both
datasets.

As described in the introductory part, an important ad-
vantage of Android devices, which can be connected on the
CAN bus, is that they can be also easily connect to cloud

services. This opens road to deploy more complex IDS algo-
rithms on cloud and take advantage of the high computational
resources that the cloud servers are capable of. In order to
get a clear picture of the computational capabilities of cloud
solutions, we evaluated the four classifiers (i.e. AB, CART,
ET and RFC) on cloud virtual machines (VMs). Therefore,
we deployed four VMs using Microsoft Azure service. We
created two VMs running Ubuntu and two Windows based
VMs. For each operating system we chose a general purpose
VM with 8 GB of RAM and a CPU running at 2.10 GHz and a
compute optimized VM with 4 GB RAM and a CPU running
at 2.59 GHz. Each VM features two virtual CPUs (vCPUs).
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The VMs specifications are listed in Table 14. The runtime
measurements are represented in Table 15. In general, the
cloud VMs seem to be the most performant devices, from
the ones that we evaluated, in terms of execution speed.
CART, ET and RFC classifiers are executed in less than 1
µs by all the four VMs while AB is executed between 5.37
µs and 10.31 µs, depending on the VMs configuration. It
seems that VMs running Ubuntu are somewhat faster than
the Windows based VMs. However, an important aspect
that needs to be considered for cloud solutions is the data
transmission time, which depending on various factors (e.g.
location of the server, internet connection) can range from
tens of milliseconds to hundreds of milliseconds or even
more. For a better visualization, the computational results
on the Android devices and cloud VMs are depicted as bar-
charts in Figure 14.

Next, we evaluated the algorithms on the automotive-
grade microcontrollers. In our experiments, we compiled the
C code with the default compiler options for each micro-
controller, which leaves room for optimization in terms of
memory or execution speed, depending on the needs. For
this class of devices, in addition to execution speed, we also
evaluate the required code flash for each algorithm, since
memory consumption is one of the most stringent limitations
of the automotive microcontrollers. The results are listed
in Table 16. Regarding memory consumption, the situation
looks good for the algorithms that were trained on the Duster
dataset. The necessary free memory ranges up to 2.0263
kB in case of CART, up to 7.83 kB in case of AB, up to
6.5976 kB in case of RFC and up to 28.07 kB in case of
ET. These values should be acceptable for deploying IDS
algorithms on automotive ECUs. However, the situation gets
more complicated with the code that was generated for the
ADAS Systems dataset. Except AB, the required available
memory increased a lot for the other three classifiers. ET
could be loaded only on the Tricore TC397 memory. CART
and RFC could be compiled and linked by both the Infineon
devices TC224 and TC397. However, even if they fit in the
memory, the requirements are not very convenient, at least
in case of RFC which requires 476.4375 kB of code flash
memory on TC224, i.e., already more than 40% of the entire
available memory of this microcontroller. We were not able
to include and assess CART or RFC on S12 as the compiler
that we used for S12 has a 64 kB code limitation.

From the execution point of view, most of the results
for the Infineon microcontrollers are comparable with the
Android devices. CART, ET and RFC algorithms trained on
Duster dataset are executed between 0.59 µs and 5.60 µs. In
order to classify CAN-FD frames, CART and RFC requires
between 1.0321 µs and 11.6 µs on the two Infineon devices.
The ET algorithm which was trained on the ADAS Systems
dataset could be successfully evaluated only on the Infineon
TC397. It requires a bit over 2000 kB of code flash memory
and it’s executed in less than 11.5 µs. Based on our results,
the S12 microcontroller requires a few seconds to execute
the machine learning algorithms which is way too much for

the IDS requirements. This indicates that it’s not possible
to deploy such an IDS mechanism on microcontrollers with
low CPU operating frequencies. Based on the results that we
obtained, CART seems to be the most convenient classifier
to be deployed in terms of execution speed and required
memory (only applicable for microcontrollers). In Figure 15
we depicted the execution speed of CART classifier on the
Android devices and on the two Infineon microcontrollers.

VI. CONCLUSION
In this work we made a comparative analysis between two
implementation options for deploying an intrusion detection
system on the CAN bus: the use of an in-vehicle ECU
and the use of Android head units connected via a CAN
decoder or of an Android device connected to a WiFi bridge.
The Android devices do outperform in-vehicle ECUs, but
not by such a high margin when using one of the most
powerful in-vehicle controllers available on the market, i.e.,
an Infineon TC397. However, this happens only if one can
avoid expensive API calls over the JNI interface and if the
code is run at the native level on the ARM processor of the
Android unit. This will depend on the number of JNI calls
that are time consuming, i.e., when multiple calls are used,
the high-end controllers will outperform low-end Android
devices. This implementation detail may significantly reduce
the capability of such devices. For example, when performing
multiple calls from Java to the C/C++ code of the classifier,
the Android head unit proved to be slower than the fastest
microcontroller. Also, we notice that the CAN decoder that
was linked through the serial interface to the Android Unit
is not reliable enough for recording the timestamps which
further impedes the detection rates of the IDS. Nonetheless,
the same CAN decoder was unable to cope with the frame
rate from the bus and there was a consistent frame loss.
Finally, the WiFi bridge performed very well giving almost
identical results in terms of timestamps compared to industry
standard VN1630. This suggests this option as a reliable
one for implementing an IDS inside vehicles. The flexibility
offered by implementing an IDS on Android devices, which
may take advantage of high CPU and memory resources as
well as cloud support, may open road for the deployment of
more advanced IDS in future cars.

VII. LIST OF ACRONYMS

AB Adaptive Boosting
ACK Acknowledge
ADAS Advanced Driver-Assistance Systems
AES Advanced Encryption Standard
API Application Programming Interface
APK Android Application Package
AUTOSAR AUTomotive Open System ARchitecture
BC Bagging Classifier
CAN Controller Area Networks
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CAPL Communication Access Programming Language
CART Classification And Regression Tree
COM Communication
CPU Central Processing Unit
CRC Cyclic Redundancy Check
DLC Data Length Code
DoS Denial of Service
ECU Electronic Control Units
EOF End of Frame
ET Extra Tree
FN False Negative
FP False Positive
GB Gradient Boosting
HEV Hybrid Electric Vehicle
IDS Intrusion Detection Systems
IdsM Intrusion Detection System Manager
IdsR Intrusion Detection System Reporter
IFS Interframe Space
ISO International Organization for Standardization
JNI Java Native Interface
KNN K-Nearest Neighbors
LDA Linear Discriminant Analysis
LR Logistic Regression
MAC Message Authentication Codes
ML Machine Learning
MLP Multi-Layer Perceptron Network
NB Gaussian Naive Bayes
NDK Native Development Kit
OBD On-Board Diagnostic
QEVs Qualified Security Events
RFC Random Forest
ROM Read-only Memory
RRS Remote Request Substitution
RTR Remote Transmission Request
Sem Security event memory
SOF Start of Frame
SPI Serial Peripheral Interface
SUV Sport Utility Vehicle
SVM Support Vector Machine
TN True Negative
TP True Positive
TPMS Tire Pressure Monitoring Systems
UART Universal Asynchronous Receiver/Transmitter
VM Virtual Machine
WPA2 WiFi Protected Access II
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