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Abstract—Fingerprinting smartphones using their accelerome-
ters has several applications, including activity recognition, driv-
ing style classification and device to device authentication. In this
work, we study accelerometer-based smartphone fingerprinting.
We gather data from mobile devices placed together to record
identical vibrations. Then, we extract time domain features,
which we use to train multiple traditional machine learning
algorithms based on statistical properties of the data. Finally,
we use the raw data in a more complex Convolutional Neural
Network and compare the results. To make the investigations
more challenging, we discuss fingerprinting both distinct and
identical smartphones and reach an accuracy close to 100% with
several traditional classifiers.

Index Terms—smartphone fingerprinting, accelerometer, time
domain features, machine learning, CNN

I. INTRODUCTION

Nowadays, smartphones are likely the most popular gadget
and their performance has drastically increased. They are also
equipped with several sensors that allow the user to complete
everyday tasks more swiftly and efficiently. The most crucial
activity which is frequently performed with a smartphone is
device-to-device authentication. In recent years, authentication
based on sensor fingerprints has been increasingly explored.

Several approaches for fingerprinting smartphones based on
their sensors have been proposed in the literature, focusing on
microphones [1], [2], loudspeakers [3], [4], [5], gyroscopes
[6], etc. Regardless of the sensor type, sensor characteristics
may be unstable due to influences by the environment which
make identification more challenging. In this work, we discuss
smartphone fingerprinting based on accelerometer imperfec-
tions. Each smartphones is equipped with MEMS (Micro-
Electromechanical Systems) accelerometer sensors, with the
schematic suggested in Figure 1, which have unpredictable
characteristics due to chemical, physical and geometrical im-
perfections introduced during manufacturing.

Accelerometers have been proposed for pairing mobile
devices almost two decades ago [7], [8]. Still, only a few works
were concerned with smartphone fingerprinting based on ac-
celerometer data. The authors of [9] proposed a method for
accelerometer fingerprinting based on 8 time domain features
and 10 frequency domain features. Later, the authors from
[10] used 8 time domain features along with a thresholding
method to fingerprint accelerometers for device authentication.
More recently, the authors from [11] used 10 time domain
features and 10 frequency domain features with a combination

Fig. 1. Accelerometer sensor

of one-class and multi-class classifiers. Accelerometers and
microphones were independently classified in [12].

Several works used multiple sensors for smartphone finger-
printing. The accelerometer, gyroscope and camera were used
in [13], while the authors from [14] used the accelerometer,
gyroscope, magnetometer and microphone. Many works used
only the accelerometer and gyroscope for device fingerprint-
ing, i.e., [15], [16], [17], [18]. The accelerometer, camera,
loudspeaker and wireless transmitter were employed in [19]
for device identification. In [20], once again, data from several
sensors were used, i.e., accelerometer, gyroscope, orientation,
magnetic field, rotation vector, linear acceleration, and grav-
ity. Software fingerprinting based on the accelerometer and
gyroscope was discussed in [21] and [22].

Several works used accelerometer sensors for other objec-
tives. A survey on driver behavior detection using accelerom-
eter sensors was conducted in [23]. The same topic was
discussed in [24] and [25]. Driver identification based on
data acquired from the accelerometer was discussed in [26]
and [27]. Driving style recognition and driver classification
based on motion sensors was proposed in [28] and [29].
The authors of [30] proposed a method for transportation
mean detection based on accelerometer and GPS data. Also,
[31] and [32] discuss transportation mode recognition using
data from accelerometers. Real-time pothole detection using
accelerometer data was discussed in [33]. In [34], a method
for road condition monitoring using the accelerometer and
GPS sensors was proposed. In-vehicle seat detection using
smartphone motion sensors, i.e., accelerometer and gyroscope,
was proposed in [35]. Gait recognition based on accelerometer



data is discussed in [36].
The authors of [37] develop a system for detecting ac-

tivity at metro stations based on smartphone sensors. Gait
recognition using accelerometer data and adapted Gaussian
mixture models was proposed in [38]. Activity recognition
using smartphone sensors, including the accelerometer, was
discussed in [39]. The authors from [40] present a method for
tracking metro rides using the accelerometer. The work in [41]
proposes a system for device to device authentication based on
accelerometer data collected in different transportation modes,
i.e, car, train, tram, bike, walk and shaking. Device-to-device
pairing based on accelerometer data is also proposed in [42],
[43] and [44].

II. RESULTS WITH TRADITIONAL CLASSIFIERS

In this section, we discuss data collection, analyze collected
signals from the accelerometer sensors, extract several time do-
main features and use traditional machine learning algorithms
to classify smartphones.

A. Data collection

For data collection, we developed an Android application
that acquires data from the phone’s accelerometer at a sam-
pling rate of 10ms. The data is collected simultaneously from
all smartphones in an environment with vibrations. Then, the
acquired data was saved in a text file to be used for signal
analysis. Each file contains data collected for approximately 40
minutes, i.e., around 240.000 samples. As accelerometer data
spans on 3-axes, i.e., X, Y, and Z, we first compute the square
for each axis, sum the results and then extract the square root
as follows in order to make the measurements independent
from the phone orientation: a =

√
a2X + a2Y + a2Z .

To perform the classification, we split the data collected
from each smartphone into 200 signals with 1.000 samples,
i.e., 10 seconds each. Then, we randomly split the signals
into training and testing data, starting from 20% training
and 80% testing up to 80% training and 20% testing, with
an increment step of 10%. Next, we process and analyze
the signals and apply several traditional machine learning
algorithms, i.e., NN (Wide Neural Network), Ensemble, KNN
(K-Nearest Neighbors), SVM (Support Vector Machine), and
Decision Tree. In the next section, we will also train a more
complex CNN (Convolutional Neural Network) and finally
compare the results.

To make the fingerprinting process more challenging, we
use the 5 identical and 5 different smartphones to collect data
and test the machine learning algorithms. These devices are
five different smartphones: LG Optimus P700 (A), Samsung
Galaxy S7 (B), Samsung Galaxy A21s (C), Samsung Galaxy
J5 (D) and Allview V1 Viper I (E), and then the following
five identical Samsung J5 (labels F to J) .

B. Signal processing and machine learning algorithms

In Figure 2 we depict the concept overview. From each
signal, we extract the following time-domain features:

1) Kurtosis - the tailedness of a signal,

Fig. 2. Concept overview

20 30 40 50 60 70 80
NN 0.975 1.0 0.987 1.0 0.991 0.992 0.993
ENS 1.0 1.0 1.0 1.0 1.0 1.0 1.0
KNN 0.975 0.983 0.987 1.0 0.991 0.978 0.98
SVM 0.975 1.0 1.0 1.0 0.991 0.992 1.0
TREE 0.975 0.983 0.987 0.99 0.966 0.971 0.981

(i) Testing accuracy for 5 different accelerometers
20 30 40 50 60 70 80

NN 0.950 0.983 0.950 0.970 0.983 0.914 0.981
ENS 1.0 1.0 1.0 1.0 1.0 1.0 1.0
KNN 0.900 0.983 0.937 0.990 0.958 0.971 0.975
SVM 1.0 1.0 1.0 0.990 1.0 1.0 1.0
TREE 0.800 0.983 0.950 1.0 0.983 0.992 0.993

(ii) Testing accuracy for 5 identical accelerometers

Fig. 3. Testing accuracy as heatmap (left) and numerical values

2) Skewness - the asymmetry of the signal around the mean
value,

3) SNR (Signal-to-Noise Ratio), i.e., the ratio between the
power of the signal and the power of the noise,

4) STD (Standard deviation) - the square root of the variance
of the signal,

5) RMS (Root-Mean-Square) - the mean of the squares
along several samples from the signal,

6) Peak value - the maximum value of the signal,
7) SINAD (Signal to Noise and Distortion Ratio) - the ratio

between the power of the signal and that of the noise and
distortions.

The extracted time domain features are finally sent as input
to several classification algorithms to learn the smartphones
characteristics based on their accelerometers. We use the
following five machine learning algorithms that are available
in Matlab:

1) NN (Wide Neural Network) is a simple neural network
which contains an input layer of 7 neurons, a fully
connected layer that has 100 neurons, a rectified linear
unit (ReLU) to activate the fully connected layer, another
fully connected layer with 5 outputs that correspond to
the 5 smartphones and, finally, a Softmax function,

2) ENS (Ensemble - Subspace Discriminant) has a subspace
dimension of 7, which corresponds to the number of time
domain feature extracted from the accelerometer signals
and requires 30 learning cycles,

3) KNN (K-Nearest Neighbors) uses the Euclidean distance
and 2 neighbors to classify the smartphones,

4) SVM (Support Vector Machine) uses the linear kernel
function, one-vs-one coding method, one box constraint
level and the automatic kernel scale,



A B C D E
NN 0 0 0 0 0
ENS 0 0 0 0 0
KNN 0 0 0 0 0
SVM 0 0 0 0 0
TREE 0 0 0 0 0

(i) FAR for 5 different accelerometers for 20% training
F G H I J

NN 0 0.046875 0 0.023 0
ENS 0 0 0 0 0
KNN 0 0.039 0 0.023 0
SVM 0 0 0 0 0.007
TREE 0.007 0.320 0 0.007 0.085

(ii) FAR for 5 identical accelerometers for 20% training
A B C D E

NN 0 0 0 0.007 0
ENS 0 0 0 0 0
KMN 0 0 0 0 0
SVM 0 0 0 0 0
TREE 0 0 0 0 0

(iii) FAR for 5 different accelerometers for 80% training
F G H I J

NN 0.062 0 0 0.031 0
ENS 0 0 0 0 0
KNN 0 0 0 0 0
SVM 0 0 0 0 0
TREE 0 0 0 0 0

(iv) FAR for 5 identical accelerometers for 80% training

Fig. 4. FARs as heatmap (left) and numerical values (right)

A B C D E
NN 0.031 0 0 0 0
ENS 0 0 0 0 0
KNN 0 0 0 0 0
SVM 0 0 0 0 0
TREE 0 0 0 0 0

(i) FRR for 5 different accelerometers for 20% training

F G H I J
NN 0.218 0 0 0 0.062
ENS 0 0 0 0 0
KNN 0.187 0 0 0 0.062
SVM 0 0 0.031 0 0
TREE 0.500 0.031 0.468 0.156 0.531

(ii) FRR for 5 identical accelerometers for 20% training
A B C D E

NN 0 0 0 0 0
ENS 0 0 0 0 0
KNN 0 0 0 0 0
SVM 0 0 0 0 0
TREE 0 0 0 0 0

(iii) FRR for 5 different accelerometers for 80% training
F G H I J

NN 0.125 0 0 0.250 0
ENS 0 0 0 0 0
KNN 0 0 0 0 0
SVM 0 0 0 0 0
TREE 0 0 0 0 0

(iv) FRR for 5 identical accelerometers for 80% training

Fig. 5. FRRs as heatmap (left) and numerical values (right)

5) TREE (Decision Tree) has the maximum number of
splits set to 100 and uses the Gini’s diversity index split
criterion.

C. Results

In Figure 3, we show the mean testing accuracy for each
classifier and the percentage of training data that was used. In
Figure 3 (i), we show the accuracy for different smartphones,

A B C D E
NN 0.968 1.0 1.0 1.0 1.0
ENS 1.0 1.0 1.0 1.0 1.0
KNN 1.0 1.0 1.0 1.0 1.0
SVM 1.0 1.0 1.0 1.0 1.0
TREE 1.0 1.0 1.0 1.0 1.0

(i) Precision for 5 different accelerometers for 20% training

F G H I J
NN 0.781 1.0 1.0 1.0 0.937
ENS 1.0 1.0 1.0 1.0 1.0
KNN 0.812 1.0 1.0 1.0 0.937
SVM 1.0 1.0 0.968 1.0 1.0
TREE 0.500 0.968 0.531 0.843 0.468

(ii) Precision for 5 identical accelerometers for 20% training
A B C D E

NN 1.0 1.0 1.0 1.0 1.0
ENS 1.0 1.0 1.0 1.0 1.0
KNN 1.0 1.0 1.0 1.0 1.0
SVM 1.0 1.0 1.0 1.0 1.0
TREE 1.0 1.0 1.0 1.0 1.0

(iii) Precision for 5 different accelerometers for 80% training
F G H I J

NN 0.875 1.0 1.0 0.75 1.0
EMS 1.0 1.0 1.0 1.0 1.0
KNN 1.0 1.0 1.0 1.0 1.0
SVM 1.0 1.0 1.0 1.0 1.0
TREE 1.0 1.0 1.0 1.0 1.0

(iv) Precision for 5 identical accelerometers for 80% training

Fig. 6. Precision as heatmap (left) and numerical values (right)

A B C D E
NN 1.0 1.0 1.0 0.969 1.0
ENS 1.0 1.0 1.0 1.0 1.0
KNN 1.0 1.0 1.0 1.0 1.0
SVM 1.0 1.0 1.0 1.0 1.0
TREE 1.0 1.0 1.0 1.0 1.0

(i) Recall for 5 different accelerometers for 20% training
F G H I J

NN 1.0 0.842 1.0 0.914 1.0
ENS 1.0 1.0 1.0 1.0 1.0
KNN 1.0 0.864 1.0 0.914 1.0
SVM 1.0 1.0 1.0 1.0 0.969
TREE 0.941 0.430 1.0 0.964 0.576

(ii) Recall for 5 identical accelerometers for 20% training
A B C D E

NN 1.0 1.0 1.0 1.0 1.0
ENS 1.0 1.0 1.0 1.0 1.0
KNN 1.0 1.0 1.0 1.0 1.0
SVM 1.0 1.0 1.0 1.0 1.0
TREE 1.0 1.0 1.0 1.0 1.0

(iii) Recall for 5 different accelerometers for 80% training

F G H I J
NN 0.777 1.0 1.0 0.857 1.0
ENS 1.0 1.0 1.0 1.0 1.0
KNN 1.0 1.0 1.0 1.0 1.0
SVM 1.0 1.0 1.0 1.0 1.0
TREE 1.0 1.0 1.0 1.0 1.0

(iv) Recall for 5 identical accelerometers for 80% training

Fig. 7. Recall as heatmap (left) and numerical values (right)

while in Figure 3 (ii), we display it for identical smartphones.
Overall, the results are favorable for each training percentage.
In case of some classifiers, as expected, the accuracy is higher
for different smartphones than for identical ones. However,
we achieve 100% accuracy with the ENS classifier for all
training percentages in both scenarios, i.e., identical and
different smartphones. The SVM classifier likewise produces
good results, with accuracy ranging from 99% to 100% in both



cases. The sole exception is when 20% of the data was used
for training, in the case of different smartphones. Accuracy is
only 97.5% in this case, however, this is expected given the
limited amount of training data. KNN achieves an accuracy of
97.5% to 100% for different smartphones and 90% to 99% for
identical smartphones. Similarly, NN yields an accuracy be-
tween 97% and 100% for different smartphones and between
91% and 98.3% for identical smartphones. TREE’s accuracy
ranges from 97.5% to 99% for different smartphones and from
80% to 100% for identical smartphones. With a few outliers,
the testing accuracy is more than 97.5%.

In Figures 4, 5, 6, 7, we depict the FAR (False Acceptance
Rate), FRR (False Rejection Rate), as well as the precision
and recall for each classifier and each smartphone. Since
there is no significant variation in results for different training
percentages, we chose to show the FAR, FRR, accuracy,
and recall only at 20% and 80% training in what follows.
These figures show the metrics for different smartphones (i)
and identical smartphones (ii) at 20% training. Then, they
show the metrics for different smartphones (iii) and identical
smartphones (iv) at 80% training. The FAR for all classifiers
and all smartphones is zero in the case of 20% training
for different smartphones. The FRR is also zero, except for
smartphone A, which has a FRR of 3.1% when NN is used.
Regarding the precision and recall, the results are 100% except
when NN is used. In this case, smartphone A has a precision of
96.8%, and smartphone D has a recall of 96.9%. For identical
smartphones, the results for FAR, FRR, accuracy and recall
are somewhat worse at 20% training. The exception is ENS,
which yields zero FAR and FRR, as well as 100% precision
and recall. The FAR for all other classifiers is between 0%
and 8.5%, with the exception of smartphone G, when TREE is
utilized. In this case, the FRR is 32%. The FAR ranges from
0% to 53.1%, while precision ranges from 53.1% to 100%,
and recall ranges from 43% to 100%. As expected, the results
are better in the case of 80% training. Except for one phone
in case of different device and two phones phones in case
of identical devices when the FAR is less than 6.2% and the
FRR less than 25% with the NN classifier. For the rest of the
classifiers, the FAR and FRR are zero in both situations, i.e.,
different and identical smartphones. For all classifiers, with
different smartphones, both the precision and recall are 100%
when 80% was applied. In the case of identical smartphones,
devices F and I show the lowest precision and recall, just
above 75% with NN. For the rest of of the classifiers, in case
of 80% training, the precision and recall are 100% for all
devices.

Overall, the ENS classifier performs better than the rest
across all training percentages, but the other classifiers also
provide good results.

III. RESULTS WITH DEEP LEARNING CLASSIFIERS

This section depicts the architecture of the selected CNN
along with the results for each training percentage.

20% 30% 40% 50% 60% 70% 80%
Different 0.384 0.812 0.925 0.937 0.949 0.943 0.971
Identical 0.297 0.472 0.684 0.93 0.939 0.95 0.893

Fig. 8. Testing accuracy as heatmap (left) and numerical values (right)

A. MobileNet applied to one-dimensional data

To further explore the generalization capabilities of our
data set, we attempt to train a deep convolutional neural
network solely on raw data. For each example in the data
set, the previously extracted 7 features are replaced with 1000
acceleration values, i.e., the number of samples in each signal.
This simultaneously increases the complexity of our feature
space while also removing some of the bias and data loss that
occurs during pre-processing. Therefore, as a result of feature
space expansion, deep neural networks are used.

The selected CNN, MobileNet-v1 [45], was originally
intended as a lightweight, mobile-oriented computer vision
architecture. To adapt the network to our specific use case of
1000 features and 1 input channel, we use a TensorFlow1 im-
plementation2 that replaces 2D-convolution with its 1D coun-
terpart. The authors of the original paper prioritized efficiency,
therefore, they used depthwise separable convolution [46] to
reduce the number of floating point operations. This implies
that for each block, we use not one but two convolutional
layers: a depthwise convolution and a pointwise convolution.
The former is applied channel-by-channel, with no further
mixing. Therefore, after each depthwise layer, the number of
channels remains unchanged. Pointwise convolutions always
use a kernel of size 1 and are intended to merge the channels
from the preceding layer.

Concretely, the CNN consists of 27 convolutional layers
and 1 fully-connected layer placed on top of one another. This
corresponds to 1 standard-convolution stem block, followed by
13 depthwise-separable convolution blocks and 1 final dense
layer. Each convolution is followed by batch normalization
[47] and a ReLU activation function. The stem block lowers
the number of features by half while increasing the number
of channels from 1 to 64. As data travels down the network,
the number of features is lowered by half until it hits 32, and
the number of channels eventually reaches 2048. The network
has a total of 7,980,613 trainable parameters.

To train the network, we used the multi-class cross entropy
loss and the Adam optimizer with a learning rate of 0.001.
Training lasted 100 epochs, with the same seven training-
testing ratios from 20% to 80% used in section II.

B. Results

In Figure 8 we show the accuracy for different and identical
smartphones, for all training percentages. As expected, in gen-
eral, the accuracy is increasing with training percentages, with
few exceptions. Also, the accuracy for identical smartphones
is lower than for different smartphones. In Figure 9 (i) we
depict the FAR for different smartphones and in Figure 9 (ii)

1https://www.tensorflow.org/
2https://github.com/Sakib1263/MobileNet-1D-2D-Tensorflow-Keras



A B C D E
20% 0.300 0.006 0.036 0.190 0.001
30% 0.046 0.012 0.019 0.006 0.006
40% 0.013 0.008 0.002 0.006 0.026
50% 0 0 0 0.002 0.002
60% 0 0.009 0.001 0.010 0.017
70% 0.008 0.001 0 0.001 0.007
8% 0 0 0 0.001 0.029

(i) FAR for 5 different accelerometers
F G H I J

20% 0.110 0.152 0.131 0.010 0.226
30% 0.044 0.005 0.244 0.055 0.069
40% 0.027 0.048 0.006 0.032 0.069
50% 0 0 0.029 0.001 0.003
60% 0 0 0.021 0.003 0
70% 0 0.001 0.011 0.001 0
80% 0 0.0091 0.011 0.001 0

(ii) FAR for 5 identical accelerometers

Fig. 9. FAR for different and identical smartphones as heatmap (left) and
numerical values (right)

A B C D E
20% 0.413 0.738 0.416 0.026 0.573
30% 0.027 0 0.029 0.219 0.252
40% 0.025 0.188 0.006 0.026 0.111
50% 0.001 0.149 0 0.123 0.037
60% 0 0.093 0.001 0.025 0.118
70% 0 0.088 0.098 0.093 0.008
80% 0.002 0.867 0 0.007 0.020

(i) FRR for 5 different accelerometers
F G H I J

20% 0.623 0.900 0.700 0.710 0.800
30% 0.5092 0.850 0.378 0.037 0.580
40% 0.064 0.378 0.543 0.334 0.050
50% 0.018 0.282 0.003 0.001 0
60% 0.006 0.188 0.035 0.005 0
70% 0 0.194 0.024 0 0
80% 0.010 0.292 0.200 0 0.035

(ii) FRR for 5 identical accelerometers

Fig. 10. FRR for different and identical smartphones as heatmap (left) and
numerical values (right)

A B C D E
20% 0.334 0.784 0.500 0.548 0.596
30% 0.884 0.931 0.928 0.855 0.953
40% 0.946 0.896 0.981 0.974 0.837
50% 0.970 0.977 0.995 0.882 0.824
60% 0.999 0.928 0.887 0.940 0.896
70% 0.940 0.980 0.990 0.988 0.907
80% 0.996 0.988 0.993 0.968 0.931

(i) Precision for 5 different accelerometers
F G H I J

20% 0.253 0.020 0.382 0.254 0.299
30% 0.427 0.373 0.283 0.825 0.448
40% 0.934 0.634 0.517 0.776 0.920
50% 0.998 1.0 0.816 0.900 0.986
60% 0.999 1.0 0.834 0.966 1.0
70% 0.998 0.984 0.855 0.983 1.0
80% 0.994 0.831 0.624 0.977 0.987

(ii) Precision for 5 identical accelerometers

Fig. 11. Precision for different and identical smartphones as heatmap (left)
and numerical values (right)

we depict the FAR for identical smartphones for all training
percentages. For different smartphones, the values are between
0% and 30.09%. In case of identical smartphones the minimum
values are also 0%, but the maximum values are 24.4%. In
Figure 10 we depict the FRR for different (i) and identical (ii)
smartphones. For different smartphones, the FRR is between
0% and 86.7%, while for identical smartphones, the values
are similar, between 0% and 90%. In terms of precision,
for different smartphones, in Figure 11 (i) the values are

A B C D E
20% 0.586 0.264 0.594 0.972 0.450
30% 0.974 0.958 0.970 0.781 0.750
40% 0.972 0.813 0.993 0.972 0.852
50% 0.990 0.800 1.0 0.777 0.863
60% 1.0 0.903 0.900 0.977 0.880
70% 1.0 0.947 0.802 0.908 0.990
80% 0.997 0.900 1.0 0.992 0.977

(i) Recall for 5 different accelerometers
F G H I J

20% 0.376 0.1 0.600 0.578 0.600
30% 0.490 0.140 0.621 0.964 0.400
40% 0.934 0.622 0.456 0.665 0.894
50% 0.982 0.718 1.0 0.997 1.0
60% 0.994 0.847 0.965 0.996 1.0
70% 1.0 0.798 0.976 1.0 1.0
80% 0.990 0.708 0.8 1.0 0.965

(ii) Recall for 5 identical accelerometers

Fig. 12. Recall for different and identical smartphones as heatmap (left) and
numerical values (right)

between 33.4% and 99.9%, while for identical smartphones,
in Figure 11 (ii), the values are between 2% and 99.9%. The
recall for different smartphones, as shown in Figure 12 (i), is
between 26.4% and 100%. In case of identical smartphones,
as shown in Figure 12 (ii), the minimum values is 10% and
the maximum values is 100%.

IV. CONCLUSION

In this work, we discuss smartphone fingerprinting based on
their accelerometer sensors, using several machine learning
classifiers, i.e., NN, Ensemble, KNN, SVM, and Decision
Trees on 7 time domain features, i.e., Kurtosis, Skewness,
SNR, STD, RMS, peak value, and SINAD, or, alternatively,
just the raw accelerometer data in case of a CNN. Our
data set contained examples from five identical and different
smartphones and reached a maximum accuracy of 100%
for identification, when the Ensemble classifier was used.
The CNN performed much worse when low percentages of
training data were used and the results improved significantly
with more training data, still not necessarily outperforming
the traditional classifiers. Consequently, the results show that
traditional machine learning approaches applied on statistical
properties of accelerometer data can give better results than
some more complex deep learning architectures in case of
fingerprinting smartphones based on accelerometer sensors,
especially when limited training data is available.
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